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Abstract: Averaged learning subspace methods (ALSM) have the advantage of being 

easily implemented and appear to outperform in classification problems of hyperspectral 

images. However, there remain some open and challenging problems, which if addressed, 

could further improve their performance in terms of classification accuracy. We carried out 

experiments mainly by using two kinds of improved subspace methods (namely, dynamic 

and fixed subspace methods), in conjunction with the [0,1] and [-1,+1] normalization 

methods. We used different performance indicators to support our experimental studies: 

classification accuracy, computation time, and the stability of the parameter settings. 

Results are presented for the AVIRIS Indian Pines data set. Experimental analysis showed 

that the fixed subspace method combined with the [0,1] normalization method yielded 

higher classification accuracy than other subspace methods. Moreover, ALSMs are easily 

applied: only two parameters need to be set, and they can be applied directly to 

hyperspectral data. In addition, they can completely identify training samples in a finite 

number of iterations. 
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1. Introduction 

 

Hyperspectral data provide detailed spectral information about ground scenes based on a huge 

number of channels with narrow contiguous spectral bands. Hyperspectral data can therefore better 

discriminate the spectral signatures of land-cover classes that appear similar when viewed by 

traditional multispectral sensors [1]. If successfully exploited, hyperspectral data can yield higher 

classification accuracy and more detailed class taxonomies.  

However, this increase of data dimensionality has introduced challenging methodological problems 

because of the incapacity of common image processing algorithms to deal with such high-volume data 

sets [2,3]. In the context of supervised classification, the most common problem is the Hughes 

phenomenon [4], implies that the required number of training samples for supervised classification 

increases as a function of dimensionality. One possible solution for mitigating the effects of the 

Hughes phenomenon is to reduce the dimensionality of the data but at the same time keep as much 

information as possible. For example, commonly used dimensionality reduction methods include 

feature selection and feature extraction methods [5-9], principal components analysis (PCA) with 

conventional classification methods [10], Minimum Noise Fraction [11], orthogonal subspace 

projection classification methods [12], support vector machine (SVM) classifiers [13-18], and spectral 

angle mapper and spectral information divergence methods [19,20].  

The subspace pattern recognition method is another dimensionality reduction method that can 

achieve dimension reduction and classification concurrently. The subspace method represents each 

class by a model of a linear subspace of a feature space. This method was originally proposed by 

Watanabe et al. [21]. In the subspace method, the original high-dimensional data are projected onto a 

low-dimensional space as done in PCA, but different classes are forced to follow different directions in 

this low-dimensional space. Subspace analysis has attracted much attention in the area of object 

recognition and character recognition during the last decade, and some examples are shown by Sakano 

et al. [22], and Omachi and Omachi [23].  

For character or face image recognition, the processing object is a binary image or a single-band 

gray-scale image, but for hyperspectral data, the object is a high-dimensional gray-scale image 

(dimensions equal to the number of bands). Thus, the subspace method must be extended accordingly 

to hyperspectral data classifications.  

In the specific context of hyperspectral data classification, averaged learning subspace methods 

(ALSM) for hyperspectral data classification have been described by our previous work [24]. The low-

dimensional subspaces that can better characterize class information and can precisely distinguish it 

from other classes simultaneously. However, they provide results only by using a method of fixed 

subspace dimension and do not describe the behavior of the dimension selection or the parameter 

settings. 
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Moreover, several critical issues are still unclear, for example, (1) how the data normalization 

method affects the subspace method, (2) how various approaches for selecting subspace dimensions 

affect the classification accuracy, (3) how learning parameters influence the training speed and 

classification accuracy, (4) how the size of the training data set influences the classification accuracy, 

and (5) how to compute eigenvalues from the correlation matrices. 

To avoid overflow problems, high-dimensional hyperspectral data need to be normalized to unit-

length before one performs the subspace training and classification procedure. The primary objective 

of image normalization is to remove the effects of outliers by limiting the extent of scatterplot data 

[25]. Some methods have been proposed for the normalization of satellite data for this purpose [26]. 

We modified two commonly used normalization methods for hyperspectral data. A detailed description 

of the normalization methods will be addressed later.  

Another major problem with subspace methods regards eigenvalue computation algorithms. The 

computational cost of subspace methods critically depends on the eigenvalue computation methods; 

thus, we adopted the QR method [27] instead of the Jacobi method [28].  

In this paper, we present the dynamic subspace dimension method, which sets each subspace 

dimension independently in ALSMs (hereafter referred to as the dynamic subspace method), and the 

fixed subspace dimension method, which fixes subspace dimensions for each class as the same value 

as that used in ALSMs (hereafter referred to as the fixed subspace method) based on two normalization 

methods. We also carried out experimental studies on 16 land-cover classes using the “Indian Pines” 

92AV3C9 data set collected from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

hyperspectral sensor of June 1992 for the Indian Pines area, Indiana, USA 

(http://dynamo.ecn.purdue.edu/~biehl/MultiSpec) [29]. Different performance indicators are used to 

support our experimental analysis, namely, the classification accuracy, computational cost, stability of 

dimensions selection, and learning parameter settings. Experimental results confirm the considerable 

advantage of the subspace method in the context of hyperspectral data classification. Since many 

previously published classification methods used the Indian Pines data sets for experiments, e.g., SVM 

methods [5,13,14] and feature selection and feature extraction methods [6,8,17]. Therefore it is 

convenient for the reader to compare the proposed subspace methods described herein with those 

approaches 

The rest of this paper is organized as follows. First, we describe the main idea of subspace methods. 

