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Abstract: Miniature ultraviolet USB coupled spectrometers have become ubiquitously 

applied over the last decade for making volcanic SO2 emission rate measurements. The 

dominantly applied unit has recently been discontinued however, raising the question of 

which currently available devices should now be implemented. In this paper, we consider, 

and make recommendations on this matter, by studying a number of inexpensive compact 

spectrometers in respect of measurement performance and thermal behaviour. Of the studied 

units, the Avaspec demonstrated the best prospects for the highest time resolution 

applications, but in the majority of cases, we anticipate users likely preferring the less bulky 

USB2000+s. 

Keywords: ultraviolet spectrometers, volcanic SO2 monitoring, differential optical 

absorption spectroscopy. 

 

1. Introduction 

The last decade has seen a rapid proliferation of compact and low cost USB powered spectrometers 

to the international volcanology community, for use in remotely sensed measurements of volcanic gas 

plumes. These units have now succeeded the considerably bulkier correlation spectrometers [1], in 

becoming the standard ground based tool for monitoring volcanic SO2 emission rates [2-7]. Data are 

typically collected by coupling these spectrometers to vertically pointing telescopes, traversing 

beneath the plume, by car, boat or plane, and recording geo-referenced spectra, from which overhead 
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SO2 column amounts are determined, then integrated over the plume cross-section, before 

multiplication by the plume transport speed to output fluxes. The devices have also been deployed in 

scanning configurations, whereby the field of view is instead rotated through the plume in an 

automated manner, using stepper motor mounted fore-optics [8-11]. This provides higher time 

resolution data (every few minutes), bringing the prospect of non-aliased corroboration between 

volcanic geophysical (typically  1 Hz) and geochemical datasets a little closer, with promise for 

improving our understanding of subterranean magmatic processes, and utility in eruption forecasting. 

In addition to SO2, the devices have also been used to detect volcanic plume species such as BrO 

[12, 13]. This is highly significant, as the latter gas is implicated in halogen catalysed ozone depleting 

reactions, indicating that volcanic plumes could exert important controls upon the troposphere’s 

oxidation capacity. Further, the spectrometers have enabled far more accurate measurements of plume 

transport speed than available hitherto, via cross correlation of SO2 data streams from multiple under 

plume units, thus significantly reducing error in calculated fluxes [14,15]. Finally, due to the small size 

and weight of the units ( 200g), they are also readily portable, with all required auxiliary components 

(e.g., miniature laptop computer), for unmanned aerial vehicle measurements opening up new 

prospects for spectroscopic surveillance of volcanic plumes, with monitoring personnel stationed 

further away from the hazardous targets [16]. 

Recently the device dominantly applied in this application, the Ocean Optics USB2000 has been 

discontinued, prompting the question: which currently available miniature USB coupled spectrometer 

is now most suitable for volcanologists to use in making SO2 flux measurements. Here we report the 

results of a study aimed at addressing this, in which we inter-compare a number of such devices with 

the USB2000 in respect of their measurement accuracy, including a discussion on their susceptibility 

to thermal effects that can induce errors. Whilst our focus is on the volcanic application of these units, 

this study is also germane to spectroscopic studies of other SO2 emission sources, e.g., from power 

stations and agrochemical plants. 

2. Instrumentation 

Seven spectrometers were investigated in this study: three Ocean Optics (OO) USB2000s (serial 

numbers: USB2G3709, USB2G1110 and USB2G2385), two OO USB2000+ units (serial numbers: 

USB2+E001 and USB2+F002), an OO USB4000 (USB4C0004) and an Avantes B.V. Avaspec-2048-

USB2 (0802095U1). The latter units were chosen, as they fall within a similar price band ( €2,700 at 

January 2009, including the required software) as the USB2000 did, fitting with the low cost 

philosophy implicit in the initial adaptation of the USB2000 to volcano monitoring: spectrometers 

should be suitable for widespread dissemination to countries where risks are high, yet monitoring 

budgets are low. 

