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Abstract: The HJ-1B satellite, which was launched on September 6, 2008, is one of the 

small ones placed in the constellation for disaster prediction and monitoring. HJ-1B 

imagery was simulated in this paper, which contains fires of various sizes and temperatures 

in a wide range of terrestrial biomes and climates, including RED, NIR, MIR and TIR 

channels. Based on the MODIS version 4 contextual algorithm and the characteristics of 

HJ-1B sensor, a contextual fire detection algorithm was proposed and tested using 

simulated HJ-1B data. It was evaluated by the probability of fire detection and false alarm 

as functions of fire temperature and fire area. Results indicate that when the simulated fire 

area is larger than 45 m2 and the simulated fire temperature is larger than 800 K, the 

algorithm has a higher probability of detection. But if the simulated fire area is smaller 

than 10 m2, only when the simulated fire temperature is larger than 900 K, may the fire be 

detected. For fire areas about 100 m2, the proposed algorithm has a higher detection 

probability than that of the MODIS product. Finally, the omission and commission error 

were evaluated which are important factors to affect the performance of this algorithm. It 

has been demonstrated that HJ-1B satellite data are much sensitive to smaller and cooler 

fires than MODIS or AVHRR data and the improved capabilities of HJ-1B data will offer a 

fine opportunity for the fire detection. 
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1. Introduction  

 

Biomass burning has tremendous impact on the Earth’s ecosystems and climate, as it drastically 

alters the landscape and biological structure, and emits large amounts of greenhouse gases and aerosol 

particles [1]. Smoke aerosols may interact with cloud droplets and considerably change the earth’s 

radiation budget [2-3]. It is important to recognize that changes in climate can affect changes in fire 

regime, which is a combination of the type of fire which occurs in a given region, the frequency at 

which fires occur, and the seasonality of burning. Consequently, there is the potential for substantial 

feedback between fire and the environment. 

Global fire detection is thus a very important issue for humans and environment. Whether fire 

detection can be effective, timely and accurate or not, will correlate directly with the security of human 

life and the degree of destruction of the environment. Remote sensing is able to monitor the fire 

activity over a wide range. An increasing number of programs have been established with the goal of 

obtaining information about and determining the fire regime by satellite, e.g., the International 

Geosphere-Biosphere Program, Data and Information System’s (IGBP-DIS) Global Fire Product 

initiative [4], the ASTR World Fire Atlas [5-6] and the MODerate Resolution Imaging Spectro-

radiometer (MODIS) Fire Product [7]. 

Different sensors have both advantages and limitations for global and regional fire detection. 

Geostationary satellites can acquire data every 15 to 30 minutes over a given area, but any given one 

of them may only cover a portion of the Earth’s surface. Further, they generally provide very low 

spatial resolution (4 Km pixel size or larger). On the other hand, current satellite sensors with high 

spatial resolution such as the Landsat Thematic Mapper (TM), which has 60 m resolution in the 

thermal band, often cannot cover the global area quickly, and only provide a 16 days revisit period for 

most parts of the Earth.  

The Advanced Very High Resolution Radiometer (NOAA-AVHRR) has a long history in fire 

detection. It offers a spatial resolution of 1 km and covers most of the Earth’s surface every day. 

However, its Mid-infrared (MIR) channel has a low saturation of 320 k, which limits the use for fire 

detection [2, 8]. MODIS on Terra and Aqua can cover most of the world at least four times a day 

(twice during the day and twice during the night). Meanwhile, MODIS enhances the saturation 

brightness temperature to 500 K and 340 K for the MIR and TIR channels, respectively [7, 9-10]. 

MODIS is expected to play an important role in global fire detection and monitoring, but its nadir 

spatial resolution of 1 km may not be fully sufficient for the early detection of small fires, resolution of 

individual fire fronts and fire intensity estimation [7]. For smaller fires, MODIS’ spatial resolution 

limits its ability to detect active fires and the determination of effective fire temperature and effective 

fire area for smaller fires are impossible with MODIS, because their TIR signals are around the same 

level as the background variation [11]. The Bispectral InfraRed Detection (BIRD) small satellite 

mission, launched on 22 October 2001, was developed by the German Aerospace Center (DLR), and 

continued to make observations until the beginning of 2004. The principal BIRD imaging payload 

includes the Hotspot Recognition System HSRS with channels in the Mid-Infrared (MIR,3.4-4.2 m) 



Sensors 2009, 9                            

 

963

and the Thermal Infrared (TIR 8.5-9.3 m) spectral ranges and the Wide-Angle Optoelectronic Stereo 

Scanner WAOSS-B with a nadir channel in Near-Infrared (NIR:0.84-0.90 m). The ground resolution 

of the BIRD nadir channels is 185 m in the NIR and 370 m in the MIR and TIR. However, all three 

channels have the same sampling step of 185 m due to a factor of 2 oversampling of the MIR and TIR 

data. BIRD can detect hot targets as small as 1/7 of a MODIS or AVHRR pixel [12-13]. 

