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Abstract: The design, operation, and properties of the Finnish Geodetic Institute Field 

Goniospectrometer (FIGIFIGO) are presented. FIGIFIGO is a portable instrument for the 

measurement of surface Bidirectional Reflectance Factor (BRF) for samples with 

diameters of 10 – 50 cm. A set of polarising optics enable the measurement of linearly 

polarised BRF over the full solar spectrum (350 – 2,500 nm). FIGIFIGO is designed 

mainly for field operation using sunlight, but operation in a laboratory environment is also 

possible. The acquired BRF have an accuracy of 1 – 5% depending on wavelength, sample 

properties, and measurement conditions. The angles are registered at accuracies better than 

2°. During 2004 – 2008, FIGIFIGO has been used in the measurement of over 150 

samples, all around northern Europe. The samples concentrate mostly on boreal forest 

understorey, snow, urban surfaces, and reflectance calibration surfaces. 

Keywords: Finnish Geodetic Institute Field Goniospectrometer; FIGIFIGO; reflectance; 
spectrum; BRF; HDRF; BRDF; spectrodirectional remote sensing 

 

1. Introduction 

 

Reflectance, as a function of view and illumination directions, is described by the concept of 

Bidirectional Reflectance Factor (BRF). In short, BRF is defined as a ratio between radiance from the 

surface and a Lambertian white reference panel, while illumination and observation geometries are 
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held constant [1]. Bidirectional means that the reflectance is treated as a function of both view and 

illumination direction.  

Polarisation of light expresses the oscillation orientation of the electromagnetic field. Thermal light 

sources, such as the Sun and most lamps, produce unpolarised light, i.e. light that has an equally 

distributed mixture of different polarisations. However, when unpolarised light interacts with a 

surface, the scattering processes polarise the reflected light.  

BRF is unique for each sample and varies over a large range; each sample has its own unique 

reflectance spectrum, polarisation behaviour, and directional distribution. This BRF behaviour depends 

on the geometrical and physical properties of the sample. For example, vegetation canopies with wax 

covered leaves tend to scatter light efficiently forwards, and canopies with 3D structure tend to have 

strong backscatter and generally enhanced reflectance on low view angles [2]. Thus it is clear, that 

multiangular observations have the potential to retrieve structural parameters of the sample. 

Traditionally, remote sensing approaches have considered the view angle and solar zenith angle 

dependence of reflected radiation to be a problematic source of error, requiring a correction to a 

common geometry [3]. However, during the last decade, the remote sensing community has woken up 

to the possibilities of multiangular data interpretation; instruments such as MISR [4], POLDER [5], 

CHRIS/PROBA [6], and various airborne sensors are able to collect multidirectional radiances and 

reflectances. Knyazikhin et al. [7], García-Haro et al. [8], and Gascon et al. [9] have applied these data 

to retrieve forest leaf area indexes. Sandmeier et al. [10] applied BRF for boreal forest classification 

and structure analysis. Bourgeois et al. [11] stated that an accurate determination of surface albedo 

requires multiangular observations. 

Similarly, the land remote sensing community has commonly ignored the polarisation of reflected 

light. Most of the operational sensors are insensitive to polarisation of light, but e.g. POLDER satellite 

sensor, its airborne version OSIRIS [12], and the to-be-launched Aerosol Polarimetry Sensor (APS) 

satellite [13], are capable of taking polarised measurements. The polarisation capabilities of these two 

satellites are mainly designed for atmospheric measurements, but they can also be used for the remote 

sensing of ground cover.  

BRF measurements, with and without polarisation, are needed for various applications: First, basic 

knowledge on BRF and polarisation effects are needed to assist in the development of optimal sensors 

and algorithms. Second, empirical BRFs are needed as input parameters for various reflectance 

models. Third, all satellite and airborne reflectance data products and reflectance models need to be 

validated. Often, the easiest way to do any of the above mentioned is by using empirical BRFs. 

BRF measurements are usually taken using goniospectrometers, often referred only as goniometers. 