The basic operating principle of these units (Figure 1) is that the light enters the spectrometer 

through an entrance slit (50  1000 m in each case, providing equivalent input intensity). This 

divergent light is then collimated by a curved mirror, and dispersed into its spectral components by a 

diffraction grating. Each of these wavelengths is reflected at a different angle, from the latter 

component, and is then imaged onto discrete pixels of a linear silicon CCD array using another 

concave mirror. By reading the outputs of this detector, a spectrum is obtained, therefore. In the case 
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of the OO spectrometers, the configuration is crossed, e.g., the light paths between the optical 

components are folded over one another (e.g., Figure 1a), so to reduce instrumental volume; the 

Avaspec bench is non-crossed (e.g., Figure 1b). To enhance signal to noise ratio (SNR), each 

spectrometer was configured with a cylindrical lens (L2 for the USB2000/2000+; L4 for the USB4000; 

DCL UV/VIS for the Avaspec) to focus, in the non-dispersive plane, the  1 mm high incident light 

beam onto the considerably shorter ( 200 m) detector elements. The detectors were also fitted with 

coatings/windows in order to increase their sensitivity to UV radiation (UV2, UV4 and DUV, 

respectively). Data collection and powering of the spectrometers were achieved via USB connection to 

laptop computers (USB1.1 for the USB2000s and USB2.0 for the others). 

Figure 1. Schematic showing the operating principles of the spectrometers discussed here. 

Light enters the spectrometer through the entrance slit, is collimated by a curved mirror, 

then segregated into constituent wavelengths (e.g., blue and red) by a diffraction grating. 

These spectral components are then imaged onto discrete pixels of a CCD array detector, 

by a second curved mirror, so to obtain a spectrum. Both folded (A; e.g., OO) and non-

crossed (B; e.g., Avaspec) configurations are shown. The figures are not to scale.  

The devices were each configured with spectral resolutions  0.65 nm, as verified by room 

temperature full width at half maximum measurements of lines from a mercury-argon lamp source 

(Ocean Optics HG-1). This provides enough detail to adequately capture the SO2 absorption spectrum, 

yet is not so fine as to reduce light levels unnecessarily (e.g., resolution is improved by reducing the 

width of the entrance slit, and/or using gratings with greater lines/mm, which are more dispersive, yet 

have poorer light transmission characteristics). The Avaspec optical bench provides fundamentally 

higher resolution, for a given slit width and grating, than these OO spectrometers. In the former case, 

incident monochromatic light forms an image at the detector plane approximately as wide as the input 

slit, as the optical bench curved mirrors are of equal (75 mm) focal lengths; in the latter devices, these 

mirrors are 42 mm collimating and 68 mm imaging, rendering the image  68/42 times thicker than the 

slit width, leading to larger linewidths. For instance, for a 50 m entrance slit, and a 600 lines/mm 

grating the Avaspec provides a UV resolution of  1.2 nm, cf.  2 nm from the OO devices. In 

consequence, realisation of the necessary resolution demands a less dispersive grating (1200 lines/mm; 

UC) for the Avaspec, than for the OO units (2400 lines/mm; #7), resulting in a spectral range of  210-

480 nm for the former spectrometer, and  250-400 nm for the latter. 
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The USB2000, USB2000+ and Avaspec all had 2048 element CCD array detectors: the Sony 

ILX511A and B, respectively in the first two cases, and the Sony ILX554B in the latter; the 

USB4000’s detector was the 3648 pixels Toshiba TCD1304AP (note that in these cases, spectral 

resolution is defined by the bench, slit width and grating alone; the additional USB4000 pixels do not 

provide any enhancement in linewidth). The readout electronics provided 16 bit digitization in all 

cases, save the USB2000, which was 12 bit, with maximum spectral capture rates ranging  80 - 1,000 

Hz between the units. Given that individual spectral exposure times are typically > 100 ms these rates 

are all more than is required for this application. In respect of dimensions and weight, the OO 

spectrometers were  89  63  34 mm and 190 g, and the Avaspec  175  110  44 mm and 720 g, 

respectively, each compact and field portable, and only a few percent of the mass and bulk of the 

correlation spectrometers. Similarly, the power requirements ( 0.5 W for the USB2000; 1.25 W for 

the USB4000 and USB2000+; 1.75 W for the Avaspec) are each relatively modest in comparison with 

the typical ( 20 W) consumption of a laptop computer. 

3. Measurement Accuracy 

Provided that a spectrometer has appropriate resolution, and sufficient pixels to meaningfully 

capture the target species absorption profile (criteria satisfied for all the devices in this study), its 

utility in atmospheric spectroscopy is determined, to a large extent, by SNR. Signal is defined here by 

the sensitivity of each detector pixel to incident light at the wavelength it has been tuned to, e.g., 

according to the angular alignment of the diffraction grating. Noise arises from: 1) the spectrometer’s 

detector and electronics registering a signal even in the absence of incident light: a signature caused, 

for instance by thermal effects, and which will be superimposed on top of the observed light signal; 

and 2) stray light from other wavelengths falling upon the pixel, following internal reflections within 

the spectrometer, e.g., due to imperfections in the optics. 