The existing fire detection algorithms can be classified as two categories: fixed-threshold 

algorithms and contextual algorithms [14-17]. A fixed-threshold algorithm will be set before judging 

whether the pixel is a fire one or not in the algorithm. The image is processed pixel by pixel by this 

method. On the contrary, the contextual algorithm is more flexible in the judgment of a fire pixel. First, 

it distinguishes the potential fire pixels based on a fixed threshold. Second, the statistics from ambient 

pixels are computed. Finally, the fire pixels from potential fire pixels are confirmed based on the 

ambient pixel statistics. Many contextual fire detection algorithms have been developed for the 

AVHRR, MODIS, ATSR, GOES and VIRS sensors [18-25]. The MODIS fire algorithm has been 

developing and increasing in maturity. In the previous version it had some disadvantages [19, 22, 26], 

such as the “hole” which was found in cases where the brightness temperatures of neighboring non-fire 

pixels were high enough to cause a centre pixel containing a hot and/or large fire not to be detected. 

Meanwhile, false detections may occur over some deserts and bare soils. The detection algorithm was 

improved greatly in the MODIS Fire Product version 4 [10]. Furthermore, in this version, the MODIS 

algorithm has considered the effect of coastlines, and includes a formula for the sun glint [10]. Based 

on the advantages of the MODIS algorithm, HJ-1B data is expected to be more sensitive to smaller and 

cooler fires than MODIS or AVHRR due to the finer spatial resolution. Further, AVHRR/MODIS fire 

detection algorithms may not be appropriate because of the channel differences. Modifications or new 

algorithms are necessary.  

To demonstrate the potential ability of active fire detection and seek a suitable algorithm for the 

new high spatial resolution infrared sensor, simulated HJ-1B images were used in this paper. After a 

brief description of the HJ-1B sensor payloads, the simulation method of HJ-1B data which include 

RED, NIR, MIR and TIR channels is introduced. Fires of various sizes and temperatures in a wide 

range of terrestrial biomes and climates were generated in the simulated images. The MODTRAN 4 

atmospheric model was used to model various atmospheric conditions. Considering the characteristics 

of HJ-1B sensor, which is much sensitive to smaller and cooler fires due to its fine spatial resolution, a 

contextual fire detection algorithm was proposed and its performance was tested using the simulated 

HJ-1B images. Probabilities of successful fire detection, commission error and omission error were 

quantified as functions of fire temperature and fire area in various atmospheric conditions. 

 

2. HJ-1B instrument description 

 

China plans to launch two small optical satellites and one small SAR satellite, called the “2+1” 

Project, in 2008. The project is also called as the Small Satellite Constellation for Disaster Prediction 

and Monitoring which will be participated in Disaster Monitoring Constellation (DMC). The 

establishment of a small satellite constellation will make China able to monitor disasters and 

environmental changes more efficiently. The revisit time of the satellite constellation is 48-96 hours. 

The satellite designed for fire detection is also called a HJ-1B satellite, and carries two CCD cameras 
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and one thermal scanner. The HJ-1B satellite payload consists of two wide field multi-spectral cameras 

and one Infrared scanner, whose main specifications are shown in Table 1. 

The HJ-1B satellite has been specifically designed to support detection and quantitative 

characterization of various disasters, such as active fires, active volcanoes, earthquake or others. The 

Infrared camera possesses mid-infrared (MIR: 3.50~3.90 m) and thermal infrared (TIR: 10.5~12.5m) 

spectral channels with 150 m and 300 m resolutions, respectively. The Multi-spectral CCD camera 

possesses RED (0.63~0.69 m) and NIR (0.76~0.90 m) spectral channels with a 30 m resolution. The 

revisit interval of Multi-spectral CCD camera and infrared scanner is 48 hours. 

 

Table 1.  Specifications of the HJ-1B main payloads. 