Next, we present the data sets and associated processing steps, i.e., normalization methods and 

eigenvalue computation algorithms. Then, we show comparison results and analyses for AVIRIS 

hyperspectral data experiments between different normalization methods and our subspace methods. 

Finally, we present concluding remarks. 

 

2. Subspace Methods 

 

2.1. CLAFIC and ALSM Subspace Methods 

 

Subspace methods have been extended in many ways. The most basic is called class-featuring 

information compression (CLAFIC) [30], the procedure of which is as follows.  
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Assume that available hyperspectral data from a given site contain n bands, the implicit pixels are 

of an n-dimension column vector, and user-defined classes of (1), (2), …, (K) appear. A set of 

labeled pixels for all such classes should also be available, divided into training and test data sets. 

Given a set of training samples sk,iRn (1  i  p) that belong to class (k) (1  k  K), where n same 

as the number of bands in a hyperspectral data set, p represents the total number of training samples in 

class (k), and K denotes the number of classes, let rk denote the number of dimension of the subspace 

D k( Rn) of class (k) for which rk < min(n, p) is satisfied. Let Tk=(tk,1, …, tk,k) denote the base vectors 

matrix of subspace, where tk,i 
 is the i-th normal orthogonal base.  

D k is included in the subspace spanned by the training sample sk,i (1  i  p), thus the bases can be 

represented by  

ikk

p
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in which uk,i,j are coefficient parameters and Uk,i=( uk,i,1, …, uk,i,p)
T are coefficient vectors. 

For the recognition (classification) task, one needs to compute the distance between the pattern 

vector (pixel) v and each subspace, and label v into the classes that have the shortest distances. It is 

formulated by: 
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Hence, finding the shortest distance is equivalent to finding the largest squared length of the 

orthogonal projection between pattern vector v and each subspace. 

Combining equations (2) and (7), we get: 
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where Sk
Tv is a dot product matrix between the pattern vector v and the training sample matrix. 

Equation 8 is equivalent to finding Uk that maximizes: 
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subject to: 

IUSSU kk
T
k

T
k   (10) 

where I is an n×n unit matrix. The optimal solution to this problem is given by the following theorem. 

Theorem: Let Pk = Sk
TSk  and let the first rk largest corresponding eigenvalues be arranged in 

descending order: k, 1k, 2, …, k, rk (>0)  . Let the corresponding eigenvectors be denoted by k,1, 

k,2, k, rk. The optimum solution of equation (9) is: 

 1)(  kkk LAU  (11) 

Where: 

 ),,,( ,2,1, krkkkk aaaA   (12) 

),,,( ,2,1, krkkkk diagL    (13) 

The proof is shown by Tsuda [31]. 

In summary, determining the subspace of class (k) is to solve the eigenvalue problem of matrix 

Sk
TSk. Here Sk

TSk  is the sample correlation matrix from those whose eigenvalues and eigenvectors can 

be computed by some existing method such as the Jacobi or QR method. The eigenvectors k,1, k,2,   

k, rk 
of Sk

TSk  are computed corresponding to the first rk  largest eigenvalues. Then these eigenvectors 

comprise the subspace  Dk of k-th class (k).  

CLAFIC has the drawback that subspaces obtained for one class are not dependent on subspaces of 

other classes. To avoid this problem, an iteration-learning algorithm, called the ALSM has been 

proposed [30, 32]. In this method, the subspaces are suitably rotated in each iteration training step. 

When an error occurs in the ALSM, the correct subspace is rotated toward the misclassified vector and 

the wrong subspace is rotated away from it. This is achieved by modifying the class conditional 

correlation matrices and then updating the basis vectors of subspaces. 

At each step k, one divides the misclassified training samples into two types: either a sample vector 

of class (i) is misclassified into another class, say (j), or a sample vector of another class, say (k), is 

misclassified into class (i) . We denote the conditional correlation matrix by: 
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where the symbol   denotes the sample that has been misclassified into class (j). Based on current 

existing subspaces, all training samples are classified according to equation (7), and all matricesPk
(i,j),  

i, j = 1, 2, …, K are computed. Then, the correlation matrices for each class are computed as: 
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where  and  are the learning parameters, which are usually set to two constant values and do not 

vary in the iteration process. Then a new subspace of class (i) can be computed from Pk
(i). 
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2.2. Subspace Dimension 

 

The subspace dimension markedly affects the pattern recognition rate. The dimensionalities of class 

subspaces are decided in the CLAFIC stage and then are kept constant during the learning process. 

Methods for selecting the dimension can be divided into two types: (1) fixed subspace methods, which 

set a uniform dimension for all classes, and (2) dynamic subspace methods, which set subspace 

dimensions differently for each class.  

For dynamic subspace methods, the selection of the dimension ri (1  I c) of each subspace (i) can 

be chosen based on a fidelity value (i.e., threshold)  (0 <   1) as follows: 

)/()()/()(
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,
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  (16) 

where eigenvalues are sorted in descending order. The fidelity value decides the degree of overlap 

between the subspaces. The classification accuracy is sensitive against the fidelity value. 

 

3. Preprocessing Methods and Data Sets 

 

In this section, we compare the proposed ALSM classification systems with two different 

normalization methods developed for ALSM. In the two normalization methods, we use them to 

normalize each pixel to a unit-length vector by dividing each element according to the vector length. 

This method can avoid the influence of noise pixels, since it does not use the values of neighboring 

pixels. Detailed descriptions of the two normalization methods are as follows. 