In order to characterise these phenomena, in respect of our application, we made a series of skylight 

spectral observations, on February 28th 2008 in Sheffield, under stable intensity clear sky conditions, 

by coupling the spectrometers via optical fibres (Avantes FCRL-4UV200-2-SR) to co-aligned, home 

made, single plano-convex f = 100 mm lens, vertically pointing telescopes. Sample 170 ms exposure 

time spectra for the Avaspec, USB4000 and one USB2000+ are shown in Figure 2, the latter as a 

representative of the rather similar performance of all the USB2000/2000+ units. The Avaspec 

displayed higher sensitivity in the  310-325 nm spectral region, used for the SO2 measurement, than 

the OO devices, with the USB2000/USB2000+s returning around double the signal of the USB4000. 

This is likely caused, to a large extent, by: 1) the fundamentally higher resolution of the Avaspec 

optical bench, which allows use of a diffraction grating of fewer lines/mm to realize the desired  0.65 

nm resolution, so providing enhanced light throughput characteristics; and 2) the splitting of the 

incident light into 3648 pixel increments, in the case of the USB4000’s detector, each of 

correspondingly lower intensity than captured by the other units’ 2048 element detectors. These 

sensitivity data are further illustrated in Table 1, which shows the light signals recorded at 320 nm 

from each spectrometer. Note that due to the relatively low cost of these units, the performance in each 

evaluation, per spectrometer type, though broadly similar, would not be expected to be absolutely 

identical. 
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Figure 2. Skylight spectra for simultaneous identical exposure time (170 ms) acquisitions 

from the Avaspec, USB4000 and a typical USB2000/2000+ spectrometer (USB2+E001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

We then compared these intensities against the first noise source: the random component of the 

spectrometer signal in the absence of incident light: the so called “dark current”. This was 

characterised by observing pixel intensities < 290 nm, where atmospheric ozone completely absorbs 

down welling UV radiation. The average standard deviation of these pixels, computed from thirty sky 

spectra were determined, then the mean 320 nm spectral skylight signal divided by this, providing, per 

spectrometer, a measure of dark current related SNR, as shown in Table 1. Note that the other noise 

source affecting these pixels: stray light, produced a constant, rather than random signal per pixel 

under these stable illumination conditions, thus did not perturb the results. Further, by subsequently 

blocking the spectrometer we verified that the standard deviation of the dark spectra for these pixels is 

the same, e.g., representative of that at the point of interest, as in the slightly longer wavelength SO2 

spectral measurement region. The Avaspec ratio (470) is larger than those of the 

USB2000/USB2000+s (160-295), and the USB4000 (140), mostly due to differences in light 

sensitivity, rather than dark current noise, the latter being rather similar in each case. Note that these 

devices also have an additional “offset” component to the no light signal, which is quasi-constant 

across the pixel range, and ought not to change drastically from spectrum to spectrum, so potentially 

creating errors. There are, however, longer term thermally related circumstances, whereby this can 

alter, as discussed in section 4. 

The second, stray light, noise source was studied by blocking light from entering the spectrometer 

and noting to what extent the pixel counts of the skylight spectra < 290 nm were diminished. Any such 

disparity in light signal could only be caused by scattering of photons of longer wavelengths within the 

spectrometer, due to the total atmospheric absorption of radiation by ozone in this spectral region. The 

average pixel drop value was then divided by the spectral intensity at 320 nm, to provide an 

assessment of stray light related signal to noise for each spectrometer, with results shown in Table 1. 

Whilst this is a rather crude way of characterising stray light (which, per wavelength has a response 

that is roughly constant across the spectral domain, except where it rises rapidly in the vicinity of the 

true wavelength pixel), the quasi-constant reductions observed, per spectrometer, for each pixel in its  
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< 290 nm range, serve to illustrate the better stray light performance of the Avaspec optical bench 

(ratio of 0.012) versus those of the OO spectrometers (0.023-0.12), in this study. Stray light 

suppression in the former device is likely expedited by the internal light baffles, aside the beam path 

within the uncrossed bench design, acting as mitigants against misaligned photons reaching the 

detector. 