A goniospectrometer is a system consisting of a spectroradiometer and mechanics that change its view 

direction. One of the first well-known instruments was at the European Goniometer Facility (EGO) 

[14]. EGO is a laboratory system that rotates the spectrometer in a hemisphere around the sample at 

approximately a 2-meter radius, and this way measures the reflected light from selected view angles. 

To gain a good representation of the BRF, the measurements are repeated at multiple illumination 

angles. 

Measuring reflectance factors in a laboratory has many advantages. First, the illumination geometry 

can be controlled freely. Second, weather and atmosphere effects don’t affect the results. Third, in a 

laboratory, there are usually no critical time limitations for the measurement. Thus, in a laboratory, the 
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samples can often be prepared and documented better than in the field. However, in some cases, in-situ 

measurements are required, e.g. if measurements are required to be simultaneous to aerial data or if the 

samples cannot be moved to a laboratory. Also, differences in laboratory illumination and sunlight 

produce challenges in direct comparison of field data and laboratory results. 

The optimal properties of a field and a laboratory goniospectrometer are quite different from each 

other. For a laboratory-only instrument, a sturdy structure with a high level of automation is usually 

advantageous, because this provides the best pointing accuracy and repeatability. On the other hand, 

for field operation, the goniospectrometer should be portable. Speed of operation is also a critical 

property, as the prolonged measurements are often disturbed by movement of the Sun or the passing of 

clouds. 

To address the need for in-situ measurements, special field goniospectrometers have been built. The 

majority of the large-scale field models are based on the design of EGO [2,15,16]. Although, these 

instruments have been adapted to field operation, they are heavy for manual transportation. They 

require either special transportation equipment or laborious assembly at the measurement location. If 

the instrument cannot be taken onto a rough ground or far from roads, the types of possible samples  

are limited. 

Some smaller field goniometers [17,18] have also been built, but usually their design has 

compromised the measurement distance. The distance affects how large the sample can be, while the 

solid angle of observation is held reasonable. Having a large sample is advantageous when 

heterogeneous samples are measured, because this improves the sample representativeness. Sample 

heterogeneity is a significant problem especially when measuring natural vegetation samples. 

This article describes the design, operation, and properties of Finnish Geodetic Institute Field 

Goniospectrometer (FIGIFIGO). The motivations of main design features are discussed, in order to 

promote the design of future field goniospectrometers. Section 2 describes the algorithms used in 

reflectance factor retrieval. Sections 3 and 4 present the design and operation of the instrument. 

Section 5 discusses the error sources in reflectance factor retrieval. Section 6 presents some example 

data from our measurements. 

 

2. Methodology 

 

2.1. Measurement of reflectance factor 

 

Reflectance Factor (R) is defined as [1]: 

 
 iiid

rriiS
S L

L
R




,

,,,
  (1) 

where LS and Lid are the reflected radiances from a sample and an ideal Lambertian standard surface 

measured in the same illumination conditions. θi, φi, θr, and φr are the zenith and azimuth angles of 

incident and reflected radiance as defined in Figure 1.  

In practice, reflectances are always calculated against a non-ideal reference panel. If a reference 

panel with high isotropy is used (e.g. Spectralon 99%), the angular dependency of Rref can be omitted. 

If absorptions in the panel are taken into account, we can write: 
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This is a general equation for reflectance factor acquisition using a reference panel with isotropic 

reflectance.  

Figure 1. Bidirectional reflectance geometry. θi, θr, φi, and φr are respectively the zenith 

and azimuth angles of incident (i) and reflected (r) radiance. 

