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Abstract: This paper presents two scheduling management schemes for wireless sensor net-

works, which manage the sensors by utilizing the hierarchical network structure and allocate

network resources efficiently. A local criterion is used to simultaneously establish the sensing

coverage and connectivity such that dynamic cluster-basedsleep scheduling can be achieved.

The proposed schemes are simulated and analyzed to abstractthe network behaviors in a num-

ber of settings. The experimental results show that the proposed algorithms provide efficient

network power control and can achieve high scalability in wireless sensor networks.
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1. Introduction

Recent advances in microelectro-mechanical systems are driving the developments of low-cost and

and low-power wireless sensors, with diverse applicationsin the physical world in areas such as environ-

mental monitoring, disaster recovery, industrial processcontrol, and smart environments. With sensors

placed close to an event, wireless sensor networks can observe the phenomenon and receive data. How-

ever, having too few active sensors or excessive ones may result in reduced sensing coverage or severe

interference, which will have a great influence on network performance features such as energy and

bandwidth efficiency, and sensing quality. Therefore, sensing scheduling schemes may be implemented

to tackle basic problems of sensor networks (e.g. energy constraints and communication interference) in
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order to reduce energy consumption and prolong network lifetime.

Sensor scheduling aims to maintain a balance of network resources. Recent research has found that

significant energy savings can be achieved by dynamic power management in sensor networks [1-7].

To achieve this sensing process, sensors are scheduled to execute the sensing task. Hence, reducing the

sensing redundancy and maintaining sufficient sensing coverage and network connectivity are critical

requirements in sensor networks. In addition, the two issues of energy constraint and communication in-

terference have to be considered together with both the network connectivity and data gathering strategy.

In this work, two sensor scheduling protocols,Centralized Adaptive Scheduling Algorithm(CASA) and

Distributed Adaptive Scheduling Algorithm(DASA), are proposed to address the application scenario of

typical surveillance systems in a cluster-based network topology, where both connectivity and coverage

constraint are taken into consideration to achieve performance balance.

For the CASA scheme, given the local information such as neighboring connectivity, the round deter-

mination problem may be solved centrally by the clusterheads. For the DASA scheme, as the clusterhead

broadcasts a message to start the scheduling assignment, each sensor initializes a random waiting timer

with a value which is related to the cluster topology and the neighbor information. If the random waiting

timer expires, then the sensor broadcasts a message proclaiming that it is a good candidate to be a group

member, which also serves to notify its neighbors that it hasa higher priority for the sensing task. Based

on the received messages from its neighboring cluster members, each cluster member may use the data

gathering strategy (detailed in Section 3.3) to schedule itself to a specific round.

In order to facilitate performance evaluation of a sensor scheduling protocol design, two analytical

models, a neural network model and a probabilistic model, are proposed. For the CASA approach, a

neural network model is built up to approximate the desire performance. For the DASA approach, a

probabilistic model using the concept of geometry is applied to abstract the properties of the algorithm.

Moreover, based on the analysis, the sensor lifetime and cluster lifetime is further explored to show how

the operations of the proposed schemes may prolong the network lifetime.

The organization of this paper is as follows: Section 2 reviews the current literature on the sensor

scheduling management. Section 3 describes the system model and algorithm for sensor scheduling in a

cluster-based network topology. In Section 4, a neural network model and a probabilistic model are built

up to approximate the desire performance and estimate the sensing rounds of the proposed schemes.

Section 5 summarizes the performance of the proposed scheduling methodology. Finally, Section 6

draws conclusions and shows future research directions.

2. Literature Review

A large number of sensor scheduling and coverage maintenance protocols have been proposed [8-35].

However, due to the sensing objectives, these management protocols can be different. Yanet al. [1]

presented an energy-efficient sensing protocol to achieve the desired sensing coverage. Nodes decide

their active periods by exchanging reference points among neighbors. In [2], the authors investigated

coverage intensity of the proposed sleep scheduling protocols. Renet al. [3] provided a generic ana-

lytical framework that can be widely used for sensing scheduling protocol design with detection quality

requirements. Turauet al. [4] tried to route packet with the minimum time and energy and aimed to

distribute the transmission time slots dynamically among sensor nodes such that the network congestion
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can be avoided.

Hohlt et al. [5] proposed a scheduling scheme for considering energy savings in a data collection

process. Schrageet al. [6] applied an ant colony optimization method for scheduling the visiting order

of targeted areas in the sensing field such that their energy consumptions are minimized. Deckeret al. [7]

developed a scheduler to manage the competition for resources among different sensing tasks at a single

sensor node. Chamberlandet al. [8] investigated the relationship between sleeping duration, detection

delay and energy consumption in a stationary sensing field. References [9, 10, 11] are clustering-based

protocols that attempt to minimize the energy dissipation in sensor networks.

Chenget al. [12] proposed a bio-inspired scheduling scheme which is a kind of adaptive scheduling

scheme which uses only local information for making scheduling decisions. Premkumaret al. [13]

considered the problem of quickest detection of an intrusion using a sensor network, keeping only a

minimal number of sensors active. In [14] and [15], randomized scheduling algorithms are proposed

for monitoring a field to detect intrusion objects. The authors study the performance of the randomized

scheduling algorithm and explore the impact of the size of intrusion object on the sensor network’s

configuration.

Since energy efficiency and reasonable sensing coverage canbe achieved by exploiting the sensing

spatial redundancy, redundant sensors may be turned off to save energy [16, 17, 18, 19]. However,

the network connectivity is not considered in those schemes. In order to further reduce energy and

computational overhead, some scheduling schemes [2, 16, 19, 20] operate without the location infor-

mation or time synchronization. Although the joint problemof coverage and connectivity is considered

in [21, 22, 23, 24, 25], the optimization of the sensing spatial redundancy is nottaken into account. A

survey of energy-efficient scheduling mechanisms in sensornetworks is detailed in [26].

In contrast, the approaches of this paper consider coverage, connectivity, and sensing spatial redun-

dancy simultaneously in order to improve energy efficiency in a hierarchical network structure. For the

CASA approach, the clusterhead collects local topology information to manage the sensing schedule

centrally. By approximating the network behavior throughout the neural network learning process, the

clusterhead may be able to roughly predict the performance of the scheduling management. For the

DASA approach, the setting of the random waiting timer allows each sensor to exploit the information

about coverage, connectivity, and sensing spatial redundancy such that a balance of network resources

can be maintained. Due to the randomized property of the waiting timer, the probabilistic model is pro-

posed to abstract global network behavior. The comparison of the proposed approaches and the other

cluster-based schemes [10][11] is further discussed in Section 5.

3. Dynamic Sensor Scheduling Algorithms

This section describes two scheduling management schemes for organizing the sensing tasks, the

Centralized Adaptive Scheduling Algorithm (CASA) and the Distributed Adaptive Scheduling Algo-

rithm (DASA). The main assumptions of the network are: (1) All sensors are homogeneous with the

same transmission range; (2) The sensors are fixed without location information; (3) Symmetric com-

munication channel: all links between sensors are bidirectional; (4) All sensors perform the sensing task

periodically. Note that there are no base stations to coordinate or supervise activities among sensors.
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3.1. Cluster Formation for Scheduling Management

When sensors of a network are first deployed, they may apply the Clustering Algorithm via Waiting

Timer (CAWT) from [27] to partition the sensors into clusters. Each sensor sets a random waiting timer,

broadcasts its presence via a ‘Hello’ signal, and listens for its neighbor’s ‘Hello.’ The sensors that hear

many neighbors are good candidates for initiating new clusters; those with few neighbors should choose

to wait. By adjusting randomized waiting timers, the sensors can coordinate themselves into sensible

clusters, which can then be used as a basis for further communication and data processing.