Table 1. Summary of the results of the investigations into the spectrometer characteristics 

reported in this paper for 170 ms integration time sky spectra. Full detail is supplied in the 

text. 

Spectrometer USB2000: 
G3709 

USB2000: 
G1110 

USB2000: 
G2385 

USB4000: 
C0004 

USB2000+: 
E001 

USB2000+: 
F002 

Avaspec: 
0802095U1 

320 nm 
skylight signal 
(% of Avaspec 
value) 

42% 38% 55% 19% 42% 34% 100% 

320 nm signal / 
dark current 
random noise 

295 250 220 140 275 160 470 

Stray light / 
320 nm signal 

0.031 0.038 0.12 0.023 0.050 0.069 0.012 

Measured 
concentration 
1600 cell 

1373  42 
ppmm 

1421  41 
ppmm 

991  22 
ppmm 

1382  49 
ppmm 

1171  39 
ppmm 

1126  52 
ppmm 

1644  28 
ppmm 

Measured 
concentration 
400 cell 

362  36 
ppmm 

384  30 
ppmm 

338  14 
ppmm 

371  26 
ppmm 

356  23 
ppmm 

332  30 
ppmm  

392  16 
ppmm 

Stray light 
corrected 
concentrations 
1600 cell 

1595  54 
ppmm 

1643  53 
ppmm 

1540  50 
ppmm 

1422  51 
ppmm 

1542  66 
ppmm 

1550  78 
ppmm 

1679  29 
ppmm 

Stray light 
corrected 
concentrations 
400 cell 

395  42 
ppmm 

411  35 
ppmm 

417  24 
ppmm 

375  27 
ppmm 

408  27 
ppmm 

411  43 
ppmm 

396  16 
ppmm 

 

In order to characterise the effect of these noise sources on SO2 concentration measurements, we 

placed quartz calibration cells (Resonance Ltd.) of 400 and 1600 ppmm SO2 concentration, in front of 

the telescopes, so as to completely cover their front lenses, and recorded 25 zenith skylight spectra 

(each obtained by co-adding four 170 ms individual spectra), per spectrometer, per cell. The 

manufacturer’s error budget for these cell concentrations were   50 ppmm and   100 ppmm, 

respectively, based largely on the uncertainty on other in-house gas cell concentrations, used in the 

calibration process. For each spectrometer we also recorded a reference spectrum, without the cell in 

the optical path, and a dark spectrum, with the telescope blocked, according to the same acquisition 

parameters. The cell spectra were evaluated for SO2 concentrations using a differential optical 

absorption spectroscopy retrieval routine, as is standard in volcanic USB2000 measurements; the 

particular code was that at the heart of the volcanoSO2.exe program [5]. This, and all other routines 

used in the forthcoming analyses were written in LabVIEW. Firstly, the dark spectrum was subtracted 

from each cell spectrum, and from the reference spectrum, the latter spectrum was then divided by the 

cell spectrum of interest. The natural logarithm was taken, so generating the absorbance spectrum, 
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before high pass filtering, to isolate the rapidly varying component of the SO2 absorption spectrum 

(the so called differential absorption spectrum). Finally, a laboratory standard absorbance spectrum, 

corresponding to 1 ppmm SO2, which had been convolved to match the instrumental spectral 

resolution, and itself identically high pass filtered (so forming the differential laboratory SO2 

spectrum), was linearly least squared fitted to the differential spectrum in the 310-325 spectral range, 

to output the measured concentration. 

The mean concentration and standard deviation for the spectra collected with each cell, per 

spectrometer are shown in Table 1; the former data for the Avaspec (392 and 1644 ppmm, 

respectively) more closely resemble the true cell concentrations than those from the OO devices 

(ranging 332-384 and 991-1421 ppmm). Indeed, none of the non-Avaspec spectrometers measure the 

1600 ppmm cell concentrations within the measurement error. Furthermore, the order of the mean 

concentrations is almost exactly opposite to that of the stray light / 320 nm signal values. Stray light 

essentially acts to reduce the contrast between the cell and reference spectra, caused by the SO2 

absorption, by adding counts to each, which are not removed by subtraction of the dark spectrum, so 

decreasing apparent absorbance, particularly at the shortest wavelengths, where light levels are 

weakest. Hence: more stray light, lower retrieved concentrations. 