 
 

In the case where both illumination and observation are unidirectional, e.g. in laboratory 

measurements, Equation 2 produces Bidirectional Reflectance Factor (BRF). Bidirectional 

Reflectance Distribution Function (BRDF) is closely related to BRF, and an approximation for it can 

be produced simply by dividing BRF by pi. Similarly, Equation 2 returns a Hemispherical Directional 

Reflectance Factor (HDRF) if the distribution of illumination is hemispherical and observation 

direction is directional. [1] This is the case in typical sunlight measurements, where there is a diffuse 

(blue sky) component present. To acquire BRF in natural sunlight, the reflected radiance is split into 

two components: 

     rr
diff

rrii
dir

rrii LLL  ,,,,,,,   (3) 

where L is the total reflected radiance, and Ldir and Ldiff are its components originating from direct and 

diffuse illumination. Total reflected radiance (L) measured from a surface is the output of a default 

spectroradiometer measurement. If only the direct component of the incident radiation is blocked (i.e. 

the sample is shadowed) the similar measurement yields the diffuse component (Ldiff). Thus BRF can 

be acquired, even in natural sunlight illumination, by exploiting both total and diffuse  

radiance measurements: 
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In typical measurement conditions, the effect of diffuse illumination is concentrated strongly on UV 

and blue light. On longer wavelengths, the effect of correction is typically only of a few percent of the 

signal. While a natural variation of the samples already produces errors much larger than this, it is well 

justified to approximate reflected diffuse radiances to stay constant over view direction. This 
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approximation quickens the measurement process significantly by enabling the use of one nadir diffuse 

measurement for all sample radiances. 

 

2.2. Variations in incident irradiance 

 

Unfortunately, it is often impossible to measure all radiances in eq. 4 simultaneously, which leads 

to errors if there are variations in the incident irradiance. The error caused by this can be reduced if an 

independent instrument is used to record incident irradiance in real time during measurements. 

Incident irradiance (E(t)) can be used to compensate for illumination changes by substituting all 

radiances with instant reflectances (ρ): 

 
  )(t
tE

tL
L   (5) 

A similar correction has also been suggested by Schopfer et al. [15]. By implementing the previous 

changes, we get the equations for HDRF and BRF acquisition in sunlight: 
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where t1, t2, and t3 are respectively the measurement times of sample, diffuse sample, and diffuse 

reference panel radiances, and notation [](t) stands for linear interpolation of bracket contents to time 

t. These interpolations are done in order to minimize the effects of time-dependent illumination 

changes. 

 

2.3. Polarised reflectance factors 

 

If the radiometer is equipped with a linear polariser and the above-mentioned measurements are 

taken with multiple polariser orientations, polarised reflectance factors (RS_P) can be calculated. To 

calculate these, the following substitutions need to be made in equations 2, 6, and 7: 
*

_
*

PSS RR   (8) 

*
_

*
PSS    (9) 

 *
90_

*
_

*
 PrefPrefref   (10) 

where P is the orientation of linear polariser; P+90° is an orientation perpendicular to orientation P; 

and * states that substitution is done to both diffuse and total radiance variables. 
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3. Instrument Description 

 

The Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO) is a portable instrument for 

bidirectional reflectance factor measurements (Figure 2). Optionally, polarising FIGIFIGO optics can 

be used for the measurement of linearly polarised reflectance factors. The basic FIGIFIGO 

configuration consists of a goniometer body, a turning arm, and a laptop computer. Accessories 

include a sunphotometer (SP-Lite, Kipp&Zonen, Delft, The Netherlands) on a tripod for field 

configuration, and a rotation base and laboratory illumination system for laboratory configuration. 

Figure 2. (Left) FIGIFIGO measuring snow at Kirkkonummi, Finland. (Right) Diagram of 

FIGIFIGO with directions of automated movement (blue arrows). The view zenith angle 

changes as the arm turns from side to side. The position of the footprint is stabilized with 

small mirror adjustments. When needed, two laser pointers (red lines) highlight the  

footprint position. 