 

3.1. Normalization Methods 

 

Since high-dimensional hyperspectral data are usually at least 10 bits in size, the cumulative values 

of original high-dimensional hyperspectral data may cause overflow problems when we compute 

eigenvalues and eigenvectors from the correlation matrix in the ALSM training process without 

normalization. Hence, normalization is an important step of the algorithm. 

There are many normalization methods. In this section, we only consider the [-1, +1] and [0, 1] 

normalization methods. The choice of scaling each attribute to the range [-1, +1] or [0, 1] is motivated 

by the successful application of the method to SVM classifiers [33].  

In the [0, 1] normalization method, data are normalized to the range [0, 1] as follows: Given a pixel 

s = (s1, s2, …, sn)
T, a normalized pixel is computed as: 

T
i dsdsdss )/,,/,/( 21   (17) 

where d = sqrt(s1
2+ s2

2+…+ sn
2) denotes the pixel length. Obviously, each element value of the 

normalized pixel is located within the range [0, 1] and the length of the pixel is 1.  

In the [-1, +1] normalization method, data are normalized to the range [-1, +1] and the scale can be 

adjusted such that the mean of the data is equal to zero. The [-1, +1] normalization procedure is given 

as follows: Given a pixel s = (s1, s2, …, sn)
T, we compute: 
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where  s = (s1, s2, …, sn)T

  denotes the normalized pixel. Note that s1+s2+…+sn  = 0 if (s1-m)2+(s2-
m)2+ …+(sn-m)2

  = 0. 

 

3.2. Eigenvalue Computation Methods 

 

Computing the eigenvalues and eigenvectors of the correlation matrix of the input data vector 

(training samples) is a time-consuming process since the correlation matrix can be as large as bands × 

bands of elements in hyperspectral data. The time can be noticeably shortened by choosing an 

appropriate eigenvalue computation algorithm. 

Let A be an n×n real or complex matrix whose eigenvalues we seek. The eigenvalue λ of A satisfies 

Ax = λx, and can be computed from the characteristic equation det(A − λI) = 0. Notice that the 

correlation matrices in equations (14) and (15) are real symmetric matrices. For a real symmetric 

matrix, there exists an orthogonal matrix Q, such that QTAQ = D, where D is a diagonal matrix. The 

diagonal elements of D are the eigenvalues of A, and the columns of Q are the corresponding 

eigenvectors of A. The Jacobi and QR methods are two of the most useful algorithms for solving 

eigenvalue problems. In the Jacobi method, which was originally proposed in 1846, a real symmetric 

matrix is reduced to a diagonal form by a sequence of plane rotations by orthogonal similarity 

transformations. The QR method works much faster on a dense symmetric matrix for computing 

eigenvalues and associated eigenvectors. The basis of the QR method for calculating the eigenvalues 

of A is that an n × n real symmetric matrix can be written as A = QR where Q is an orthogonal and R is 

an upper triangular matrix. The diagonal elements of R are the eigenvalues, and the columns of Q are 

the corresponding eigenvectors. Here, we adopt the QR algorithm instead of the Jacobi algorithm for 

eigenvalue computations. The QR algorithm dramatically reduced, by approximately 75%, the time 

cost of computing eigenvalues in our study. According to recent research, other faster eigenvalue 

computation algorithms could be adopted [34]. 

 

3.3. Data Sets and Experimental Settings 

 

To verify the performance of the proposed ALSM algorithm, simulations were carried out on the 

“Indian Pine” AVIRIS 92AV3C data set, which consists of a 145 × 145 pixel portion [see Figure 7(a)]. 

The data set was collected over a test site called Indian Pine in northwestern Indiana, USA, by AVIRIS 

sensors in June 1992. From the 220 original spectral bands, 29 atmospheric water absorption bands (1–

3, 103–109, 149–164, and 218–220) were removed, leaving 191 bands. These data values in the scene 

are proportional to radiance values. Labeled ground truth samples were obtained based on the previous 

information collected at the Laboratory of Remote Sensing at Purdue University 

(http://dynamo.ecn.purdue.edu/~biehl/MultiSpec) [see Figure 7(b)] [29]. All 16 land-cover classes 
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available in the accompanying original ground truth were used in our experiments to generate a set of 

9,782 pixels for training and testing sets. A simple random sampling method in which each sample had 

an equal chance of being selected was used for generating training and testing sample sets. Half of the 

pixels from each class were randomly chosen for training, while the remaining 50% formed the test 

sets (Table 1).  

 

Table 1. Land-cover classes and number of training and test samples in the AVIRIS indian 

pines data set. 

Class Training Samples Test Samples 

C1. alfalfa 26 26

C2. corn-notill 671 671 

C3. corn-min 400 400 

C4. corn 98 99 

C5. grass-pasture 228 228 

C6. grass-trees 357 357 

C7. grass-pasture 13 13 

C8. hay-windrowed 241 241 

C9. oats 10 10 

C10. soybean-notill 480 480 

C11. soybean-min 1,137 1,137 

C12. soybean-cleantill 282 283 

C13. wheat 104 105 

C14. woods 617 618 

C15. bldg-grass 180 181 

C16. stone-steel 44 45 

Total 4,888 4,894 

 

To avoid the possibility of overflow problems when computing eigenvalues and eigenvectors, all 

images, training data, and test data were normalized by the [-1,+1] and [0,1] normalization methods. 

Experiments with various parameter values were necessary to develop a reasonable subspace classifier. 

The following section describes the design and results these experiments. 

