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Abstract: The paper describes an improvement of the chopper method for elimination of 

parasitic voltages in a low resistance comparison and measurement procedure. The basic 

circuit diagram along with a short description of the working principle are presented and 

the appropriate low resistance comparator prototype was designed and realized. 

Preliminary examinations confirm the possibility of measuring extremely low voltages. 

Very high accuracy in resistance comparison and measurement is achieved (0.08 ppm for 

1,000 attempts). Some special critical features in the design are discussed and solutions for 

overcoming the problems are described. 
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1. Introduction  

 

Standard methods for measurement and low resistance comparison are based on Thompson (Kelvin) 

bridges, DC current comparators, potentiometers, etc [1]. The new generation high quality multimeters 

can also be used for this kind of measurement [2,3]. In this paper an original low resistance comparator 

design is presented.  

The circuit diagram of the proposed chopper stabilized comparator is given in Figure 1. The current 

flow through two serial connected resistors (measured RX and reference RR) provides the adequate 

voltages in them, UX  and UR, respectively. As known, the voltage ratio on the resistor terminals is 

equal to their resistances ratio. In that case, the value of measured resistance RX could be expressed as: 
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where δRR is reference resistance error (could be less than 10-6) and δUX, δUR are measurement errors 

for the appropriate voltages. 

 

Figure 1. Circuit diagram of chopper stabilized comparator. 

 
 

In low resistance measurement (four-terminal resistors [4]), the voltage on the potential terminals 

should theoretically be RI, but in a real measurement environment, except for the RI value, parasitic 

voltages can occur, such as thermo-electric, noise etc. All these unwanted influences can cause 

measurement errors and need to be eliminated. 

Thermo-electric or Peltier voltage is generated at the thermocouple junctions of different metals. 

Even when all the junctions are at the same temperature, the thermoelectric voltage can reach a value 

of about 0.1µV/°C. The most significant disturbances are a consequence of offset voltages of the 

operational amplifiers and can be higher than 50 µV. These are direct current (DC) parasitic voltages. 

Alternating current (AC) unwanted voltages can also occur. The AC parasitic voltages are a 

consequence of AC power supply inductive or capacitive influence, noise, etc. AC parasitic voltages 

cause dispersion of measured results around the mean value. The mains influence (inductive and 

capacitive) is periodic and can be efficiently decreased (shielding, filtering, etc). Noise is a random 

occurrence with a zero mean and its disturbance may be reduced to acceptable levels by filtration. DC 

parasitic voltages cause systematic measurement errors and need to be removed from the measurement 

voltage as much as possible. One solution for minimization of the influence of these parasitic voltages 

is presented in this paper. 

 

2. Results and Discussion  

 

There are several known methods for removing DC parasitic voltages. The main idea of DC voltage 

elimination is presented in Figure 2. 
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Figure 2. Parasitic voltage elimination. 

 
 

According to the figure, the voltages can be expressed as: 

U1 = R x I + UP (3) 

where I is the measuring current and UP parasitic DC voltage. When the measuring current is zero, the 

voltage should be: 

U2 = UP (4) 

The measured voltage U is independent of parasitic voltage UP: 

U = U1 - U2 = R x I (5) 

It is possible to use integrated operational amplifiers with chopper stabilized input voltage offset, 

such as ICL7650 [5]. The chopper stabilization includes the inner gates only, just to their input pins. 

The input offset voltages are reduced to 1 µV with temperature coefficient (TC) of 0.01 µV/°C, but 

sometimes there is a need to decrease the offset value below 1 µV.  The improvement of the present 

solutions is, in fact, the main goal of design and realization of our electrical circuit with chopper 

elimination of DC parasitic voltage.  

The principle circuit diagram of the low resistance comparator is shown in Figure 1. Both 

resistances (measured and reference), RX and RR are serially connected. The current circuit supplies 

them with a current of about 1 A. There is no need for high and long-term current stability. Since the 

current supply circuit is galvanically separated, the reference potentials are connected with an 

appropriate analog switch. 

The maximal value of resistances RX and RR for the chosen measuring range is about 10 m  and 

the RI voltages on their potential terminals are about 10 mV. Both voltages (UX and UR) are amplified 

by the same amplifier (G=1,000) and give maximal outputs of about 10 V (Figure 3). Besides the 

amplifier, there is a control circuit, circuit for chopper elimination of parasitic voltages (correction 

circuit) and output sample and hold circuits. 
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Figure 3. The controllers timing diagram. 

 
 

The controller switches the measuring current on and off and controls the functions of the voltage 

circuit analog switch. It is adjusted so that the duration of current pulse of 1 A is 60% of one controller 

cycle. During the remaining 40% of a cycle the current is switched off. While the measuring current is 

switched off, the amplifier's output should be zero, but parasitic voltage at the amplifier input occurs 

and it is amplified 1,000 times, as well. 