 
 

3.1. Goniometer body and electronics 

 

The goniometer body is a box (103 × 51 × 27 cm) containing the spectrometer and most of the 

system electronics. All electronics are powered by a 12 V lead acid battery. The electronics include a 

brushless DC motor (Series 4,490,048 BS with 352/1 gearbox, Faulhaber, Schönaich, Germany) to 

turn the arm, a 12-bit analog-to-digital converter (LabJack U3, LabJack Corporation, CO, USA) for 

sensor integration, and various supporting electronics. All goniometer actions are controlled with a 

rugged laptop computer (Panasonic ToughBook CF-18) over a single USB cable. The control software 

with a touch screen interface is built on National Instruments LabVIEW development environment. 

The main sensor of FIGIFIGO is a FieldSpec Pro FR (Analytical Spectral Devices, Boulder, CO, 

USA) spectroradiometer (350 – 2,500 nm) that is compartmented inside the goniometer body. A  

3-meter optical fibre of FieldSpec runs to the optics at the end of the arm. The spectrometer is 

connected to the computer using an ASD Smart Ethernet adapter. 
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For determination of Sun position and goniometer heading, the system has a consumer grade GPS 

receiver, a hemispherical sky camera (uEye UI-1645LE-C-HQ, IDS, Obersulm, Germany), and a 

goniometer body inclinometer (SCA121T-D07, VTI, Vantaa, Finland). The Sun’s position is 

calculated using GPS coordinates and time. The goniometer azimuth heading is then determined with 

an algorithm exploiting the absolute Sun position, a relative Sun position from sky camera image, and 

the tilt of the goniometer body. Until summer 2008, an electronic compass (C100, KVH Industries, 

Middletown, RI, USA) was used for azimuth determination, but its operation was found to be 

unreliable in urban areas due to steel reinforcements and structures. The compass is still exploited e.g. 

in night time field measurements in lamp light. 

 

3.2. The arm and the optics 

 

The arm is mounted directly to the axle of the Faulhaber motor. The root of the arm contains a two-

axis inclinometer (SCA121T-D03, VTI, Vantaa, Finland) that determines the angle of the arm even if 

the body is not level. The arm length can be adjusted, with a telescopic mechanism, between 155 and 

265 cm, depending on the desired footprint size. 

The top of the arm (Figure 3) holds the goniospectrometer optical system. The system consists of 

changeable optics, a fine tune mirror system, and two laser pointers for optics footprint determination. 

The optics point to the sample with a custom fine tune mirror system. The system allows the computer 

to continuously adjust the location of the spectrometer footprint. This is necessary in order to 

compensate for parallax, occurring if the sample is not positioned exactly on the arm axis.  

Figure 3. Optical system of FIGIFIGO. The spectrometer optical fibre is connected to the 

changeable optics. The optics point to the sample through a fine tune mirror. The mirror 

system allows the computer to fix the optics footprint to selected target without  

parallax error. 

 
 

With changeable optics, FIGIFIGO can be adjusted for measurements of different types of samples. 

In addition to the original ASD spectrometer optics, two sets of custom optics have been built. Both 

sets have footprints of 10–15 cm, depending on the used arm length. The polarising optics 

(FGI_3deg_Polarising_2008a) were built by mounting a broadband Glan-Thomson linear polariser in 

a computer-driven rotator (NSR1, Newport Corporation, Irvine, CA, USA). Tests with polarising 

optics showed that both SWIR sensors of our spectrometer were sensitive to polarisation. Even slight 

movement of spectrometer optical fibre caused changes of up to 20% in the received signal in the 
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SWIR sensors. A similar effect was not experienced when measuring unpolarised light. To counter this 

polarisation sensitivity, it was necessary to also add a broadband wedge depolariser between the 

polariser and the spectrometer fibre. Because many samples reflect polarised light, it was also found 

necessary to replace the original ASD optics with a set of depolarising optics (FGI_3deg_2008a). 

 

3.3. Laboratory equipment 

 

In laboratory operations, the weight of the system is not limited by the requirement of portability. 

Thus in the laboratory, FIGIFIGO is coupled with a rotating steel base (2-meter diameter) for azimuth 

rotation. The base has a built-in encoder for automated determination of the goniometer azimuth angle. 