 

4. Experimental Results and Discussion 

 

Our objective was to optimize the accuracy of the ALSM classifier by solving the ALSM model 

selection issue (i.e., estimating the best values for the dimensions and learning parameters). Three 

types of experiments were carried out to determine how the classification accuracy is affected by the 

subspace dimension, normalization, and learning parameters. Furthermore, to assess the influence of 

the number of training data, we further varied the number of training samples drawn from the training 
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set such that 50% of the original training data were used for training while maintaining a constant 

testing set in the fixed dimension method. 

In all experiments, we set a stopping condition of learning iterations as the study data were 

completely identified. Iterations greater than 1,000 were not considered because learning process 

failed to converge after 1,000 iterations in our experiments. The proposed ALSM algorithms were 

developed by using C++ programs (Microsoft Visual Studio 2005.NET).  

 

4.1. Subspace Method with [-1, +1] Normalization 

 

1) Influence of the Subspace Dimension 

 

We varied the subspace dimension from small to large. For the fixed subspace method, we varied 

the dimension from 5 to 9. In the dynamic subspace method, we increased the fidelity value from 

0.99985 to 0.99993 in steps of 0.00001. Experimental results indicate that when the fidelity value was 

smaller than 0.99985, the training process was unable to identify 100% of the training samples within 

1000 steps and the classification accuracy dropped. When the fidelity value was greater than 0.99993, 

the classification accuracy rapidly dropped and caused a divergence. Therefore, we considered only 

fidelity values within the range [0.99985, 0.99993]. For similar reasons we did not consider 

dimensions smaller than 5 or greater than 9 in the fixed subspace method. The two learning parameters 

 and  in equation (15) were set to the same constant value of 0.3 in both the dynamic subspace and 

fixed subspace methods.  

In the dynamic subspace method, the subspace dimension is determined by equation (16); thus, it 

varies among different classes. For example, Table 2 lists the subspace dimensions when the fidelity 

value was set to 0.99986 based on training samples in Table 1. Table 3 shows that the mean of the 

subspace dimensions increased as the value of the fidelity value was increased. 

 

Table 2. Subspace dimension of each class (see Table 1) with a fidelity value of 0.99986. 

the subspace mean dimension is 5.69, variance 3.71, and standard deviation 1.93.  

C1 C2 C3 C4 C 5 C 6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 

4 6 7 6 4 7 2 5 2 8 8 8 6 5 8 5 

 

Table 3. Mean subspace dimensions for different fidelity values. 

 

The classification accuracy and training time (maximum training iterations) as a function of the 

number of subspace dimensions are shown in Figure 1 for both the dynamic subspace and fixed 

subspace methods. In the dynamic subspace method [Figures 1(a) and (b)], when the fidelity value was 

increased, the classification accuracy tended to decrease. However, the study data converged much 

faster to 100% accuracy than those of small fidelity value; for instance, when the mean dimension 

value was increased from 4.94 to 17.63, the request time for convergence to 100% accuracy dropped 

Fidelity 0.99985 0.99986 0.99987 0.99988 0.09989 0.9999 0.99991 0.99992 0.99993
Mean 4.94 5.69 6.56 7.75 9.19 10.81 12.81 14.88 17.63



Sensors 2009, 9              

 

 

4256

from 502 to 58 iterations. The best classification accuracy in the dynamic subspace method was 

obtained as 89.25% with a fidelity value of 0.99987 (mean dimension was 6.56). 

Similar behavior was also apparent in the fixed subspace method. Figures 1(c) and (d) show that the 

classification accuracy tended to decrease when the number of dimensions increased. However, there 

were fewer maximum training iterations when the dimension number increased. The best classification 

accuracy obtained was 89.91% with the dimension number fixed at 5, which is 0.66% better than the 

dynamic subspace method.  

 

Figure 1. Plots of the classification accuracy and maximum training iterations as a 

function of the number of subspace dimensions by the dynamic and fixed subspace 

methods. (a) Classification accuracy by dynamic subspace vs. mean dimension, (b) 

Maximum learning iterations by dynamic subspace vs. mean dimension, (c) Classification 

accuracy by fixed subspace vs. subspace dimension, and (d) Maximum learning iterations 

by fixed subspace vs. subspace dimension. 
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Figure 1. Cont. 
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The classification accuracy decreased when the number of subspace dimensions increased in both 

the fixed and dynamic subspace methods because of the subspaces overlapping problem. When the 

fidelity value or subspace dimension increases, subspaces become “closer” or overlap with each other 

and some noise may be included in the subspace. However, if the fidelity value or the subspace 

dimension is smaller, subspaces are sufficiently separated, but the smaller the number of subspace 

dimensions, the more information is required to determine a class.  

From the results shown in Figure 1 based on the [-1,+1] normalization method, fixed subspace 

methods generally yield better classification accuracy than corresponding dynamic subspace methods 

(89.91% vs. 89.25%). 
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2) Stability of Learning Parameters 

 

We investigated the sensitivity of the classification accuracy and maximum training iterations to the 

learning parameters in both the dynamic and fixed subspace methods. The two learning parameters 

were set to the same constant value; results from using distinct values are discussed later. 

In the dynamic subspace method, the fidelity value was fixed at 0.99985 and the corresponding 

convergence interval of learning parameters was [0.18, 0.42], implies the two learning parameters 

were set to the same constant value within [0.18, 0.42]. In the fixed subspace method, the number of 

dimensions was fixed at 5 and the corresponding convergence interval of learning parameters was 

[0.15, 0.51]. As shown in Figure 2, the classification accuracy increased stably and the training 

iterations rapidly lowered when we increased the parameter value in steps of 0.03 in both the dynamic 

and fixed subspace methods. 