Sensors update their neighbor information (i.e. a counter specifying how many neighbors it has

detected) and decrease the random waiting time based on each‘new’ Hello message received. This

encourages those sensors with many neighbors to become clusterheads. The updating formula for the

random waiting time of sensori is:

WT
(k+1)
i = γ · WT

(k)
i , (1)

whereWT
(k)
i is the waiting time of sensori at time stepk and0 < γ < 1 is inversely proportional to the

number of neighbors. Therefore, if the timer expires, then the sensor declares itself to be a clusterhead,

a focal point of a new cluster. However, events may intervenethat cause a sensor to shorten or cancel its

timer. For example, whenever the sensor detects a new neighbor, it shortens the timer. On the other hand,

if a neighbor declares itself to be a clusterhead, the sensorcancels its own timer and joins the neighbor’s

new cluster.

Figure 1. The connectivity of the network (left); clusters are formedin a random network of

100 sensors withR/l = 0.17 (right).
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After applying the CAWT, there are three different kinds of sensors: (1) the clusterheads (2) sensors

with an assigned cluster ID (3) sensors without an assigned cluster ID, which will join any nearby cluster

and become 2-hop sensors. In this phase, each sensor initiates two rounds of local flooding to its 1-hop

neighboring sensors, one for broadcasting sensor ID and theother for broadcasting cluster ID, to select

clusterheads and form 2-hop clusters. Figure1 shows the network connectivity and cluster formation of

a random network of 100 sensors withR/l = 0.17, whereR/l is the ratio of transmitting rangeR to the
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side lengthl of the square. Thus, the topology of the ad-hoc network is nowrepresented by a hierarchical

collection of clusters.

Assume that a cluster of sensor nodes share a common view of a local clock time [28], so that all these

nodes can coordinate in the sensor scheduling operation. Given the cluster-based network topology,

each cluster member is assumed to sense only once during a sensing cycleTcycle in a cluster. That

is, Tcycle =
∑NRG

ℓ=1 TRGℓ
, whereNRG is the number of sensing rounds in a cluster andTRGℓ

is the

sensing duration of roundℓ. For sensor scheduling management, there are three kinds ofsensors: (1)

sensing nodes: executing the sensing task; (2) relay nodes:maintaining the cluster connectivity for

intra-cluster communication; (3) gateway nodes: maintaining the network connectivity for inter-cluster

communication. Note that the relay nodes may execute the sensing task in the later round and the gateway

nodes may perform the sensing task and the relay transmission during the scheduling operation.

3.2. Centralized Adaptive Scheduling Algorithm (CASA)

There are many possible data gathering strategies to accomplish the sensing tasks. In many applica-

tions, the monitored area may be used to determine the group members in a specific round. For instance,

since the core sensing field is covered by the sensing area of 1-hop cluster members in the cluster-based

topology, the round determination problem can be expressedby the coverage subject to the number of

1-hop cluster members covered in the round sensing area,

min
i∈RGℓ

⋃
Oi (2)

subject to:i, j ∈ RGℓ, j /∈ S
(i)
b , ((∪H1(i)+RGℓ)∩H1) = H1, whereOi represents the coverage overlap

of sensori with other round group members,H1(i) is the set of neighboring 1-hop cluster members of

sensori, RGℓ is the set of round group members of roundℓ, sensorsi and j belong to the set of round

group membersRGℓ, H1 is the set of 1-hop cluster members, andS
(i)
b is the set of neighboring sensors

of sensori. The rationale for using the constraint in (2) is to avoid heavy overlap between sensors in the

same round. However, without location information, it may be not easy to cover the desired area and

minimize the coverage overlap in each round. Hence, the optimization of the coverage may be modified

to satisfy the problem constraint by the following scheme.

The Scheduling Scheme

When developing the sensing schedule, two rounds of local flooding are initiated in order to gather

topology information for the clusterhead in the 2-hop cluster structure. Hence, given the local informa-

tion such as neighboring connectivity, a clusterhead may choose a 2-hop cluster member and a 1-hop

relay node to initialize the proposed scheduling algorithm. After that, the clusterhead may randomly

pick 1-hop cluster members, which have no communication links with the chosen group members, as the

new round group members. The purpose for this selection policy is to reduce the overlap between group

members in the same round. Note that the relay node can be selected as the group member in the follow-

ing round since it is not responsible for sensing at this round. If all the 2-hop cluster members have been

selected for initializing the sensing rounds, the clusterhead will select a 1-hop cluster member for start-

ing the new round. This procedure is repeated until all of thecluster members have been assigned. Then,
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with a common local clock time in the cluster, the clusterhead triggers two rounds of 1-hop flooding for

broadcasting the sensor scheduling information throughout the 2-hop cluster topology.

Observe that the overlap is only approximately minimized; in our experiments we have noticed that

the answers tend to be close to the optimal. The pseudo-code of the proposed algorithm is presented in

Table1, whereH1(m) is the set of neighboring 1-hop cluster members of sensorm in a cluster,H2(n)

is the set of neighboring 2-hop cluster members of sensorn in a cluster,RGℓ is the set of round group

members of roundℓ, U is the set of cluster members,H1 andH
′

1 are the sets of 1-hop nodes,H2 is the

set of 2-hop nodes, andNRG is the number of sensing rounds in a cluster.

Table 1. The CASA Scheduling Scheme

AssignNRG = 0, ℓ = 1;

while (U 6= φ) do
{

H
′

1 = H1;

RGℓ = φ;

\∗ Selecting 2-hop round members∗\

if (H2 6= φ)

{

i = argmaxk|H1(k)|, ∀ k ∈ H2;

RGℓ = {i};

H
′

1 = H
′

1 − H1(i);

H2 = H2 − i;

}

\∗ Selecting 1-hop round members∗\

while (H
′

1 6= φ) do

{

Pick sensorm, m ∈ H
′

1;

RGℓ = RGℓ ∪ m;

H
′

1 = H
′

1 − H1(m);

H1 = H1 − m;

}

U = U − RGℓ;

ℓ = ℓ + 1;

NRG = NRG + 1;

}
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Maintenance of Network Connectivity

After establishing the sensing schedule in each cluster, network connectivity may be maintained with

two phases of operation (observation and confirmation phases). The period of the observation phase

may last several sensing cycles (nTcycle, n > 1), which allow the sensors to learn about the scheduling

operation of their neighboring sensors in nearby clusters.During the observation phase, each sensing

node and relay node executes a 1-hop broadcast at the beginning of its active period in the sensing

schedule such that the sensing nodes can assign the gateway sensors for inter-cluster communication and

data dissemination. The broadcast message includes the sensor node ID and the sensing cycle timeTcycle

for the gateway nodes to initialize the next relay transmission.