When sunlight is not available, a 1,000-Watt QTH light source (Oriel 66886 and 69935, Newport 

Corporation, Irvine, CA, USA) is used for illumination. To mimic sunlight in measurements, a 

collimated beam 30 – 70 cm in diameter is required. Both the original Oriel lens optics and later our 

own enhanced lens optics had significant problems producing an ideal beam: The beam was rather 

more conical than well-collimated; the light source filament shape was reproduced as brighter areas; 

and on the edges of the beam, it was possible to see a rainbow effect due to chromatic aberrations of 

the lenses. To improve the beam, the originally transparent light bulb was sanded to matte and the lens 

optics were replaced with an off-axis paraboloid mirror (Ø 53 cm, f 47 cm, off-axis angle 45°) carved 

from an aluminium block. The improved illumination system (Figure 4) consists of the light source, 

the parabolic mirror, and a flat mirror on a tripod. While the light source and paraboloid mirror remain 

on the floor level, the illumination zenith angle is varied by lifting and tilting the flat mirror. 

Figure 4. Illumination system. A 1,000-Watt QTH light bulb is positioned in the focal 

point of an off-axis paraboloid mirror (Ø 53 cm, f 47 cm). The collimated beam is pointed 

to the sample using a flat mirror. The illumination zenith angle can be varied freely 

between 20° and 70° by moving the flat mirror.  
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4. Measurements and Processing of Data 

 

Portability has been one of the main interests in the FIGIFIGO design. During transportation, 

FIGIFIGO is separated into smaller parts for easy and safe handling. With the arm removed, 

FIGIFIGO can be fitted in any estate car with space remaining for three or more passengers. In its field 

configuration it weighs only 30 kg with batteries and can thus be carried to even a relatively distant 

measurement site.  

At the measurement site, the first thing is to attach the arm to the goniometer body and install the 

optical system to the arm. The set-up usually takes 5 – 15 minutes before the first sample, but 

transition to another nearby sample can be done in just a few minutes. 

Next, reference measurements are taken. A white Spectralon reference panel is positioned in the 

optics field of view and carefully levelled using a bubble level. A white reference spectrum is recorded 

from nadir view direction. To enable BRF acquisition in sunlight, with equations 6 and 7, the reflected 

diffuse radiance from the Spectralon panel is measured from nadir by shadowing the panel with a  

50-cm plate from a distance of 2 – 3 meters. Diffuse radiance from the sample is measured similarly.  

As a standard procedure, these white reference and diffuse measurements are repeated at the end of 

the measurements. They are also repeated in between azimuth turns, if found necessary, e.g., if clouds 

are present or the measurements are long-lasting. If the polarising optics set is used, all of these 

calibration measurements are taken with each polariser orientation. 

Figure 5. Measurement angles in a typical FIGIFIGO dataset. The dots depict sensor 

zenith (θr) and relative azimuth (φi – φr) angles of the measured spectra. If left-right 

symmetry can be assumed for the sample, the measurement typically consists of seven 

zenith turn sequences. The most distinct characteristics are usually seen at the principal 

plane. Thus near the principal plane, the point density is increased by measuring the  

0°-sequence twice and measuring the additional sequence at 10°. The density of the points 

in zenith direction can be varied by changing the rotation speed of the arm. 
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After the system is set up and the reference spectra are collected, the sample is measured by 

repeating the following steps: (1) The goniometer is rotated to a desired azimuth heading, and 

positioned so that the sample is in the optics field of view. (2) A measurement sequence is driven. 

During the sequence, FIGIFIGO registers the system position and the incident irradiance in real time; 

while the arm drives slowly (5 – 10 °/s) from the selected zenith angle (typically 60 – 80°) to the 

opposite side, continuously recording radiances. Point density in zenith direction can be controlled by 

varying the arm speed. If the polarised optics are used, the sequence consists of one zenith turn for 

each polariser orientation. 