Sensor 
 
Parameter 

CCD Camera Infrared Scanner 

Band 
number 

Four bands Four bands 

Spectral 
bands 
(µm) 

B1 B2 B3 B4 B1 B2 B3 B4 

0.43~0.52 0.52~0.60 0.63~0.69 0.76~0.90 
0.75~1.1

0 
1.55~1.75 3.50~3.90 

10.5~12.
5 

MTF ≥0.20 ≥0.20 ≥0.20 ≥0.14 0.28 0.27 0.26 0.25 

Radiant 
Resolution 
(NEdρ or 

NEdT) 

\ 0.5% 0.5% 
≤1K 

(500K) 
≤1K 

(340K) 

Ground 
Resolution 

at nadir 
30m 300m(10.5~12.5µm,TIR),  150m(others) 

Swath width 360km*2 swath 720km 

Field of view 31° ±29° 

S/N average≥48dB，min>6dB \ 

Quantization 8 bit 10 bit 

Detector 
type 

CCD infrared scanner 

Revisit time 48 hours 48 hours 

Orbit sun-synchronous sun-synchronous 

 

Compared with the MODIS MIR (3.9 μm) band, the MIR channel of HJ-1B is more sensitive to 

fires due to the shorter wavelength (3.50–3.90 μm) used, but on the other hand, it is more affected by 

sunlight. HJ-1B has higher spatial resolutions of 300 m and 150 m for the TIR and MIR channels, 

respectively. Such high resolutions are useful for the accurate estimation of the background 

temperature of ambient pixels, which is important for the bi-spectral method [26]. The HJ-1B sensor 

has a NEdT of 1 K. Its saturation levels are 500 K and 340 K for MIR and TIR channels, respectively. 
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3. HJ-1B images simulation 

 

3.1. Airborne data  

 

The data used to simulate HJ-1B data in this paper was obtained from thermal infrared (TIR) 

images acquired by an airborne hyperspectral scanner (AHS). The AHS instrument has 80 spectral 

bands covering the visible and near infrared (VNIR), short wave infrared (SWIR), mid-infrared (MIR) 

and thermal infrared (TIR) spectral range. The instrument is operated by the Spanish Instituto Nacional 

de Técnica Aerospacial (INTA) and it has been involved in several field campaigns since 2004 [27]. 

The simulated HJ-1B image in this paper was obtained from the fusion of the land surface temperature 

images from the 10 AHS thermal infrared bands, from 71 to 80, located in the region between 8 and 13 

μm with a spatial resolution of 2.5 m at nadir. The study area was located at Cabauw, Loobos and 

Speulderbos in The Netherlands [40]. The dates of the airborne-AHS data mainly included the 15th and  

18th  of July 2004 and 13th of June 2006. Grasslands, forests, croplands, bare soil, buildings, roads, 

rivers, etc. were covered in these areas. The grassland is mainly distributed in Cabauw and the forest 

mainly distributed in Loobos and Speulderbos [40]. 

 

Table 2. The details of AHS Thermal bands from N0.71 to N0.80 [39]. 

Band Number Spectral range (μm) Center wavelength (μm) 
71 7.90-8.37 8.13 
72 8.43-8.84 8.63 
73 8.93-9.33 9.13 
74 9.36-9.79 9.58 
75 9.85-10.26 10.06 
76 10.29-10.83 10.57 
77 10.90-11.43 11.17 
78 11.49-12.01 11.74 
79 12.09-12.60 12.36 
80 12.67-13.20 12.94 

 

3.2. Fire characteristics 

 

In general, the temperatures of active fires vary from 800 K to 1,200 K, and that of smoldering fires 

range from 600 K to 800 K [28]. Extremely large fires with temperatures higher than 1,400 K may 

occur in forested areas, but with a low probability, and consequently, they are not considered in the 

general research. Fire areas from 10 m2 to a maximum of 10,000 m2 were simulated in the study, 

corresponding to the fractions from 0.01% to 10% of a 300 m resolution of HJ-1B pixel. Fire 

emissivities were assumed to be an average value of 0.95 in both MIR and TIR channels. 

 

3.3. Background characteristics 

 

Ambient pixels in a square window centered on the candidate fire pixel are used to estimate the 
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mean non-fire “background” values of the MIR and TIR channels. By having a higher spatial 

resolution, the spatial variance of HJ-1B data is also larger than that of MODIS data, which will lead 

to the remarkable temperature discrepancy between pixels. Thus, the selection of candidate pixels 

which may have the same background temperature as the fire pixel is more difficult.  