There are four possible scenarios when determining the gateway nodes: (1) When the sensing node

receives only one broadcast message from an active node in the nearby cluster during its sensing pe-

riod, these two nodes form a pair of distributed gateways. Hence, a sensing node or a relay node in

the nearby cluster may be a gateway under this condition; (2)If the sensing node receives multiple

broadcast messages from the same nearby cluster, the nearest active node in this specific cluster might

be chosen as a gateway node based on distance information, which could be estimated by the received

signal strength. Similar to Scenario 1, a sensing node or a relay node may be a gateway in this case;

(3) When no broadcast message is received during the sensingperiod, the sensing node may choose the

nearest node in an adjacent cluster as a gateway node; (4) If the clusters are too far apart (outside the

range of communicationR), no gateway sensors will be assigned.

Built upon the learning process in the observation phase, the sensing node and the candidate of the

gateway node acknowledge the role assignment in the confirmation phase. Thus, each pair of distributed

gateways send 1-hop broadcast messages to confirm the gateway selection with each other. Accordingly,

the result of gateway selection is that each round group member assigns a single member of each nearby

clusters such that network connectivity during the sensor scheduling operation may be assured. There-

fore, the CASA approach provides a virtual backbone for sensing coverage and network connectivity

maintenance. The procedures of gateway selection is depicted in Figure2. Figure2 (a) and Figure2 (b)

describe the operation period of a pair of distributed gateways in Scenarios 1 and 3, respectively. Given

the local common clock, the time stamp of the received message, and the duration of the sensing cycle

Tcycle, the sensing nodes A and B may work cooperatively as a pair of distributed gateways to adjust their

active periods for data dissemination. An example which highlights network coverage and connectivity

analysis is further illustrated in Section 5.

3.3. Distributed Adaptive Scheduling Algorithm (DASA)

The Setting of Waiting Timer

The distributed method operates much like the CAWT [27] in utilizing a random timer. As the clus-

terhead broadcasts a message to start the scheduling assignment, sensori initializes a random waiting

timer with a valueWT
(0)
i :

WT
(0)
i =

1

Nhop

· Ti · β
N

(i)
b , (3)
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Figure 2. The procedures of selecting a pair of distributed gateways in Scenario 1 (a) and

Scenario 3 (b).
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which is related to the cluster topology and the neighbor information. Note thatTi is a sample from the

distributionC+λ·U(0, 1), whereC andλ are positive numbers, which are used to specify the sampling

range of the waiting time, andU(0, 1) is a uniform distribution.Nhop is the number of hops from the

clusterhead to the cluster member,N
(i)
b is the number of neighboring cluster members of sensori, β is a

positive number with1 < β. The rationale for the settings in equation (3) is that, due to the overlap of

sensing area in a cluster, the coverage overlap of a 1-hop cluster member is usually larger than that of a

2-hop cluster member. This suggests that a 2-hop cluster member may be a good candidate to initialize

a round group. On the other hand, a 1-hop cluster member may choose to wait and join the round group

later. Furthermore, a cluster member with more neighbors may have a lower priority to execute the

sensing task since its sensing area may be covered by the nearby cluster members.

If the random waiting timer expires (i.e.WTi = 0), then sensori broadcasts a message proclaiming

that it is a good candidate to be a group member, which also serves to notify its neighbors that it has

a higher priority for the sensing task. For its neighboring sensorj, the update formula of the random

waiting timer may be given by:

WT
(k+1)
j = (1 + α) · WT

(k)
j , (4)

whereWT
(k)
j is the waiting time of sensorj at time stepk and0 < α. The setting ofα can be attributed to

the fact that the neighboring nodes receiving the broadcasting message increase their waiting timers such

that they may work in different rounds and the sensing redundancy may be suppressed in each sensing

round.
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The Scheduling Scheme

The message for communication among the cluster members consists of: (1) the ID of the sending

sensor, (2) the round ID of the sending sensor, and (3) the relay round ID of the selected relay sensor. At

the beginning, the round ID and the relay round ID of each sensor is one and zero, respectively. Based

on equation (3), 1-hop cluster members set longer waiting times compared with 2-hop cluster members.

When a 2-hop timer expires, the 2-hop cluster member broadcasts a message with the initial round ID 1

and selects its 1-hop parent cluster member as a relay node from the cluster topology. Thus, the selected

relay node records its relay round ID and will execute the data dissemination in that sensing round. Since

a 1-hop cluster member can report the collected informationto the clusterhead directly, relay nodes are

not necessary in this case. In order to reduce the overlap of the coverage in each sensing round, the

neighboring nodes receiving the broadcasting message update their waiting timers and increase their

round IDs by 1 such that they may work in different rounds.

In order to maintain the correct round ID information when receiving multiple messages among neigh-

boring nodes, the ID updating strategy may be described as follows. Given a cluster member with round

ID u and a message sent by a cluster member with round IDv, the cluster member with round IDu may

update its round ID byu = v + 1 if the round IDu ≤ v. Otherwise, the received message is ignored.

Accordingly, an update criterion for the sensing node can bederived:

Round ID u =

{
v + 1, if u ≤ v

u, otherwise.
(5)

By following the above procedures, the round IDs and relay IDs can be determined for each cluster

member. Based on the received broadcast messages for updating round ID information from 1-hop

cluster members, the clusterhead can obtain the number of sensing roundsNRG in a sensing cycle. This

is because the number of sensing roundsNRG is equal to the largest round ID of the 1-hop cluster

members. Therefore, given a common local clock time in the cluster, the clusterhead may generate two

rounds of local flooding for broadcasting the sensor scheduling information throughout the cluster. The

procedures of sensor scheduling is outlined in the DASA of Figure3.

Figure4 illustrates the updating process of round ID among the cluster members for determining the

round group members for the first round. At the beginning, sensor 73 broadcasts a message with the

initial round ID 1 and selects its 1-hop parent cluster member, sensor 11, as a relay node. Then, sensor

11 records its relay round ID and updates its round ID.

Under the operation of the DASA scheme, pairs of distributedgateways for inter-cluster communica-

tion can be decided by applying the same approach as described in Section 3.2. The sensing coverage

and connectivity performance will be further explored in Section 5.

4. Analysis

Two analytical tools are provided to estimate the number of sensing rounds of the proposed schemes.

For the CASA approach, a neural network model is built up to approximate the desire performance. For

the DASA approach, a probabilistic model using the concept of geometry and the Lindeberg Theorem

[29] are applied to abstract the properties of the algorithm. Moreover, based on the analysis, the sensor
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Figure 3. Virtual sensor scheduling flowchart for the DASA algorithm.
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lifetime and cluster lifetime is further explored to show how the operations of the proposed schemes may

prolong the network lifetime.