When left-right BRF symmetry can be assumed for the sample, measurements at six azimuth 

directions (Figure 5) are usually found to adequately characterise BRF at one illumination zenith 

angle. The measurement pattern is denser near the principal plane, because most of the characteristic 

BRF effects are usually seen there. Additionally, in order to verify characteristics, to still increase the 

point density, and to take changes in sun elevation into account, the principal plane is measured twice, 

as the first and the last sequence. Such hemispherical measurements take typically 15 – 20 minutes. 

Polarised measurements take approximately 1.5 – 4 times longer, depending on the number of 

polariser orientations and spectrum sampling density. 

After the measurements are finished, the raw data is taken back to the office and post processed. 

The radiances and metadata are checked for possible errors, and the documentation is completed. The 

radiances are processed to reflectances using algorithm, applying equations 2 and 6 – 10. The checked 

and processed data files are stored to a reflectance library. 

 

5. Error Analysis 

 

The errors in BRF acquisition can be divided into roughly three categories: First, radiometrical 

errors from the spectrometer measurement, white reference calibration, and variation of incident light; 

Second, angular accuracy from both angle registration and optics opening angle; Third, 

representativeness of the sample. Each of these categories is more accurately discussed in the 

following sections. 

 

5.1. Radiometrical errors 

 

The error sources in FIGIFIGO radiometry follow generally the same principles as any 

spectrometer measurements. Noise in reflectance spectrum varies over wavelengths depending on 

sensor sensitivity and intensity of light. (Figure 6) In sunlight measurements, the noise is increased at 

the atmospheric absorption bands; around 1,200 nm, 1,400 nm, and 1,900 nm. In laboratory 

measurements, these absorption bands produce a decent signal, but otherwise the noise levels are the 

same or higher than in sunlight. Due to low irradiance of laboratory illumination, the spectrometer 

needs to use high gain at the SWIR sensors. Thus, also, noise at the borders of the SWIR sensor  

(986 nm and 1,760 nm) is amplified. 

All reflectance factor measurements are produced as a ratio between radiances from the sample and 

the reference panel. Thus any variation in reflected radiance from the panel causes a systematic error 

in reflectance; e.g. the cleanness of the Spectralon panel produces an uncertainty of ±1% to all 
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reflectances. Also, if the reference panel or the sample is tilted in the plane of illumination, its 

brightness changes according to the following equation: 

 
   i

i

i

idealE

E 


 tan1
cos

cos



  (11) 

where Δθ is the tilt of the target surface towards illumination (in radians); θi is the illumination zenith 

angle; and Eideal and EΔθ are the incident irradiances received by a perfectly level and a tilted surface. 

The effect is enhanced at low illumination angles. In FIGIFIGO measurements, the reference panel is 

always balanced using a bubble level, with accuracy of ±1°. Thus e.g., at solar zenith angle of 60°, this 

causes an uncertainty of ±3% in all reflectances.  

During the reflectance factor acquisition, atmospheric effects in incident irradiance are 

compensated using equations 5 –7 exploiting readings from the sunphotometer. Ideally, a second 

spectrometer should be utilized, but in the current FIGIFIGO set-up only a single band sensor is used. 

The silicon based sunphotometer responses only to radiation between 400 – 1,100 nm, and is unable to 

represent any spectral effects. However, usage of even monochrome irradiance data is bound to 

produce better results than not using any correction. Either way, the recorded irradiance time series 

provides an essential tool for detection of cloud interference. 

Figure 6. Typical noise levels in FIGIFIGO measurement of a white Spectralon panel. 

With darker samples, the noise levels are respectively higher. Sunlight measurement was 

made on an August afternoon in southern Finland (Sun zenith 54°). In the laboratory, the 

illumination zenith angle was approximately 45°. The sunlight spectrum shows increased 

noise at the atmospheric absorption bands around 1,200 nm, 1,400 nm, and 1,900. In the 

laboratory, the lower light levels enhance the noise at the spectrometer VNIR, SWIR1, and 

SWIR2 sensor borders (986 nm and 1,760 nm) as the sensitivities drops. 