Using correction and feed back circuits, this amplified voltage can be reduced to an acceptable 

value, below 10 µV. This is done for both resistances (RX and RR), sequentially. These correction 

voltages (annulling voltage, Figure 3.) are memorized on the corresponding capacitors and used while 

the measuring current is switched on. In a new cycle, when the measuring current is switched on again, 

both voltages (UX and UR) are amplified consecutively and the earlier memorized correction voltages 

are activated and included. The voltage without the component of parasitic unwanted voltage occurs 

for every resistor on the amplifier output. These two voltage outputs are separated by a demultiplexer 
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and led to two independent sample and hold circuits, giving output voltages UOR and UOX, respectively. 

Their measurement or their difference gives the possibility of calculation of the resistance with very 

high accuracy using the above expressions. 

The described solution for low resistance measurement allows a very useful possibility: to perform 

the measurement with a known value of resistor RR, then repeat the measurement with the same 

resistor (RX  = RR ). Let us call this a self-comparison mode (SCM). In this case, the measured value of 

both output voltages should be the same. But, in practice, these are slightly different. This difference is 

exactly equal to the comparator error. For the realized instrument, the average value of this difference 

for voltages of 10 V is less then 20 µV, or 2 ppm. The remaining AC voltages cause a dispersion of the 

measured values of up to 50 µV (5 ppm). For output voltages of about 10 V these voltage differences 

are acceptable.  

In order to reach high measurement accuracy the instrument must have extremely high sensitivity. 

In such cases unwanted influences can occur. Some critical points of design, construction and practical 

realization are listed below:  

a) For a complete elimination of error caused by common mode rejection ratio (CMRR) input 

voltage, a special way of switching was applied. A third switch was added to connect the 

reference potential of the voltage circuit with the negative resistor potential terminal.  

b) The influence of transient processes was avoided by the use of appropriate length of dead time 

in controller cycle (pause, Figure 3). 

c) The leakage current of output sample and hold circuits should be extremely small because the 

voltage drop down mustn’t exceed 10 µV. The controller cycle is synchronized in such a way 

that the cycle step duration is a multiple of the main frequency period to be able to reach these 

conditions and thus eliminate the capacitive and inductive disturbances.  

d) In order to reduce the mains supply influence the controller cycle is synchronized with the 

mains supply frequency. 

e) Excellent quality operational amplifiers with very high open loop gain are used in the design. 

f) To achieve very high linearity, the complete amplification is realized with three-stage 

amplifiers with low gain (10 times each). The described solution allows the possibility of not 

only the resistance comparison., but with voltage ratio measurement (UX/UR) and high quality 

reference resistor RR (standard resistor for example) it is possible to measure the resistance RX 

with very high accuracy (milliohm meter). 

 

3. Experimental Section 

 

A 6½ digits A/D converter is embedded in the realized prototype instrument. The applied resistance 
of  mRR 10  gives a measurement range of about 10 m �� and  10 n  resolution. Excellent 

experimental results, presented in Table 1, were achieved in the SCM mode  [6], where: 

- N - number of independent repeated measuring attempts  

- UOX, UOR  10 V (corresponding RX, RR =10 m) 

- Mean - error mean value 

- sd - standard deviation 

- u - standard deviation of the mean (Type A standard uncertainty) 
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Table 1. The experimental results. 

N 
Mean (μV)       

(UO=UOX -UOR) 
ΔR (nΩ) sd (μV) u (ppm) 

100 11,2 11,2 25,6 0,26 

1000 4,5 4,5 24,3 0,08 

 

The realized prototype instrument is shown in Figure 4. It has shown excellent results: for the 

measurement with a current of 1 A for a resistance of about 10 m , the measurement deviation was 

no greater than 50 n  in every single attempt [6]. 

 

Figure 4. Low resistance comparator prototype. 

 
 

4. Conclusions  

 

An improvement of the chopper method for elimination of parasitic voltages in a procedure of a 

small resistance comparison and measurement are presented in this paper. The realized instrument 

prototype had to overcome many practical difficulties. Some of them were solved empirically (i.e. 

choosing appropriate operational amplifiers) [7]. The nstrument is working as a prototype at this 

moment, but we have the intention of integrating it into laboratory equipment. All experiments were 

performed at the Department of Electrical Measuring of the Faculty of Technical Sciences in Novi Sad 

and confirmed by the official institution in Belgrade. Very high accuracy in resistance comparison and 

measurement is achieved (0.08 ppm for 1,000 independent measurement attempts and 0.26 ppm for 

100 attempts). Although these are excellent results, there is room for further improvements. The main 

activities should be focused on design and realization of more different measurement ranges with the 

possibility of auto calibration. An interface for direct PC connection should be also developed, for the 

proposed comparator to become an intelligent instrument [8]. 
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