 

Figure 2. Classification accuracy and maximum training iterations as a function of 

learning parameters combined with [-1, +1] normalization. (a) Classification accuracy by 

the dynamic subspace method and classification accuracy by the fixed subspace method (b) 

maximum learning iterations by the dynamic subspace method and maximum learning 

iterations by the fixed subspace method. The fidelity value in the dynamic subspace 

method was 0.99985 and the dimension in the fixed subspace method was 5. 
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3) Influence of Parameters 

 

We examined the behavior of the classification accuracy when the two learning parameters were set 

to different constant values in both the dynamic and fixed subspace methods. In the dynamic subspace 

method, we set the fidelity value to 0.99987 and the learning parameter  to 0.3, and then varied the 

learning parameter of  in steps of 0.01. The corresponding convergence interval of  was [0.17, 0.34]. 

In the fixed subspace method, we set the number of dimensions to 5, set  to 0.39, and varied  in 

steps of 0.01, then the corresponding convergence interval of  became [0.33, 0.4] (Figure 3). 

 

Figure 3. Classification accuracy and maximum iterations vs. the difference between  

and . (a) and (b) show the classification accuracy and maximum training iterations, 

respectively, with various learning parameters by the dynamic subspace method in which  

was fixed at 0.3 while  varied from 0.17 to 0.34; and  with various learning parameters by 

the fixed subspace method in which  was fixed at 0.39 while  varied from 0.33 to 0.4. 
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As shown in Figure 3, when the two learning parameters were set equal or very close to each other, 

our subspace method converged faster and the classification accuracy was higher. Otherwise, the 

classification accuracy dropped or it took more time to converge in both the dynamic and fixed 

subspace methods. Since the other dimension and learning parameters exhibited similar behaviors, to 

ensure clarity of the plots we do not present the result here. 

 

4.2. Subspace Method with [0, 1] Normalization 

 

The dynamic subspace method diverged when the [0,1] normalization method was used for various 

fidelity values and learning parameters. Figure 4 shows an example in which the fidelity value was 

0.99986 and learning parameters were set to the single value of 0.3. Thus, hereafter we consider only 

the fixed subspace method. 

 

Figure 4. The dynamic subspace method diverged when the [0,1] normalization method 

was used. 

15

25

35

45

55

65

75

0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 (%
)

Training iterations

Dynamic dimension with [-1, +1] normalization 

Training accuracy Test accuracy

 

 

1) Behavior of the Two Learning Parameters 

 

First, we examined the behavior of the classification accuracy when the two learning parameters 

were set to different constant values. Similar to the behavior shown in Figure 3, when the two learning 

parameters were equal or close to each other, generally the classification accuracy was high and the 

training time was short. For example, Figure 5 shows the behavior of the classification accuracy and 

maximum training iterations when the fixed dimension was 6, the parameter  was kept to a constant 

value of 0.45, and the corresponding convergence interval of  was [0.35, 0.47]. Similar to Figure 3, 

we increased the value of the parameter  in steps of 0.01 (Figure 5). We found that when the two 

learning parameters got closer in value or were equal, the classification accuracy increased and our 

method converged relatively fast and effectively. Otherwise, the classification accuracy decreased or 

the training samples did not converge. 
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Figure 5. Plots of the difference between  and  vs. (a) classification accuracy and (b) 

maximum iterations, provided by the fixed subspace method in conjunction with the [0, 1] 

normalization method. 

90.5

90.7

90.9

91.1

91.3

91.5

91.7

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 (%
)

Difference of two learning parameters

Fixed dimension. Dimesnion is 6

 
(a) 

 

100

200

300

400

500

600

700

800

900

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

M
ax

im
um

 tr
ai

ni
ng

 it
er

at
io

ns

Difference of two learning parameters

Fixed dimension. Dimension is 6

 
(b) 

 

2) Behavior of Training and Test Sets in Learning Iterations 

 

To assess the training effectiveness at each iteration step, we classified the test samples by 

concurrently generating subspaces according to equation (7). The test samples were not joined to the 

training process, but were used only to assess the classification accuracy. Since the other dimensions 

and learning parameters provided quite similar results, we present only the results of the following two 

cases: (1) dimension of 7 with both learning parameters set to 0.54, and (2) dimension of 6 with both 

learning parameters set to 0.51. Figure 6 shows the behaviors of the training and test accuracies by 

training iteration. 
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Figure 6. Plots of the accuracy rate vs. the number of iterations for the training and test 

samples. (a) Dimension of 7 with the learning parameter 0.54; the best test data accuracy 

of 91.79% was reached when the training iterations completed (at 167). (b) Dimension of 6 

with the learning parameter 0.51; an accuracy of 91.34% was achieved when the training 

iteration completed (at 141). However, the best test data accuracy of 92.11% was reached 

at training iteration 76. 
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(b) 

 

The accuracy of the training and testing data sets increased steadily with the learning iteration 

(Figure 6). When the training data converged to 100% accuracy, the classification accuracy of the test 

data steadily increased or was very close to the best. The best test data accuracy of 92.11% was 

reached at the training iteration 76 for dimension 6 [Figure 6(b)]. Figure 7 shows the classification 

results with a dimension of 7, and Table 4 presents the corresponding confusion matrix. The matrix 

scores how the classification process has labeled a series of test sites or test pixels for which the 

correct land-cover label is known [35,36]. 
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Figure 7. (a) Band 16 (central wavelength: 547.60 nm) of the AVIRIS Indian Pines data 

set and (b) ground truth. (c) Classification map obtained with the fixed subspace method 

combined with the [0, 1] normalization method. The subspace dimension was 7 and both 

learning parameters were 0.54. The overall classification accuracy was 91.79%. 