Stray light can be computationally compensated for, to some degree, by monitoring the lowest pixel 

count in each dark subtracted sky spectrum, and subtracting that from all other pixels in that spectrum, 

prior to the next analysis stages. This of course is rather crude, given that the stray light signature is 

not spectrally flat, rather elevated across the pixels corresponding to the wavelengths of the incident 

skylight. Nonetheless, where this is applied, this does cause the lower spectrometer concentrations to 

rise, in most cases to be within error of the cell column amounts, as documented in Table 1. By 

reducing the systematic error in this way, however, the measurement random error is increased, as 

expressed in the concentration standard deviations, as the stray light had acted to suppress dark current 

generated inter-spectra differences. This is particularly obvious in the case of the most stray light 

prone of the analysed units: USB2G2385. 

Alternate stray light mitigative strategies include using a low pass filter to block visible light from 

entering the spectrometer; however this does not deal with stray light originating from the UV. 

Similarly, increasing the fit window start wavelength so to exclude the most adversely affected pixels 

could in principle raise the lower retrieved concentrations somewhat. However, this would reduce the 

number of data points available for fitting, increasing the measurement random error. A recently 

proposed alternate of measuring the instrumental stray light response function using laser line sources, 

enabling skylight spectra to be corrected accordingly, shows promise for further error reduction in this 

regard [17]. 

From the perspective of random error in the cell spectral measurements, the Avantes, as with 

respect to systematic errors, performed the best of the analysed spectrometers in this study (e.g., 

concentration standard deviations of 29 and 16 for the 1600 and 400 ppmm cells, respectively vs. 50-

78 and 24-43 for the OO spectrometers, for the stray light corrected data) as a result of its higher light 

sensitivity/dark current noise characteristics (Table 1). Indeed, it is clear from the differential 

absorption spectra shown in Figure 3, corresponding to 1600 ppmm cell measurements, taken with the 

Avaspec, USB4000 and USB2+E001 (taken as a typical representative of USB2000/USB2000+ 

behaviour), that the former data are less noisy. These experiments were deliberately performed with 
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identical exposure and data evaluation procedures in order to provide the most equivalent inter-

comparisons. However, due to the better stray light characteristics of the Avaspec, the start pixel of the 

fit window could be reduced here, with no drop off in retrieved concentrations, further improving upon 

its standard deviations, by including more pixels in the fitting. 

Figure 3. Differential absorption spectra, obtained from the 170 ms exposure time 1600 

ppmm SO2 cell measurements with the Avaspec, USB2+E001, and the USB4000, in the 

former case providing the best visual match to the scaled laboratory absorbance spectrum 

(dashed line in top plot). 
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inter-spectrometer differences, at the expense of imposing large systematic errors. Once stray light is 

corrected for, these standard deviations become more representative of those of the other OO 

spectrometers, as seen in Table 1. Whilst the USB4000 had lower dark current related signal to noise 

characteristics to those of the other OO spectrometers, its concentration standard deviations were 

similar, likely due to the compensating effect of the greater number of pixels involved in the fitting. 

4. Thermal Effects 

The previous section concerns the spectrometers’ accuracy in making SO2 concentration 

measurements over relatively short periods in near room temperature conditions ( 18 C). Over 

longer periods (e.g., that of a traverse; 10s of minutes), and/or across different environments, the range 

of encountered thermal conditions may vary considerably, however, with a number of potentially 

important implications for sensor performance. The first such effect concerns the offset, e.g., the 

component of the no-light signal, which is quasi-constant across the pixel range, and is modulated by 

temperature, so shifting the superimposed dark current and light signal spectra up or down. We 

assessed this, firstly, by simply switching the spectrometers on and, as the units warmed up, 

monitoring trends in offset values, e.g., the average pixel value per spectrum (300 ms acquisition), 

with light blocked from entering the spectrometer. Note that in this experiment this drift was the only 

observed sensor change perceived to be capable of perturbing retrieved SO2 signals. Each spectrometer 

stabilised after  30 minutes, during which time the USB4000 offset increased by 25%, the Avaspec 

by 10% and the USB2000s and USB2000+s decreased by 38% and 34%, respectively. 