4.1. Neural Networking for the Centralized Approach

Backpropagation Learning Algorithm

This subsection reviews the neural network algorithm [30] for analyzing the performance of the cen-

tralized method. Assume that the network under consideration has a general architecture with three

layers of neurons. In our case, input and output layer neurons are linear, whereas neurons in the hidden
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Figure 4. The round ID updating process of the DASA algorithm; the(·) represents the

round ID.
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layer are log-sigmoidal. Let the vector pairs inT be sample representation of the unknown function

f : Rn → Rp:

T = {(Xk, Dk)}
Q

k=1 , (6)

wheren is the neuron index range in the input layer,p is the neuron index range in the output layer,

Xk ∈ Rn, Dk ∈ Rp, Q is the number of training vector pairs, andk is the iteration index. Note thatDk is

the desired vector response for the network inputXk. Thus, the mean square error of the entire training

set is:

E =
1

Q

Q∑

k=1

Ek (7)

whereEk = 1
2
ET

k Ek, andEk is the instantaneous error of the training pair(Xk, Dk). Based on the above

description, the update of neuron activations can be formulated as follows.

For the hidden layer:

zk
h =

n∑

i=0

wk
ihx

k
i , h = 1, . . . , q (8)

S(zk
h) =

1

1 + e−zk

h

, h = 1, . . . , q (9)

wk+1
ih = wk

ih + η(−
∂Ek

∂wk
ih

). (10)

For the output layer:

yk
j =

q∑

h=0

wk
hj

1 + e−zk

h

, j = 1, . . . , p (11)
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S(yk
j ) = yk

j , j = 1, . . . , p (12)

wk+1
hj = wk

hj + η(−
∂Ek

∂wk
hj

). (13)

Note thatq is the neuron index range in the hidden layer,xk
i andyk

j are theith andjth component of

the input vectorXk and the output vectorYk, respectively,wk
ih andwk

hj are the biases of the hidden and

output neurons, respectively,S(·) is the signal function, andη is the learning rate in the back-propagation

algorithm.

Estimation of the Number of Sensing Rounds

In order to estimate the number of schedule rounds in a given topology when applying the CASA

scheme, the three-layer perceptron neural network is presented. For selecting the network parameters

(weights and biases) that best approximate a given function, the backpropagation learning algorithm is

considered to minimize the mean square error performance asdescribed in (7).

Figure5 illustrates the perceptron network architecture. Note that J represents the number of input

neurons, which may denote the number of 2-hop cluster members, the number of relay nodes, and the

number of 1-hop cluster members.N1 denotes the number of hidden neurons. In the output layer,N2

represents the number of neurons, which may denote the network approximation results. Moreover, let

IW and LW be the input weight matrix and layer weight matrix for the hidden layer and the output layer,

respectively. Letb1 andb2 be bias vectors for the hidden layer and the output layer, respectively. Estab-

lished upon the developed neuron network model, the behavior of the CASA scheme may be abstracted

with sensible settings, which is further discussed in Section 5.

Figure 5. The three-layer perceptron neural network architecture for analyzing the CASA

scheme.

4.2. Probabilistic Model (PM) for the Distributed Approach

Overlap of Geometrical Figures

This subsection introduces a particular problem considering the mean and variance of the overlap of

geometrical figures [31]. Given a number of circles placed at random on a plane so thateach one may

have some or all of its area inside a target area, with reference to the bombing studies, [32] uses the
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concept of geometry and of probability to explore the fundamentals of this type of problem. The result

is represented as the following theorem.

Theorem 1 Let X be a random Lebesgue measurable subset ofn-dimensional Euclidean spaceEn,

with measureµ(X). For any pointx of En, let p(x) = Pr(x ∈ X). Assuming that the functiong(x, X)

is a measurable function of the pair(x, X) with g(x, X) = 1 for x ∈ X and zero elsewhere, the expected

value of the measureX is the Lebesgue integral of the functionp(x) overEn.

Suppose thatA andC are the interior of the closed curves. Let the subsetX be the part of a regionA

in E2 which is covered byz C’s dropped independently and randomly. Denote a reference point Q as the

centra of the areaC and assume that there is a frequency distributionφ(x, y) of the position(x, y) of Q.

Based on the above assumptions, now we consider the moments of the areaY = A−X (i.e. the area of

A not covered by thez C’s).

Referring to Theorem1, the probability of a point(x1, y1) in Y not being covered by aC is:

q(x1, y1) =

∫

T−C(x1,y1)

∫
φ(x, y)dxdy, (14)

whereT − C(x1, y1) is the part ofT exterior to the areaC. Therefore, the first moment ofY, in the case

of z C’s, yields:

µ
(1)
Y =

∫

A

∫
qz(x1, y1)dx1dy1. (15)

similarly, for themth moment, the probability that the points(x1, y1), (x2, y2), . . ., (xm, ym) are not

covered by aC is:

q(x1, y1, x2, y2, . . . , xm, ym) =

∫

T−C1−C2−...−Cm

∫
φ(x, y)dxdy, (16)

whereT − C1 − C2 − . . . −Cm is the area ofT outsideC’s centered at(x1, y1), (x2, y2), . . ., (xm, ym).

Thus, themth moment in the case ofz C’s is given by:

µ
(m)
Y =

∫

A

∫
· · ·

∫

A

∫
qz(x1, y1, x2, y2, . . . , xm, ym)dx1dy1dx2dy2 . . . dxmdym. (17)

Accordingly, in our case we may interpretT as the sensing field in a cluster, letA be the sensing field

of a given sensor, letX be the area covered by its neighboring cluster members, andY will represent the

sensing area of a given sensor not covered by its neighboringcluster members. Denote the parametersz

andmas the number of unconnected cluster members and the neighboring cluster members, respectively.

Therefore, themth momentµ(m)
Y may describe the fraction ofA of a given sensor not covered by itsm

neighboring cluster members.

Lindeberg Theorem

This subsection reviews the probability that is used when analyzing the performance of the model.

Readers may refer [29] for a complete discussion and proof of the theorem.

Suppose for eachn

(X11, X12, . . . , X1r1)
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(X21, X22, . . . , X2r2)

... (18)

(Xn1, Xn2, . . . , Xnrn
)

are independent random vectors. The probability space may change withnand (18) is called aTriangular

Array of random variables. PutSn = Xn1 + · · · + Xnrn
. In the network application, letXni beXi and

let Xi take the values 1 and 0 with probabilitypi andqi = 1 − pi. We may interpretXi as an indicator

that sensori is chosen to be a round member with probabilitypi andSn is the number of members in a

round.

DenoteYi = Xi − pi. Hence:

SY
n ≡

n∑

i=1

Yi =

n∑

i=1

Xi −
n∑

i=1

pi = Sn −
n∑

i=1

pi, (19)

E[Yi] = E[Xi] − pi = 0, (20)

σ2
Yi

= σ2
Xi

= pi(1 − pi), (21)

σ2
sn

=

n∑

i=1

σ2
Yi

=

n∑

i=1

σ2
Xi

=

n∑

i=1

pi(1 − pi). (22)

For our case, the Lindeberg condition [29] reduces to:

lim
n→∞

n∑

i=1

1

s2
n

∫

|Yi|≥ǫsn

Y 2
i dP ≤ lim

n→∞

n∑

i=1

1

s2
n

∫

|Yi|≥ǫsn

dP = 0, (23)

which holds because all the random variables are bounded by 1and[|Yi| ≥ ǫsn] → 0 asn → ∞.