 
 

5.2. Angular accuracy 

 

Both sets of FIGIFIGO optics collect light with approximately 3° opening angle. Thus, strictly 

speaking, FIGIFIGO does not measure in bidirectional geometry as defined for BRF, but in 

directional-conical (or even biconical) geometry. [1,19] In order to achieve faster operation, FIGIFIGO 
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collects spectra while the measurement arm is in movement. Also, due to finite spectrometer 

integration time, the measurement is not collected from a single direction but from a short range of 

zenith angles up to 1° long. However, the difference between a conical and directional reflectance 

factor can be seen only if there are significant second derivative angular effects at the scale of the 

optics opening angle. In practice, natural samples tend to have quite smooth BRFs with no radical 

features outside direct backscatter. Thus conical geometry of most FIGIFIGO measurements can be 

safely ignored.  

Due to the arm movement, the inaccuracy of spectrometer timings, and mechanical factors, the 

uncertainty in sensor zenith angles registered with spectra is ±2°. The sensor azimuth angle accuracy 

of the preceding compass system depended heavily on the environment. Even in an environment 

without clear magnetic disturbances the actual azimuth accuracy was only ±5°. The current 

configurations, with solar camera system (added in the summer of 2008) and laboratory base encoder 

system, can both reach azimuth accuracy better than ±1°. The solar position is calculated from GPS 

time and coordinates with accuracy better that ±0.1°. In the laboratory, the illumination direction is 

defined with accuracy better than ±1°. 

 

5.3. Spectrometer footprint variation and representativeness of the sampling 

 

The spectrometer footprint varies slightly between data points due to the following reasons: (1) The 

footprint elongates as 1 / cos(θo) with the view zenith angle. (2) If the sample is not exactly on the 

level of the arm axis, the footprint moves with the view zenith angle. Since autumn 2007, FIGIFIGO 

has had the fine tune mirror system that fixes the footprint location within ±1 cm. Earlier, the location 

was changed by the parallax error, if the sample was at different height than the goniometer axle. 

However, if the sample has a 3D structure, some view area variation is always unavoidable. (3) During 

the azimuth rotation around the sample, pointing errors of a few centimetres may occur, if positioning 

is not done with special care. (4) The optics footprint size varies slightly also spectrally due to the 

chromatic aberration of lenses. A variation of 2 – 4 cm in footprint diameter is experienced with the 

FIGIFIGO optics over the range of 350 – 2,500 nm. (5) The three sensors of the FieldSpec 

spectrometer use different fibres in the optical fibre bundle. Thus, while the total footprint shape is 

spherical, each of the three sensors does see slightly different parts of the sample. With heterogenic 

samples, this effect often produces clear “steps” in the spectrum at the sensor switch wavelengths. 

The actual error in HDRF/BRF retrieval caused by the footprint variations is impossible to define 

explicitly. In sunlight, the impact depends solely on the heterogeneity of each target. With artificial 

illumination, also inhomogeneity of the light beam affects the error. In the end, the question of the 

footprint variation falls back to the representativeness of the sampling. Biasing of the sample can 

easily be the largest error source of the whole process, e.g. if the BRF retrieved from one 20-cm spot is 

assumed to represent a larger area or whole sample species. It is common to see variations of tens of 

percents within samples of the nominally same species, measured on the same day, at the same 

approximate location. The changes in moisture, soil, annual and diurnal cycle, dustiness, etc., still add 

their effects. Thus no technical improvement can annul the need of averaging over wide sampling. 
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6. Data 

 

During the last few years, FIGIFIGO has been used in the measurement of more than 150 samples, 

concentrating on forest understorey vegetation [2,20], snow [21], urban surfaces [22], and airborne 

sensor reflectance calibration surfaces [23,24]. Polarised measurements have been conducted for 

approximately 20 samples [25,26]. Two examples from our reflectance library are presented in  

Figures 7 and 8. 