   

 

 

(a)                                             (b)                                                 (c) 

Table 1. Results of the confusion matrix. 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 User acc. 

1 23 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 92 

2 0 618 10 6 0 0 0 0 0 19 47 2 0 0 0 1 87.91 

3 0 10 344 7 0 0 0 0 0 5 15 11 0 0 0 0 87.76 

4 0 8 9 82 0 0 0 0 0 1 0 1 0 0 0 0 81.19 

5 0 0 0 0 224 0 1 0 0 1 0 0 0 0 1 0 98.68 

6 0 0 0 0 1 349 0 0 0 3 1 1 0 2 2 0 97.21 

7 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 100 

8 3 0 0 0 0 0 3 236 0 0 0 0 0 0 0 0 97.52 

9 0 0 0 0 0 0 0 0 10 0 0 0 0 0 1 0 90.91 

10 0 7 0 1 0 1 0 0 0 416 24 2 0 0 0 1 92.04 

11 0 27 27 2 2 1 0 0 0 32 1044 8 0 0 0 3 91.1 

12 0 1 10 0 1 0 0 0 0 3 5 257 0 0 1 0 92.45 

13 0 0 0 0 0 0 0 0 0 0 0 0 105 0 1 0 99.06 

14 0 0 0 0 0 1 0 0 0 0 0 0 0 599 39 0 93.74 

15 0 0 0 1 0 5 0 3 0 0 0 1 0 17 136 0 83.44 

16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 40 97.56 

Total 26 671 400 99 228 357 13 241 10 480 1137 283 105 618 181 45  

Prod. acc 88.46 92.1 86 82.83 98.25 97.76 69.23 97.93 100 86.67 91.82 90.81 100 96.93 75.14 88.89 (%) 

Overall classification accuracy: 91.79%; Kappa coefficient: 0.9065 

In Table 4, we notice the small training sets of classes 7 and 9, which produced accuracies of 

69.23% and 100%, respectively. 

C1     C2    C3    C4     C5    C6    C7    C8    C9   C10   C11  C12  C13 C14  C15  C16
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3) Behavior of Classification Accuracy and Training Time 

 

Since using two different learning parameters did not improve the classification accuracy, hereafter 

we do not consider such a case. For subspace dimensions, we consider only those from 5 to 9, since a 

dimension of less than 5 or more than 9 causes the training process to diverge or the classification 

accuracy to drop. We increased the learning parameters starting from 0.03 with a step-size of 0.03 in 

all cases. In Figure 8, the projection of one of the curves in the horizontal axis indicates the 

convergence interval. For example, In Figure 8(a), the label D7 indicates that the number of 

dimensions is 7 and the corresponding convergence interval is [0.06, 0.66]. 

 

Figure 8. (a) Classification accuracy and (b) maximum training iterations for various 

subspace dimensions and learning parameters. The highest classification accuracy of 

91.79% was reached by D7 with a learning parameter of 0.54; the corresponding maximum 

training iteration was 167. 
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The five curves in Figure 8, show strongly similar stability in their convergence to 100% accuracy 

in a finite number of steps. However, smaller learning parameter values tended to need more time 

(iterations) to converge to 100% accuracy. The subspace dimension was not critical to the behavior of 

the classification accuracy among the values of 5, 6, or 7 [Figure 8(a)], but the smaller dimensions 

tended to require more training time [Figure 8(b)]. The classification accuracy increased for large 

values of the learning parameters. 

 

4) Behavior of the Algorithm for Low Sample Sizes 

 

For examining the behavior of the classifiers with respect to the size of the training set, this 

experiment evaluated the effect of training set size on the performance of fixed subspace method in 

conjunction with the [0, 1] normalization. 

To assess the influence of the number of training data, we reduced the number of training samples 

by 50% except for classes 7 and 9. For classes 7 and 9, we used the original training data set since the 

number of training samples was limited. The numbers of training and test samples are listed in Table 5. 

 

Table 5. Numbers of training and test samples from the AVIRIS indian pines data set. Test 

samples were the same as in Table 1. 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 Total 

Training 13 335 200 49 114 178 13 120 10 240 568 141 52 308 90 22 2453 

Test 26 671 400 99 228 357 13 241 10 480 1137 283 105 618 181 45 4894 

 

Figure 9 shows how the subspace dimension and learning parameters influence classification 

accuracy and maximum training iterations. The training iterations and learning parameters in Figure 9 

are the same as those in the previous study (e.g., Figure 8) but we varied the dimension from 4 to 8 in 

this case because of the small number of training sets and because the classification accuracy decreases 

rapidly with dimensions less than 4 or larger than 8.  

As expected, the experimental results clearly show the same behavior as in Figure 8. The curves in 

Figures 8 and 9 show strong behavioral similarity with respect to the stability of convergence to 100% 

accuracy in a finite number of steps, and when we increased the value of the learning parameters, the 

training process became convergent more quickly. 