Theorem 2 Suppose thatYi is an independent sequence of random variables and satisfiesE[Yi] = 0,

σ2
Yi

= E[Y 2
i ], SY

n =
∑n

i=1 Yi, ands2
n =

∑n

i=1 σ2
Yi

. If the Lindeberg condition (23) holds, thenSY
n /sn →

N (0, 1).

Observe thatpi may be described by the overlap fraction of sensori since the sensors with less overlap

between its neighboring sensors has a larger chance to be selected as a round group member in the round

competition, which coincides with the operation of the DASAand the setting of the waiting timer.

Estimation of the Number of Sensing Rounds

Assume that each sensor will be grouped with probabilityp
(k)
i at iterationk. Denote the collection

of cluster members for selecting the round members at iteration k by Vk. Since the round members are

selected and removed at each iteration, the collection of sensors at the next iteration,Vk+1, is simply

a new and smaller cluster. Thus, by Theorem2, the distribution of the number of round members at

iterationk can be approximated byN (µk, σ
2
k) with µk =

∑mk

i=1 p
(k)
i andσ2

k =
∑mk

i=1 p
(k)
i (1 − p

(k)
i ). Once

the procedure terminates, the number of iterations is an estimate of the number of rounds formed in the

cluster. A statement of procedures for analyzing the DASA isgiven in Table2.
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Table 2. Procedures of the PM model for analyzing the DASA.

a) Letn be the number of cluster members.

b) rk is the number of sensors to be removed andmk is the number of sensors

remaining at iterationk

c) Assign the probabilityp(k)
i to sensori, proportional to the fraction not covered by its

neighboring cluster members. That is,p
(k)
i ∝ Y/A, as described in Theorem1.

d) Assignk = 0, m0 = n, r0 = 0.

while (mk − rk) > 0

rk = ⌈
∑mk

i=1 p
(k)
i ⌉ as detailed in Theorem2,

mk+1 = mk − rk,

form members of this round,

updatep(k)
i ,

k = k + 1.

end
∗⌈·⌉ is the ceiling function.

4.3. Sensor Lifetime and Cluster Lifetime

The main objective of the dynamic sleep scheduling approaches is to extend the lifetime of the clusters

so that the network may remain functional longer. Say that the cluster lifetime ends when the first sensor

in the cluster fails. Therefore, it is worthwhile to understand the lifetime of individual sensors.

Depending on the traffic model of the network, the expected sensor lifetime may be different. Suppose

that the sensors measure periodically and transmit the databack to the clusterhead for further processing

with a steady traffic. We also assume that the clusterhead collects the information from cluster members

and communicates with the base station with a steady traffic flow [33]. Thus, the expected lifetime

E[△T
(j)
i ] of sensori at roundj in a sensing cycle is:

E[△T
(j)
i ] = p

(j)
i ·

(
E

(j)
i − E

(j+1)
i

Pi

)
,

wherep
(j)
i is the probability of sensori to be a round member at roundj, Pi is the power dissipation of

sensori, andE
(j)
i −E

(j+1)
i is the energy consumption at roundj. Hence, for sensori, the expected energy

consumption in a sensing cycle is

E
(sc)
i =

∑

j

Pi · E[△T
(j)
i ] (24)

and the expected sensor life time of sensori for being a round group member is given by:

ERG[Ti] =
E

(0)
i

E
(sc)
i

· Tcycle (25)

=
E

(0)
i∑

j Pi · E[△T
(j)
i ]

· Tcycle, (26)
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whereE
(0)
i is the initial energy of sensori andE[△T

(j)
i ] is the expected lifetime of sensori at roundj in

a sensing cycleTcycle.

Accordingly, the impact of the sleep scheduling approach oncluster lifetime is further examined. For

a cluster without sleep scheduling strategy, the expected lifetime of sensori is:

ẼWS[Ti] =
E

(0)
i

Pi

. (27)

For a cluster with sleep scheduling strategy, the expected lifetime of sensori is:

ES[Ti] = p
(ch)
i ·

E
(0)
i

Pi

+ (1 − p
(ch)
i ) · ERG[Ti] (28)

= p
(ch)
i ·

E
(0)
i

Pi

+ (1 − p
(ch)
i ) ·

E
(0)
i∑

j Pi · E[△T
(j)
i ]

· Tcycle, (29)

wherep
(ch)
i is the probability for sensori to be a clusterhead, which may be related to the operation of

the clustering algorithm.

Based upon the definition of the cluster lifetime, the cluster lifetime is equal to the minimum of the

expected lifetime of sensors. That is,L̃ch ≡ mini{ẼWS[Ti]} andLch ≡ mini{ES[Ti]}. To quantitatively

measure how well the cluster lifetime are extended, we introduce a parameter, cluster lifetime factor

(CLF). The CLF is defined as the ratio of the cluster lifetime with sleep scheduling and to the cluster

lifetime without sleep scheduling. Thus, the CLF is:

CLF ≡
Lch

L̃ch

=
mini{ES[Ti]}

mini{ẼWS[Ti]}
. (30)

Now we provide an example on how the cluster lifetime can be extended by applying the dynamic

scheduling techniques. Assume that sensors of the network have identical initial energy levels and power

dissipation. Therefore, the cluster lifetime factor (CLF)yields:

CLF = mini

{
p

(ch)
i + (1 − p

(ch)
i ) ·

Tcycle∑
j E[△T

(j)
i ]

}
, (31)

which shows thatCLF ≥ 1 since the sensing cycleTcycle ≥
∑

j E[△T
(j)
i ]. That means the cluster can

last longer by using sleep scheduling schemes, further extending the lifetime of the network.

4.4. Complexity Analysis

This subsection assesses the performance of the proposed schemes in terms of communication and

time complexity for network operations.

CASA Scheme

When developing the sensing schedule, two rounds of local flooding are initiated in order to gather

topology information for the clusterhead in the 2-hop cluster structure. Hence, the time complexity is

O(2) rounds. Next, the clusterhead triggers two rounds of 1-hop flooding for broadcasting the sensor
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scheduling information throughout the cluster. At last, two rounds of 1-hop flooding is performed for

determining the gateway nodes. Thus, the time complexity isO(6) rounds..

Consider a sensor, say sensori, is a clusterhead. Suppose that the total power requirements include

the power required to transmit messagesET and the power required to receiveER. Therefore, the total

energy consumption,Esch, for scheduling management in the cluster isEsch = NT ·ET +NR ·ER with:

NT = 1 + 4 · NC + Ni, (32)

NR = Ni + 4 ·
NC∑

j=1

Nj +
∑

k∈S
(i)
b

Nk, (33)

whereNC is the number of sensors in the cluster,Ni is the number of the neighboring sensors of sensor

i, andS
(i)
b is the index set of neighboring sensors of sensori. Given the energy consumption analysis

above, the communication complexity due to establishing the sensing schedule isO(NC). Moreover,

when operating the sensing task, the energy consumption is related to the number of active sensors in a

round. Therefore, the communication complexity for collecting sensing data isO(MRG), whereMRG is

the number of round members in the cluster.

Since the algorithm is mainly executed in the clusterhead, the computation cost analysis of a clus-

terhead is presented. Based on the procedures of the CASA scheduling scheme in Table1, it includes

the operations needed to check the status of the cluster members and to select round group members.