Figure 7 shows a collection of graphs describing reflectance and degree of polarisation of white 

Spectralon plate as measured with FIGIFIGO in the laboratory. Left-right symmetry is assumed for the 

Spectralon sample. Degree of polarisation (DOP) is defined as a ratio between difference and sum of 

horizontally and vertically polarised reflected radiance. White Spectralon proved to have anisotropy in 

BRF and to polarise weakly, but in relation to other samples it behaves very smoothly. These results 

are in consensus with equivalent measurements by [27]. 

Figure 8 shows a similar collection of graphs for a snow sample measured at Sodankylä (Finland) in 

April 2008. The sample was measured in-situ at night time using artificial illumination. The snow was 

already a few days old and had a hard icy surface. Bulk snow consisted of rounded aggregates a few 

millimetres in diameter and contained very little liquid water. The icy surface had a strong forward 

reflectance producing high polarisation in a forward direction. 

Figure 7. Reflectance properties of white Spectralon panel at 38° illumination zenith 

angle. (Top middle) Photograph of the target (Left) Bidirectional reflectance factor of 

Spectralon at a green spectral band as a function of view direction. (Bottom middle) 

Reflectance factor spectrum at three view angles on the principal plane. (Top right) Degree 

of polarisation ({H - V}/{H + V}) of reflected light at a green spectral band as a function of 

view direction. (Bottom right) Degree of polarisation spectrum at three view angles on 

principal plane 
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Figure 8. Reflectance properties of a snow sample at 67° illumination zenith angle. 

(Sodankylä, Finland, April 2008). The sample was measured outside at night time using 

the laboratory light source. The snow was a few days old and had an icy surface. The 

subfigures are the same as in Figure 7.  

 
 

7. Conclusions 

 

The Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO) is an instrument capable of 

spectral and polarised bidirectional reflectance factor and hemispherical directional reflectance factor 

measurements. Most of the design details have been optimised for field operation: the weight, size, and 

assembly labour are minimised for portability; the system is battery powered to enable measurements 

anywhere; and a sunphotometer records constantly the incident irradiance to compensate for 

variations. 

In the field, the available time always tends to be limiting the measurement. Thus fast operation has 

many advantages: (1) a better representativeness can be reached by measuring more samples in a 

limited time; (2) Measurements are possible and efficient even if measurements must be taken during 

gaps between clouds; (3) The effects of incident irradiance variation stay small as the Sun position 

stays more constant during measurement.  

In FIGIFIGO, the speeds of transfer and set-up are adequate, but the speed of the actual radiance 

spectrum collection could still be increased. This could be achieved by improving two features. First, 

in order to keep FIGIFIGO portable and lightweight, the system is currently lacking an automated 

azimuth rotation. If a portable lightweight azimuth rail could be added to configuration, without 

compromising the portability, the operation could be quickened somewhat. Second, the spectrometer 

of FIGIFIGO can output a spectrum only at ~600 ms intervals, although sensor integration times are 

much shorter than this. A faster spectrometer would enable shorter measurement sequences. 
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Currently, FIGIFIGO reflectances have a general accuracy of 1 – 5% depending on wavelength, 

sample properties, and measurement conditions. Most of these error bounds are systematic error from 

calibration, and thus the internal accuracy of data is still much higher; e.g. if an application needs only 

relative values between two view directions or wavelength bands, the results should have  

better accuracy. 

Although, improvements in radiometry and angle registration are always welcome, these are usually 

not the key issues in application of field goniospectrometer measurements. The largest challenges are 

usually related with the bias of sampling. FIGIFIGO is used mostly in measurement of natural samples 

that vary significantly both spatially and temporally. A single 15-centimeter spot is usually just not 

large enough to represent the whole species/land cover type, but covers only a strictly defined subset 

of this. In nature, the species rarely are distributed at clearly separate areas, but land is covered by a 

mixture of various species. This poses a great challenge for the selection and documentation of 

representative samples. The only way to decrease the bias is to widen the sampling by repeating the 

measurements for numerous samples and increasing the optics footprint size. 
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