 

3.4. View geometries and atmospheric conditions 

 

The scan angle of HJ-1B may reach a maximum of 29° from the nadir, and the solar zenith angles 

were assumed to change from 0° to 60°. The latter is important in MIR channel data simulation 

because solar zenith angle can affect the performance of the algorithm. The satellite altitude was fixed 

to 650 km. Six standard atmospheric conditions, which include tropical, temperate, mid-latitude and 

sub-Arctic climates, together with 23 km visibilities, were selected in the MODTRAN 4 based 

simulation. A brief description of MODTRAN 4 is given in the next section. 

 

3.5. A brief introduction to MODTRAN 

 

MODTRAN (MODerate spectral resolution atmospheric TRANsmittance and radiance code) was 

developed by the U.S. AFRL/VSBT (Air Force Research Lab, Space Vehicles Directorate) in 

collaboration with Spectral Sciences, Inc. MODTRAN code calculates atmospheric transmittance and 

radiance for frequencies from 0 to 50,000 cm-1 at moderate spectral resolution, primarily 2 cm-1 (20 

cm-1 in the UV) [31]. The original development of MODTRAN was driven by a need for higher 

spectral resolution and greater accuracy than that provided by the LOWTRAN series of band model 

algorithms. Except for its molecular band model parameterization, MODTRAN adopts all the (now 

fully obsolete) LOWTRAN 7 capabilities, including spherical refractive geometry, solar and lunar 

source functions, scattering (Rayleigh, Mie, single and multiple), and default profiles (gases, aerosols, 

clouds, fogs and rain). MODTRAN is useful both in sensor signal simulation and atmospheric 

correction [31, 32]. The latest version, MODTRAN 4.0, was used in this research for the land surface 

temperature and emissivity retrieval and HJ-1B image simulation. Six standard atmospheric conditions 

were assumed in the simulation. The key variables of these six conditions are listed in Table 3.  

 

Table 3. Air temperatures at the first boundary and the total water vapor contents of the six 

standard model atmospheres prescribed in MODTRAN [33]. 

Model atmosphere 0T  (K) W (g/cm2) 
Tropical 299.7 4.11 

Mid-Latitude Summer 294.2 2.92 
Mid-Latitude Winter 272.2 0.85 
Sub-Arctic Summer 287.2 2.08 
Sub-Arctic Winter 257.2 0.42 

1976 US Standard 288.3 1.42 
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3.6. Simulation of HJ-1B images 

 

The RED and NIR channel of HJ-1B sensor were denoted as channels 1 and 2, which correspond to 

the B3 and B4 bands of the CCD Camera, respectively. The MIR and TIR channel were denoted as 

channels 3 and 4, which correspond to the B3 and B4 bands of the Infrared Scanner, respectively. The 

VNIR, MIR and TIR channel of HJ-1B sensor have 30 m, 150 m and 300 m resolution, respectively, 

and the VNIR and MIR channel data should be aggregated to the TIR channel’s resolution. Because 

only the daytime AHS data was available, both the simulation and fire detection algorithm were 

focused on the daytime situation.  

First, the real-time atmospheric profile was used to correct the atmospheric effect of AHS data 

based on MODTRAN 4 [34]. The surface temperature and emissivity of an AHS pixel were obtaned 

by the TES algorithm [35]. Secondly, the surface temperature and emissivity at the scale of a HJ-1B 

pixel were got by spectrum transform [36] and spatial aggregation at a 300 m scale, which is the 

resolution of HJ-1B’s thermal channel [37]. The results are shown in Figure 1.  

 

Figure 1. Retrieval of land surface emissivity and temperature (K) of HJ-1B from 

simulated AHS data, (a) land surface emissivity, (b) land surface temperature. 

 
 

Thirdly, fires with varied temperature and area were added randomly into the HJ-1B pixels. In order 

to enable the fire simulation to be much more rational, the fire was added only to the vegetation 

covered pixels. Thus, fire was not simulated for bare soil, water surfaces and clouds. Two hundred fire 

pixels were generated by the following steps: 

(1) The pixels were selected randomly in the image to add simulated fire. 

(2) Cloud pixels were removed by the limitation of T4 > 265 K. 

(3) Vegetation covered pixels were selected by the condition of  NDV ≥ 0.3. 

(4) Fire temperatures were assumed to be from 600 K to 1,200 K. 