Hence, the computation complexity for scheduling management in a clusterhead isO(N2
C), whereNC

is the number of sensors in the cluster.

In order to show the frequency of operations on the system resource and explore the impact of gath-

ering all the information by the clusterhead, memory usage analysis is provided in terms of information

processing perspective. Assume each node has aL-byte data packet to transmit. Based on the operation

of the CASA scheme, the memory usageMCASA is given by:

MCASA = MT + MS + MG (34)

= (

NC∑

j=1

Nj + NC + |H1| +
∑

k∈H
(2)
i

Nk + 2NG) · L, (35)

whereMT is the memory usage for gathering topology information,MS is the memory usage for broad-

casting the scheduling information, andMG is the memory usage for gateway selection,Nj is the number

of the neighboring sensors of sensorj, NC is the number of sensors in the cluster,H1 is the set of 1-hop

nodes,H(2)
i denotes the index set of 1-hop cluster members of clusteri with neighboring 2-hop cluster

members, andNG is the number of gateway sensors for inter-cluster communication in the cluster.

By using the CASA algorithm, the periodic on-off schedulingproblem can be solved efficiently due

to a sleeping schedule for each sensor node in a cluster. However, the drawback is using a centralized

accumulator host to gather topology information of each sensor such that it can execute the scheduling

management. The problem arises when some of the sensors can not transmit the required information to

the accumulator host or the accumulator host malfunctions.



Sensors2009, 9 3925

DASA Scheme

In the DASA approach, the clusterhead triggers two rounds of1-hop flooding to initialize the sensor

scheduling management process in the 2-hop network topology. Next, 1 round of local flooding is

applied for updating the round ID of each node. Then, the clusterhead generates another two rounds

of local flooding for broadcasting the sensor scheduling information. Finally, the gateway nodes are

selected using two rounds of 1-hop flooding. Therefore, the time complexity isO(7) rounds.

Accordingly, the total energy consumption isEsch = NT · ET + NR · ER, where:

NT = 2 · (1 + |H(2)
i |) + 3 · NC , (36)

NR = 2 · (Ni +
∑

j∈H
(2)
i

Nj) + 3 ·
NC∑

j=1

Nj , (37)

whereH
(2)
i denotes the index set of 1-hop cluster members of clusteri with neighboring 2-hop cluster

members. Hence, the communication complexity due to scheduling management isO(NC), NC is the

number of sensors in the cluster. Similar to the CASA scheme,when operating the sensing task, the

energy consumption is related to the number of active sensors. Therefore, the communication complexity

for collecting sensing data isO(MRG), whereMRG is the number of members in each round in the

cluster.

Due to the operation of the DASA scheme, the computation burden is distributed among the sensors.

Thus, the computation cost analysis is considered with respect to the clusterhead and cluster members,

respectively. For the clusterhead, it arranges the sensingschedule based on the largest received round ID.

Hence, the computation complexity for updating the round IDin a clusterhead isO(NC). For the cluster

members, they need to initialize a waiting time, to check if aclaim of being a round member is received,

to update the round ID, to extend the waiting time, and to check if the waiting timer expires. Therefore,

the computation complexity for scheduling management in a cluster member isO(N
(j)
b ), whereN

(j)
b is

the number of the neighboring cluster members of sensorj.

Suppose that each sensor node has aL-byte data packet to transmit. According to the operation ofthe

DASA scheme, the memory usageMDASA yields:

MDASA = MI + MR + MS + MG (38)

= (2 ·
NC∑

j=1

Nj + 2|H1| +
∑

k∈H
(2)
i

Nk + 2NG) · L, (39)

whereMI is the memory usage for initializing the procedure of scheduling management,MR is the

memory usage for updating the round ID,MS is the memory usage for broadcasting the scheduling in-

formation, andMG is the memory usage for gateway selection,NC is the number of sensors in the cluster,

H1 is the set of 1-hop nodes, andNG is the number of gateway sensors for inter-cluster communication

in the cluster.

Note that although the DASA scheme has a higher time complexity due to the round ID updating

process, the DASA allows the cluster members to organize themselves into round groups and complete

the scheduling assignment automatically with only local neighboring information.
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Figure 6. An example of generating a sensing round with the CASA approach.
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5. Experimental Results

Assume thatNs sensors are uniformly distributed over a square region in two-dimensional space.

Parameters for the random waiting timer, number of sensors,and ratio of transmitting rangeR to the

side lengthl of the square,R/l, are investigated to provide a simulation-based study of the proposed

schemes. for the DASA scheme, the parameters (detailed in Section 3.3) for the experiments are given

by C = 100, λ = 10, α = 0.5, andβ = 1.5.

The first set of experiments illustrates two examples of generating a sensing round with the CASA

approach and the DASA approach, respectively. According tothe procedures of the CASA approach,

as shown in Figure6, the clusterhead selects a 2-hop cluster member and a relay node, say sensors 46

and 21, to initiate the round generation. For approximatelyminimizing the overlap of sensing coverage,

sensors having no connectivity with sensor 46 may be selected as the round group member. By following

the data gathering strategy in Section 3.2, sensors 46, 25, and 30 are chosen to form a sensing round.

In Figure7, based on the settings of the DASA approach, a 2-hop cluster member with a shorter

random waiting timer, say sensor 73, broadcasts a message toits neighbors and a 1-hop cluster member,

say sensor 11, broadcasts a message to claim its being a relaynode for sensor 73. When receiving the

broadcasting messages, the neighboring sensors extend their waiting times to reduce the sensing area re-

dundancy and further prepare for being the round group members in the following sensing rounds. Thus,

with the data gathering strategy as described in Section 3.3, sensors 73, 46, and 30 form a sensing round.

Observe that, as shown in Figures6 and7, the proposed approaches avoid heavy sensing redundancy and

maintain sufficient sensing coverage.

Given a cluster topology, the second set of experiment studies the impact of parameter settings on
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Figure 7. An example of generating a sensing round with the DASA approach.
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network performance. With varying the number of sensorsNS, Figure8 shows the number of sensing

roundsNRG versusα for β = 1 (left) andNRG versusα for β = 1.5 (right). Given a value of the

parameterβ, the number of sensing roundsNRG decreases with increasing value of the parameterα,

which implies that the operation of updating the waiting time when receiving the round ID broadcast

from the neighboring sensors may rearrange the sensing schedule and decreaseNRG.

Similarly, Figure9 depicts the number of sensing roundsNRG versusβ with α = 0 (left) andNRG

versusβ with α = 0.5 (right). Givenα = 0 (i.e. without applying the update formula), the number

of sensing roundsNRG increases slightly with increasing value of the parameterβ. This is because the

setting of the parameterβ may allow nearby sensors to work on different rounds such that the sensing

redundancy may be suppressed. On the other hand, by applyingthe update formula (e.g.α = 0.5), the

parameterα may be a dominant factor affecting the number of sensing roundsNRG since this mechanism

allows the sensors to observe the behaviors of their nearby sensors and make adjustments in their waiting

times. Therefore, the update operation of the waiting time described in (4) may play a critical role in

scheduling management.