Table 6 shows the maximum classification accuracy and the corresponding maximum training 

iterations from the ALSM classifications for both the full and 50% training data sizes. Classification 

accuracy results in Table 6 clearly show a positive correlation with the size of the training set. Small 

training sets can improve the convergent speed but lower the classification accuracy. These results are 

in agreement with the literature [37,38]. It is notable that one of the advantages of our method is that 

when the number of subspace dimensions is varied within a small range, the best classification 

accuracy is not very sensitive to it and the training samples are completely recognized by the generated 

subspace classifiers. However, most other hyperspectral data classification methods do not describe 

recognition of the training sample behavior and accuracy. 
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Figure 9. Behavior of the algorithm with low sample sizes. (a) Classification accuracy and 

(b) maximum training iterations for various subspace dimensions and learning parameters 

after reducing the number of training samples by 50%. The maximum classification 

accuracy value was reached at 89.50% in D4 for the learning parameter 0.51; the 

corresponding maximum training iteration was 141. 
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Table 6. Comparisons of the maximum classification accuracy and the corresponding 

training time with 100% and 50% of training data. 

 100% of training data 50% of training data 

Dimension D5 D6 D7 D8 D9 D4 D5 D6 D7 D8 

Classification accuracy 91.28% 91.52% 91.79% 90.01% 90.54% 89.50% 88.43% 88.60% 88.68% 87.60% 

Training iterations 553 97 167 33 41 141 68 44 27 11 

Learning parameter 0.45 0.42 0.54 0.75 0.63 0.51 0.54 0.72 0.72 0.84 
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5. Conclusions  

 

In this paper, we have proposed strategies for the optimization of subspace algorithms by 

modification of the algorithms to make them more suitable for application to hyperspectral data sets. 

We modified the subspace methods based on the combination of a normalization technique and QR 

method, and applied them to an AVIRIS dataset to classify 16 land cover classes. Specifically, we 

verified the following:  

1) The fixed subspace method in conjunction with the [0,1] normalization method is substantially 

more accurate than other approaches such as the dynamic subspace method. 

2) When the two learning parameters are equal or close to each other, the classification accuracy 

increases. When the value of the learning parameters is large, the classification accuracy tends to 

increase and the training time shortens.  

3) The classification accuracy is not sensitive to the dimension of the subspace when it is within at 

small interval, but a larger dimension tends to reduce the training time. 

4) Experimental results clearly showed the classification accuracy increased with the size of the 

training data set.  

Our experiments performed by using the subspace method indicate that it is an effective method: it 

possesses high-speed convergence and can completely identify training samples. Our findings can 

provide some guidance for the selection of subspace methods, e.g., effective dimension selection and 

parameter selection rules that make use of the benefits of subspace classifiers and avoid the 

weaknesses.  

Additional aspects of this method remain to be investigated before it becomes operational. The 

method needs to be extended by considering a broader spectrum of land-cover classes that might also 

be aggregated to different informational levels. Moreover, data from different sensors and platforms 

need to be analyzed to explore the sensitivity and efficiency of our method for handling different 

spatial and spectral resolutions data. The subspace technique might be further improved by considering 

several subspaces instead of a single subspace in one class, or by combining with some other 

innovative methods such as kernel-based methods [39, 40]. Another remaining issue is why the 

dynamic subspace method does not work well in conjunction with the [-1, +1] normalization method. 

While beyond the scope of this paper, these issues will direct our future research activities. 

 

Acknowledgements 

 

The authors would like to thank the Laboratory of Remote Sensing at Purdue University for 

providing the AVIRIS hyperspectral image data sets used at experiment. This work was supported by 

the Global Environment Research Fund (B-081) of the Ministry of the Environment, Japan. 

 

References 

 

1. Lee, C.; Landgrebe, D.A. Analyzing high-dimensional multispectral data. IEEE Trans. Geosci. 

Remote Sens. 1993, 31, 792-800. 



Sensors 2009, 9              

 

 

4268

2. Jimenez, L.O.; Landgrebe, D.A. Supervised classification in high-dimensional space: 

Geometrical, statistical, and asymptotically properties of multivariate data. IEEE Trans. Syst. 

Man Cybern. C Appl. Rev. 1998, 28, 39-54.  

3. Bajcsy, P.; Groves, P. Methodology for hyperspectral band selection. Photogramm. Eng. Remote 

Sens. 2004, 70, 793-802.  

4. Hughes, G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 

1968, IT-14, 55-63.  

5. Plaza, A.; Martínez, P.; Plaza, J.; Pérez, R. Dimensionality reduction and classification of 

hyperspectral image data using sequences of extended morphological transformations. IEEE 

Trans. Geosci. Remote Sens. 2005, 43, 466-479.  

6. Serpico, S. B.; Moser, G. Extraction of spectral channels from hyperspectral images for 

classification purposes. IEEE Trans. Geosci. Remote Sens. 2007, 45, 484-495. 

7. Miao, X.; Gong, P; Swope, S.; Pu, R.L.; Carruthers, R.; Anderson, G.L. Detection of yellow 

starthistle through band selection and feature extraction from hyperspectral imagery. Photogramm. 

Eng. Remote Sens. 2007, 73, 1005-1015.  

8. Jimenez-Rodriguez, L.O.; Arzuaga-Cruz, E.; Velez-Reyes, M. Unsupervised linear feature-

extraction methods and their effects in the classification of high-dimensional data. IEEE Trans. 

Geosci. Remote Sens. 2007, 45, 469-483.  

9. Bioucas-Dias, J.M.; Nascimento, J. M. P. Hyperspectral subspace identification. IEEE Trans. 

Geosci. Remote Sens. 2008, 46, 2435–2445.  

10. Gagnon, P.; Scheibling, R.E.; Jones, W.; Tully, D. The role of digital bathymetry in mapping 

shallow marine vegetation from hyperspectral image data. Int. J. Remote Sens. 2008, 29, 879-904. 