We secondly placed the spectrometers in a temperature stabilised ( 0.5 C) incubator unit (LMS 

ltd. series 3, 400W), and examined the offset variation in heating from 12 C to 32 C, in  7 C 

increments. In accord with the previous experiment, the offset rose for the USB4000 ( 120 %) and for 

the Avaspec ( 70%), and fell for the USB2000s and USB2000+s ( 100%) in each case at quasi-

constant rates. For the largest of the spectrometers’ offset change rates, it is conceivable that an 

ambient temperature change of a few degrees, and/or spectrometer warm up, could cause offset shift of 

>  10% during individual traverse SO2 flux measurements. The effect of this on concentrations was 

simulated by vertically shifting recorded cell spectra, then evaluating them with respect to un-shifted 

reference spectra. The retrieved concentrations differed from those determined with no such shift by > 

 10%. 

These offset errors can be readily eliminated, to a large extent, however, by simply monitoring the 

upward or downward modulation of the short wavelength pixels, where ozone absorbs down welling 

skylight, and shifting the whole spectrum up or down accordingly, so to fix the offset. The one 

exception to this is when the offset shifts to a negative value, in which case the no-light signal simply 

returns zero values. The major implication of this is that it also draws down the observed light spectra, 

perhaps more so than the response to light of the shortest wavelength skylight pixels can counteract, so 

that these elements register zero counts. This spectral truncation creates a series of computational 

problems for the SO2 retrieval, not least a shortening of the pixel range, available for the spectral 

fitting, potentially leading to significant errors. It is highly desirable to avoid negative offset, therefore, 

for instance through thermal stabilisation of the spectrometer, or use of the Ocean Optics USB 

EEPROM programmer. During our experiments, negative offset was just starting to occur for one of 
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the USB2000s and one of the USB2000+s at 32 C, with the other USB2000s and USB2000+ no light 

signals hovering just above zero counts. The Avaspec and USB4000 had no such problems in our 

studied 12 C to 32 C temperature range, although, given their positive correlations between 

temperature and offset, they may demonstrate negative offset at lower temperatures. 

Figure 4. Thermal variation in the profile of the 296.7 nm line in the Hg lamp 

experiments. Traces at 12 C are dashed, and solid for 32 C, showing heating induced line 

narrowing from  0.8 nm to 0.65 nm for USB2G1110 (left) and from  0.7 nm to 0.6 nm 

for USB2G2385 (right). 

During the incubator experiments we also studied the variation in spectral alignment, sensitivity and 

resolution in heating from 12 C to 32 C, by taking fibre coupled measurements of lines (296.7 and 

302.1 nm) from the mercury-argon lamp source, in the vicinity of the SO2 absorption spectrum fit 

window. In respect of the first of these phenomena, these lines positions varied very little with 

temperature (typically  1 pixel) for all the spectrometers, ruling this out as a significant source of 

error, at least for these units. For the second study, the sensitivity changed by   10% in each case. 

This too is unlikely to have any great bearing on retrieved concentrations, however, as it essentially 

corresponds to multiplication of the skylight signals by a scalar, which will appear as a constant after 

the logarithm stage of the evaluation, becoming eliminated by the high pass filter. 

The last of these sensor characteristics, namely the resolution, was addressed by monitoring the full 

width at half maximum of the lamp lines as the spectrometers were heated, e.g. how broadened do 

these devices make these infinitesimally narrow features appear. For all the spectrometers, save two of 

the USB2000s (USB2G1110 and USB2G2385), the linewidth varied insignificantly (< 0.05 nm) across 

the temperature range. For these exceptions, the lines’ spectral widths narrowed by  0.15 and 0.1 nm, 

respectively, likely due to thermal expansion of optical bench components with increased temperature 

(e.g., Figure 4). This would act to increase the amplitudes of the peaks and troughs in the observed 

SO2 differential absorption spectra (e.g., see Figure 3), for a given observed column amount, which 

could be readily misinterpreted as an increase in concentration. Whilst a 20 C change in temperature 

is highly unlikely to occur over an individual traverse, and the changes to linewidth associated with the 

more plausible  few degree shifts are insignificant for these USB2000s, an issue is raised as to how 

these units, if calibrated at room temperature, would perform in a far cooler or warmer environment 