Furthermore, in order to describe the interaction between the parameter settings and the network

performance, Figures10 and11 illustrate the average coverage and average sensing overlap per round

versusα with β = 1.0 (left) and withβ = 1.5 (right), respectively. Observe that in Figure10, givenβ

the average coverage per round increases with increasing value ofα. As shown in Figure8, the number

of sensing roundsNRG decreases with increasing value of the parameterα, which means the number

of active nodes in a roundMRG increases with increasing value ofα and more sensing overlap may be

introduced under this condition (Figure11). Based on the above results, the parametersα = 0.5 and

β = 1.5 may be sensible settings for balancing the relationship between scheduling management and

network performance. Therefore, depending on the requirement of the sensing task, these key parameters

may be chosen to achieve desired performance.
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Figure 8. The number of sensing roundsNRG versusα with β = 1 (left) andNRG versusα

with β = 1.5 (right).
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Figure 9. The number of sensing roundsNRG versusβ with α = 0 (left) andNRG versusβ

with α = 0.5 (right).
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The third set of experiments explores the performance of theneural network model. The efficiency

of neural network training can be improved with certain preprocessing steps performing on the network

inputs and targets [34]. Figure12 illustrates the preprocessing results of the network inputs and targets,

which transform inputs and targets into a better form and then reverse transformed outputs back to the

characteristics of the original target data.

Figures13 and14 depict the learning and regression analysis of the network.Figure13 shows that

the network is learning since the mean squared error of the network is decreasing to a smaller value. The

6,514 input and target vectors are randomly divided into three sets. Four thousand vectors are used to

train the network. Of these vectors 1,257 are used to validate how well the network generalized. Finally,

the last 1,257 vectors provide an independent test of network generalization to data that the network has
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Figure 10. Average coverage per round versusα with β = 1.0 (left) and withβ = 1.5

(right).
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Figure 11. Average sensing overlap per round versusα with β = 1.0 (left) and withβ = 1.5

(right).
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never seen.

Moreover, regression analysis is employed as post-training analysis between the network response

and the corresponding targets and three parameters are returned to evaluate the performance. The first

two parameters, slope and y-intercept of the best linear regression relate targets to network outputs. If

the outputs exactly equal to targets, the slope and y-intercept would be 1 and 0, respectively. For the

1-hop case, slope = 0.79 and y-intercept =−6.1 · 10−3. For the 2-hop case, slope = 1.0 and y-intercept

= 2.7 · 10−4. The third parameter is correlation coefficient between theoutputs and targets. When the
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Figure 12. The preprocessing results of the network inputs and targets.

Figure 13. An independent test of network generalization.
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correlation coefficient is equal to 1, then there is perfect correlation between targets and outputs. In

this study, the correlation coefficients of 1-hop regression analysis and 2-hop regression analysis are

RA = 0.90 andRA = 1.00 as shown in Figure14 (left) and Figure14 (right), respectively, which

therefore illustrate a good fit.

In order to simultaneously consider energy conservation, network connectivity, and the data gathering

strategy, the fourth set of experiments investigates the impact of the transmission rangeRon the average

number of round groupsNRG in the scheduling operation withl = 300 m. Figure15 shows the rela-

tionship between the average number of round groupsNRG and theR/l ratio with varying the number

of sensors. Figure16 shows the comparison of the average number of round groupsNRG applying the
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Figure 14. The regression analysis between the network response and the corresponding

targets: 1-hop regression analysis (left) and 2-hop regression analysis (right).
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proposed scheduling schemes and those using the analyticalmodels. To further explore the sensing load

in a round, Figure17 depicts the number of active nodesMRG in a round with varying the transmission

rangeR. The result shows that the average number of group members ina round is between 1.5 and 2.5

for the proposed scheduling schemes.

Figure 15. The relationship between the number of sensing roundsNRG in a cluster and

transmission rangeR with varying the number of sensors.
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Observe that, as shown in Figure15, the average number of sensing roundsNRG increases as the

ratio R/l increases (i.e. the transmission power increases). Since larger transmission power allows
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Figure 16. The comparison of the average number of round groupsNRG applying the pro-

posed scheduling schemes and those using the analytical models.
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Figure 17. The number of active nodes in a roundMRG with varying the transmission range

R.
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larger radio coverage, a cluster has more cluster members, which increases the coverage overlap and

results in a largerNRG in a cluster. Thus, a largeR may result in heavy sensing redundancy due to a

large number of neighboring sensors. On the other hand, a small R may produce many isolated sensors

in a network. Therefore, a sensible transmission range is essential to explore the performance of the

scheduling approach. In [35], the authors suggest thatR ≈ l
√

log l

Ns
may be a good choice for the initial

range assignment for sensors in the2-dimensional space, whereNs is the number of sensors. As a result,

the clusterhead may adaptively manage the scheduling operation based on the data gathering strategy

and an appropriate transmission rangeR in order to avoid severe communication interference.
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Accordingly, an appropriate transmission rangeR is applied when comparing the proposed schemes

and the analytical models. Figures18and19show the standard deviation of the mean number of sensing

roundsNRG with l = 300 m, Ns = 100, andR ≈ 50 m and withl = 300 m, Ns = 200, andR ≈

33.387 m, respectively. In Figure18(right), the neural network (NN) architecture well approximates the

CASA performance since the NN retains global information from the training process. Because of the

sensor spatial distribution in Figure18(left), for the DASA scheme, the result provides evidence that the

Probabilistic Model (PM) provides a way to roughly predict the performance of the DASA. However,

due to the uniform convergence of the sensor spatial distribution (Ns = 200) in Figure19 (left), the

PM method has done well to describe the performance of the DASA. Moreover, with an appropriate

transmission range (withl = 300 m, Ns = 100, andR ≈ 50 m and withl = 300 m, Ns = 200, and

R ≈ 33.387 m), Figures18 and19 show that both the proposed schemes and the analytical models are

close, which coincides with the results in Figure16. Therefore, the average number of round groups

NRG in a sensing cycle can be clearly specified for a sensing task in a cluster.

Figure 18. The distribution of the number of sensing roundsNRG applying the proposed

scheduling schemes and those using the analytical models with Ns = 100.
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Note that Figures15 and16 investigate the average number of sensing roundsNRG considering all

clusters in a network. In order to further explore the performance of the proposed schemes and the

analytical models, the fifth set of experiments examines theaccuracy of the neural network architec-

ture and the accuracy of the Probabilistic Model (PM) in eachindividual cluster. Given a cluster-based

network topology (Figure20 (top left)), the bottom-left and bottom-right quadrants inFigure20 show

that the accuracy of the network for new data and the approximation of the PM model match the per-

formance of the proposed schemes well, which may provide clusterheads a way to estimate the number

of sensing rounds given local topology information. Furthermore, the top-right quadrant in Figure20

illustrates the coverage percentage of the whole network and each cluster, respectively, which suggests

that the proposed schemes allow the network to obtain high coverage percentage with an appropriate

sensing range. Notice that the operation of the CASA scheme achieves65% average sensing coverage

in a cluster and90% average sensing coverage in a random network. This is attributed to the fact that
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Figure 19. The distribution of the number of sensing roundsNRG applying the proposed

scheduling schemes and those using the analytical models with Ns = 200.
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the sensing compensation from nearby clusters results in a higher percentage of sensing coverage in a

network. Similarly, given the same network topology, the operation of the DASA scheme achieves55%

average sensing coverage in a cluster and80% average sensing coverage in a random network. Since

the CASA scheme executes the scheduling management in a centralized way, it may have better spatial

arrangement of sensors in each round compared with the DASA scheme.