11. Harris, J.R.; Ponomarev, P.; Shang, J.; Rogge, D. Noise reduction and best band selection 

techniques for improving classification results using hyperspectral data: application to lithological 

mapping in Canada's Arctic. Can. J. Rem. Sens. 2006, 32, 341-354.  

12. Harsanyi, J., Chang, C.-I. Hyperspectral image classification and dimensionality reduction: An 

orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779-785.  

13. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support 

vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790.  

14. Bazi, Y.; Melgani, F. Toward an optimal SVM classification system for hyperspectral remote 

sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3374-3385.  

15. Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of 

hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 

2008, 46, 3804-3814. 

16. Zhao, K.G.; Popescu, S.; Zhang, X.S. Bayesian learning with Gaussian processes for supervised 

classification of hyperspectral data. Photogramm. Eng. Remote Sens. 2008, 74, 1223-1234. 
17. Guo, B.; Damper, R.I.; Gunn, S.R.; Nelson, J.D.B. A fast separability-based feature-selection 

method for high-dimensional remotely sensed image classification. Patt. Recog. 2008, 41, 1653-

1662.  



Sensors 2009, 9              

 

 

4269

18. Plaza, J.; Plaza, A.J.; Barra, C. Multi-channel morphological profiles for classification of 

hyperspectral images using support vector machines. Sensors 2009, 9, 196-218. 

19. Kruse, F.A.; Lefkoff, A.B.; Boardman, J.B.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; 

Goetz, A.F.H. The spectral image processing system (SIPS) - interactive visualization and 

analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145-163.  

20. Ball, J.E.; Bruce, L.M. Level set hyperspectral image classification using best band analysis. 

IEEE Trans. Geosci. Remote Sens. 2007, 45, 3022-3027. 

21. Watanabe, S.; Lambert, P.F.; Kulikowski, C.A.; Buxton, J.L.; R. Walker. Evaluation and selection 

of variables in pattern recognition; Computer and Information Sciences II; Tou, J.T., editor; 

Academic Press: New York, NY, USA, 1967; pp. 91-122. 

22. Sakano, H.; Mukawa, N.; Nakamura, T. Kernel mutual subspace method and its application for 

object recognition. Electron. Commun. Japan (Part II: Electron.) 2005, 88, 45-53.  

23. Omachi, S.; Omachi, M. Fast image retrieval by subspace method with polynomial approximation. 

IEICE Trans. Inf. Syst. 2008, J91-D, 1561-1568. 

24. Bagan, H.; Yasuoka, Y.; Endo, T.; Wang, X.; Feng, Z. Classification of airborne hyperspectral 

data based on the average learning subspace method. IEEE Geosci. Remote Sens. Lett. 2008, 5, 

368-372.  

25. Elvidge, C.D.; Yuan, D.; Weerackoon, R.D.; Lunetta, R.S. Relative radiometric normalization of 

Landsat Multi-spectral Scanner (MSS) data using an automatic scattergram-controlled regression. 

Photogramm. Eng. Remote Sens. 1995, 61, 1255-1260.  

26. Olthof, I.; Pouliot, D.; Fernandes, R.; Latifovic, R. Landsat-7 ETM+ radiometric normalization 

comparison for northern mapping applications. Remote Sens. Environ. 2007, 95, 388–398.  

27. Parlett, B.N. The QR algorithm, Comput. Sci. Eng. 2000, 2, 38-42.  

28. Rutishauser, H.; The Jacobi method for real symmetric matrices. Numer. Math. 1966, 9, 1-10.  

29.  Landgrebe, D.A. Signal Theory Methods in Multispectral Remote Sensing; Wiley-Interscience: 

Hoboken, NJ, USA, 2003. 

30. Oja, E. Subspace Methods of Pattern Recognition; Research Studies Press and John Wiley & 

Sons: Letchworth, U.K. 1983. 

31. Tsuda, K. Subspace classifier in the Hilbert space. Patt. Recog. Lett. 1999, 20, 513-519.  

32. Laaksonen, J.; Oja, E. Subspace dimension selection and averaged learning subspace method in 

handwritten digit classification. Proceedings of the International Conference on Artificial Neural 

Networks, Bochum, Germany, 16–19 July, 1996, pp. 227-232. 

33. Chang, C.C.; Lin, C.J. LIBSVM: a library for support vector machines 2001, [Online]. URL: 

http://www.csie.ntu.edu.tw/~cjlin/libsvm (last date accessed: 1 May 2009). 

34. Golub, G.H.; van der Vorst, H.A. Eigenvalue computation in the 20th century. J. Comput. Appl. 

Math. 2000, 123, 35-65.  

35. Congalton, R.G.; Green, K. Assessing the Accuracy of Remote Sensed Data: Principles and 

Practices, 1st Ed.; Lewis Publishers: Boca Raton, FL, USA, 1999; p. 137. 

36. Foody, G.M. Thematic map comparison evaluating the statistical significance of differences in 

classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627-633.  



Sensors 2009, 9              

 

 

4270

37. Mathur, A.; Sanchez-Hernandez, C.; Boyd, D.S. Training set size requirements for the 

classification of a specific class. Remote Sens. Environ. 2006, 104, 1-14.  

38. Waske, B.; Benediktsson, J.A. Fusion of support vector machines for classification of multisensor 

data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3858-3866.  

39. Scholkopf, B.; Smola, A.; Muller, K.R. Nonlinear component analysis as a kernel eigenvalue 

problem. Neur. Comput. 1998, 10, 1299-1319.  

40. Washizawa, Y.; Yamashita, Y. Kernel projection classifiers with suppressing features of other 

classes. Neur. Comput. 2006, 18, 1932-1950.  

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