(5) Fire fractions were assumed to be from 0.0001 to 0.1.  

Finally, the apparent radiances of the MIR and TIR data of HJ-1B were generated by equations (1) 

and (2). MODTRAN 4 was used to obtain the atmospheric parameters in these two equations under 

various solar and atmospheric conditions which may provide a statistical evaluation of fire detection 

algorithm proposed in the next section. Standard atmospheric conditions which include Tropical, Mid-

Latitude Summer, Mid-Latitude Winter and US Standard Atmosphere were adopted in the simulation. 

3 3 3 3 3( ) ( , ) (1 ) ( ) ,3f bL T p B T p L T p Latm                                       (1) 
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4 4 4 4 4( ) ( , ) (1 ) ( ) , 4f bL T p B T p L T p Latm                                (2) 

where, 3( )L T  and 4( )L T  are the TOA radiances of HJ-1B MIR and TIR channels respectively; 3  and 

4  are the atmospheric transmittances calculated by MODTRAN 4; 3  and 4  are channel emissivities 

of fire; p is the fraction of fire area; fT  is fire temperature simulated;  is the center wavelength of 

each channel; ( , )B T   is the Planck function; 3( )bL T  and 4( )bL T  are background radiance; ,3Latm  

and , 4Latm  are the upwelling atmospheric radiance obtained from MODTRAN 4. Because p and 

,Latm i ( i =3, 4) are both small, the quantities of ,3p Latm  and , 4p Latm  are usually omitted [11]. 

The sensitivity analysis of each parameter can be found in literature [38]. 

 

4. Fire detection algorithms 

 

Taking into account that HJ-1B was used to detect fire in various atmospheric conditions, the HJ-

1B fire detection algorithm was designed to be an adaptive, contextual algorithm rather than a fixed 

threshold method. 
Brightness temperatures derived from channel 3 (MIR channel) and channel 4 (TIR channel) of the 

thermal sensor onboard HJ-1B, which are denoted as T3 and T4, are used in the algorithm. Channel 4 is 

also used for cloud screening as the temperature of cloud appears rather lower in this channel than 

others. The data of red and near-infrared channels are aggregated to 300 m for false alarm rejection 

and cloud masking. The reflectance of these two channels is denoted as 1  and 2 , respectively.  

 

4.1. Cloud and fire scars screening 

 

The reasonable selection of background pixels is the key to estimating the adaptive thresholds used 

in the contextual algorithm. If the background pixels selected are unrepresentative of the wider 

terrestrial background conditions, it may lead to significant offsets in the estimated background 

characteristics, and this will result in fire detection omission errors or commission errors. Thus, the 

contaminated pixels must be rejected before estimating the background characteristics and detecting 

fires. These noises mainly include cloud, water, sun glint, fire scars, etc. 

Daytime cloud contamination of MIR channel was the most common source of false detections. 

Being illuminated by sunlight, clouds can elevate the TOA MIR radiance due to the reflected sunlight 

and reduce the TOA TIR radiance due to their low temperatures [28]. Cloud detection was performed 

using a technique based on that used in the production of the IGBP AVHRR-derived Global Fire 

Product [29]. But due to the different spectral response for cloud, the thresholds used to cloud 

detection have been modified empirically for HJ-1B. If the following condition is satisfied, the pixel 

will be considered to be cloud-obscured:  

1 2 4

1 2 4

0.8    265   

0.6    285

T K

T K

or or

and

 
 
  
  

        (3) 

Water detection is mainly based on the fact of that the reflectance of water in red and NIR channels 

are very low, and NDVI is less than zero [10]. A pixel is assumed to be water under the following 

conditions:  

1 2    0.1 0.1 NDVI 0<and and         (4) 
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Fire scars usually show higher temperatures than the background. They may cause overestimation 

of background temperatures. The NIR data provides very effective discrimination of post-fire surfaces 

(burn scars) since the reflectance difference between unburned and burned pixels is often maximized 

in this spectral region. So the NIR reflectance (due to lower reflectance of fire scar) can be used to 

eliminate the effect of fire scars. One pixel was contaminated by fire scars if it meets the condition 
given by: 2 0.2   [13]. 