Figure 20. The coverage percentage of the whole network and each cluster (the top-right

quadrant); the accuracy of the neural network architecture(the bottom-left quadrant) and the

accuracy of the Probabilistic Model (PM) in a random network(the bottom-right quadrant).
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The sixth set of experiments studies the network connectivity when using the proposed scheduling

approaches. Given a random network withNs = 100 and the period of the observation phase5Tcycle,

Figures21 and22 show the maintenance of network connectivity in round 1 and round 2. The circle

(‘◦’) represents the sleep node and a connection between a pair of distributed gateways (‘�’) is indicated

by a dashed line. Observe that in order to conserve energy, the active nodes (the sensing node ‘•’ and the

relay node ‘N’) are good candidates for being gateways in each round. As demonstrated in Figures21

and22, although the network may not be fully connected in each round, the operations of the proposed

schemes maintain sufficient network connectivity and provide a way for inter-cluster communication and

data dissemination.

Figure 21. The network connectivity using the CASA scheme in round 1 (left) and round 2

(right).
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By following the analysis as detailed in Section 4.4, the seventh set of experiments illustrates the

mean memory usage in the cluster members and the clusterhead, respectively. Assume each node has

a 36-byte data packet to transmit. Figure23 (right) depicts the mean memory utilization for gathering

the information in a clusterhead. Figure23 (left) shows the total mean memory usage for running the

proposed scheduling algorithms in the sensors in a cluster.As shown in Figure23 (left), compared with

the CASA, the cluster members consume more memory as establishing the sensing schedule with the

DASA scheme. The main reason can be contributed to the tracking operation of round ID, which is

used to create the order of sensing round. Moreover, for the memory usage in a clusterhead [Figure

23 (right)], due to the centralized operation, the clusterhead using the CASA scheme consumes more

memory, compared with the clusterhead using the DASA with only local information. However, when

measuring the memory utilization in a sensing round, the memory usage performance of the proposed

approaches are comparable since the number of active nodes in a roundMRG is considered to be close

in each approach as demonstrated in Figure17. Accordingly, the current wireless sensor networking

products (e.g. Crossbow’s IRIS Mote with 8K bytes RAM and 512K bytes Flash or Tmote Sky with

10K bytes RAM and 48K bytes Flash) are capable of running the proposed scheduling schemes.
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Figure 22. The network connectivity using the DASA scheme in round 1 (left) and round 2

(right).
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Figure 23. Memory usage of sensor nodes in a cluster versus number of sensorsNS (left);

memory usage of a clusterhead versus number of sensorsNS (right).
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The last set of experiments depicts the energy consumption of the proposed algorithms and compare

the results with those of other cluster-based scheduling protocols. Assume that clusters are formed in

a random network of 100 sensors with side lengthl = 100 m. A simple model [10] where the radio

dissipatesEelec = 50 nJ/bit to run the transmitter or receiver circuitry andEamp = 100 pJ/bit/m2 for the

transmit amplifier is applied in order to achieve an acceptable SNR. Suppose anr2 energy loss due to

channel transmission. Thus, to transmit aK-bit message a distanceR using the radio model, the radio
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expends:ET = Eelec ·K +Eamp ·K ·R2 and to receive this message, the radio expends:ER = Eelec ·K

(Figure24). For data dissemination, the cluster-based hierarchicalrouting protocol [36] may be used for

inter-cluster routing. The intra-cluster routing is builtupon the node-level topology of cluster, which is

obtained by the CAWT mechanism. Thus, data traffic between two clusters will be relayed through the

gateway nodes.

Figure 24. First order radio model as described in [10].
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Assuming that each node has a 36-byte data packet to transmit, Figure25(left) illustrates the average

energy consumption per round under different transmissionrange with varying the number of sensors in

the network. Furthermore, with varying the size of data packet in each sensor node, Figure25 (right)

presents the number of sensing rounds given the energy constraint. As expected, due to an increas-

ing packet size and a higher energy dissipation rate, the number of sensing rounds decreases given a

fixed initial energy (0.5 J). On the other hand, with an appropriate transmission ranges according to the

network density (withl = 100 m, Ns = 100, andR ≈ 14.14 m; with l = 100 m, Ns = 200, and

R ≈ 10.0 m; with l = 100 m, Ns = 300, andR ≈ 8.17 m; with l = 100 m, Ns = 400, andR ≈ 7.07 m)

and varying the packet size, the number of sensing rounds in the network with different network densities

suffers only small variations, which suggests that the proposed schemes may achieve high scalability for

sensor scheduling.

Figure26 shows the number of rounds when the first node dies in the network using the LEACH

[10], the MECH [11], the CASA, and the DASA with varying the initial energy of each node from 0.25

J to 1.0 J. The LEACH and the MECH are clustering-based protocols that tries to minimize the energy

dissipation in sensor networks. Observe that the proposed approaches are superior to the LEACH and

the MECH approaches, while the number of sensing rounds grows nearly linearly as the initial energy

increases. The simulation results demonstrate that the proposed schemes are more energy efficient than

the LEACH and the MECH schemes.

6. Conclusions

This paper presents hierarchical scheduling algorithms, which use a local criteria to simultaneously

undertake the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can
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Figure 25. The relationship between energy consumption per round (Joules) and transmis-

sion rangeR (left); the number of sensing rounds with varying the size ofdata packet (right).
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Figure 26. The comparison of the number of rounds as the first sensor nodedies in the

network using the LEACH, MECH (10 members), CASA, and DASA.
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be achieved. An analytical network architecture and a probabilistic model are derived to describe the

behaviors of the proposed schemes. The clusterheads may apply the established models to estimate

the number of sensing rounds given local topology information. The main objective of the proposed

dynamic sleep scheduling approaches is to extend the lifetime of the clusters so that the network may

remain functional longer. The experimental results show that the proposed algorithms provide efficient

network power control and achieve high scalability in wireless sensor networks.

There are several ways this work may be generalized. For instance, the CASA scheme may exploit

the relationship between the monitored area in a cluster andthe cluster topology to determine a proper
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number of group members in a round for the sensing task. Also,the DASA scheme can be generalized

to a d-hop cluster-based network topology. By following the procedures of the DASA scheme, ad-

hop cluster member may be a good candidate to initialize a round group and a nearby (d-1)-hop cluster

member may choose to wait and join the following round group later. The random timer may be adjusted

using local information and energy constraints and adapt based on the requirements of the sensing task

in order to achieve network robustness and scalability.

In the proposed scheduling solutions, trade-offs are foundbetween model complexity, energy con-

sumption, computational complexity, and sensible model description in real systems. Future plans will

involve generalizing the methods to design energy-efficient data dissemination protocols, to consider cer-

tain failure scenarios, to explore the sensitivity of the proposed schemes to data gathering strategies and

network operation, and to perform actual measurements to investigate the impact of parameter settings

on network performance.
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