(e.g., Erebus volcano in Antarctica or equatorial Nyiragongo volcano). In practice, linewidth 
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calibration is achieved by measuring the profile of a mercury line with the candidate spectrometer, 

then convolving this with a very high resolution standard SO2 absorption spectrum, to degrade the 

latter to the instrument’s rather poorer resolution. A high pass filter is then applied to form the 

differential laboratory SO2 spectrum, used in fitting to the observed field differential absorption 

spectra. We investigated the implications of the most extreme of these USB2000 thermally related 

lineshape changes by generating two differential laboratory SO2 spectra, with the USB2G1110 302.1 

nm line shapes measured at 12 C and 32 C, respectively ( 0.8 nm and 0.65 nm widths). The former 

spectrum was then least squared fitted to the latter, which was thereby determined to have  12% 

larger peak/trough amplitudes; e.g., use of the differential laboratory spectrum generated at 12 C to 

evaluate field spectra collected at 32 C would result in a corresponding concentration overestimation, 

by failing to compensate for narrowing in instrumental linewidth, which results in a sharpening of 

observed spectral features. It remains unclear whether investigation of further non-USB2000 OO 

spectrometers or Avaspecs would reveal similar thermal linewidth behaviour. All these thermal results 

issue a caution, therefore against indiscriminate usage of any of these compact spectrometers without 

consideration of extrinsic factors, such as changes in temperature, which could significantly perturb 

performance, and for which reason a number of workers thermally stabilise their spectrometers [12].  

5. Conclusions and Recommendations 

In respect of the side by side measurement accuracy studies, with identical spectral acquisition 

parameters, the Avaspec demonstrated the best performance; whilst this unit is highly field portable, it 

is larger and more power consuming than the other studied devices, however (e.g., 710 g and 1.75 W 

vs. 190 g and 1.25 W for the Avaspec and USB2000+, respectively). The primary advantage of the 

Avaspec here is its high optical sensitivity bench, which demands relatively short exposure times to 

near saturate the spectrometer in the spectral fitting window, so to maximise these pixels’ SNRs. This 

would be particularly useful where the highest temporal resolutions are required, e.g., when traversing 

by plane a narrow plume, or studying Strombolian explosions, which last but a few seconds. In other 

scenarios, e.g., probably for the vast majority of cases, where longer exposure times are tolerable, so 

that the OO spectrometers can saturate in the fitting window, the SNRs of the OO units will improve 

correspondingly, and the units behaved very similarly to the Avaspec. For instance, side by side SO2 

cell tests between the Avaspec and USB2G3709, with both units near saturated by operating on 

different integration times, revealed near identical standard deviations, and within error concentration 

estimations, with stray light correction, in both cases. 

The USB2000+ and the USB4000 performed rather similarly to the USB2000. As the studied 

USB4000 spectra demonstrated spurious structures on occasion in the seconds following a change in 

integration time, our preference was for the USB2000+s. Hence our recommendations are: in 

situations (probably covering most cases) where there is no motivation to acquire SO2 data faster than 

has already been demonstrated possible with the USB2000s, and where there is a desire to maintain the 

ultra-compact footprint of this device and minimise power budgets, the USB2000+ represents an ideal 

technology for future volcanic gas measurements; however, where very rapid acquisitions are required, 

users may consider the Avaspec, as a similarly priced alternate, albeit with greater bulk and power 

requirements. We further reiterate the importance of being aware of, and appropriately managing, the 
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aforementioned thermal issues, to ensure their effects upon measurement accuracy are minimised. In 

view of the two possible instrumental routes that users may wish to take forward, depending on their 

measurement requirements, we are in the process of finalizing a user friendly software interface, which 

we anticipate making freely downloadable, to enable volcanic SO2 flux measurements to be made with 

either the Avaspec or USB2000+. This code will also work for the USB2000, and provides improved 

measurement accuracy, relative to its predecessor code: VolcanoSO2.exe [5]. 

The spectrometers covered in this study represent a non-exhaustive list of those currently available 

in a similar price band to the original USB2000, and serve to illustrate the point that performance is 

enhanced with improved SNR. OO have also released a larger and higher sensitivity version of the 

USB2000+, the HR2000+, which, with an appropriately chosen grating, may well equal, or even 

exceed the Avaspec in performance. This unit retailed in a higher price band than the units included in 

our study, so was not considered here, however. Another route to yet greater performance, comes via 

the recent introduction of back thinned CCD array detectors, now implemented in a number of market 

available spectrometers, providing an additional means of improving SNR, yet, again at greater cost (> 

€4,000). Finally, optional, and relatively inexpensive upgrades for both the Avaspec and USB2000+, 

in respect of the detector in the former, and grating in the latter, have very recently become available, 

with purported improvements in light sensitivity in both cases. 
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