 

4.2. Sun glint screening 

 

Sun glint usually occurs at surfaces which may cause mirror reflectance, such as small bodies of 

water, wet soils and cirrus clouds. It may cause false alarms [10]. As a result, such surfaces should also 

be eliminated. The pixels contaminated by sun glint should not be considered when calculating 

background statistical information. The absolute difference of RED reflectance and NIR reflectance is 

greater than 0.01 under sun glint conditions. Sun glint can also be rejected with a scheme proposed by 

Giglio et al., which uses the angle between vectors pointing in the surface-to-satellite and specular 

reflection direction [10], which can be expressed as the function of the relative azimuth angle, view 

and solar zenith angle. The simple absolute difference method was used in this paper to do sun glint 

screening. 

 

4.3. Absolute threshold based identification  

 

A preliminary classification is used to eliminate obvious non-fire pixels. Those pixels will not be 

considered in the following tests. To detect large fires, a simple absolute threshold test is performed 

for every non-obscured vegetation pixel throughout the whole image. This threshold should be set as 

sufficiently high as possible to identify the very unambiguous fire pixels, i.e. those have little chance 

of being a false alarm.  

The absolute threshold criterion remains the same with that proposed in the original algorithm [19], 

i.e., T3 > 360 K. This is necessary because this threshold can solve the known “hole” problem, which 

had been described in detail in the literature [19]. In despite of the higher threshold, an adequate sun 

glint removal is still necessary to reduce false alarm probabilities.  

 

4.4. Identification of potential fire pixels 

 

The identification of the potential fire pixels is based on the fixed threshold algorithm. A pixel is 

confirmed as a potential fire pixel if T3 > 308 K, T34 > 8 K,  ρ2 < 0.3, where T34 = T3 –  T4, otherwise it 

is classified as non-fire. It is assumed that the brightness temperature of one pixel is larger than 308 K 

if it includes fire. The difference of brightness temperature between MIR and TIR channels mainly 

aims at eliminating the land surfaces with high temperatures other than fires, such as bare soil, rock, 

and road. Meanwhile, it is assumed that the reflectance of NIR channel is very low when fire has 

occurred [23]. These relatively low thresholds are expected to improve the likelihood of detecting 

smaller and/or cooler fires which are frequently missed when more conservative thresholds are used. 

The threshold of MIR channel is very important for fire detection because the active fires show 
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maximum spectral emission in the MIR spectral range.  

The difference of brightness temperature between MIR and TIR channel has been simulated as the 

function of fraction of fire area under US Standard Atmosphere condition and 23km visibility. The 

results are shown in Figure 2. The simulated fraction of fire area ranges from 0.01% to 100% and the 

temperature ranges from 600 K to 1,200 K. It is clear that the difference of brightness temperatures 

tend to be zero when the fire fraction is close to 100%. As a result, the large fires may be omitted. The 

absolute threshold based test described above is necessary.  

 

Figure 2. The difference of brightness temperature between MIR and TIR channel of HJ-1B data. 

 

 

4.5. Selection of background pixels 

 

If the pixel has been identified as a potential fire pixel, the radiant statistical information of its 

neighboring pixels will be adopted to estimate the brightness temperatures of the fire-free proportion 

in it. A valid background pixel should meet the following conditions: (1) it is not covered by clouds, 

which are identified with an external cloud mask; (2) It is not itself a potential fire pixel; (3) it was not 

classified as water, sun glint, fire scar or data gap. At first a 5 5  window (1.5 1.5 km) centered on 

the potential fire pixel is selected to collect the background information.  If the valid background 

pixels in this window are less than 25%, it can be increased grow up to 30 30  pixels (9 9  km) until 

25% valid pixels are found and the number of valid background pixels is at least eight. If a sufficient 

number of valid background pixels can be identified, several statistical values will be computed for 

fire detection; otherwise the pixel is classified as an “unknown” pixel which will be not analyzed in the 

following tests [10, 18]. These computed statistics mainly include: 

3BT , the mean of 3T  for the valid neighboring pixels 

3B , the mean absolute deviation of 3T  for the valid neighboring pixels 

34BT , the mean of 3 4T T  for the valid neighboring pixels 

34B , the mean absolute deviation of 3 4T T  for the valid neighboring pixels 

The mean absolute deviation is employed as a measure of statistic properties of the background 
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window rather than the standard deviation since it is more efficient to the normal and some non-normal 

distributions [30]. 

4.6. Identification of fire pixels 

 

In summary, a pixel will be recognized as a fire pixel after the following steps: 

1) It is thought as a potential hot pixel if T3 > 308 K, T34 > 8 K, and ρ2 < 0.3; 

2) A pixel is assumed to be cloud if ρ1 + ρ2  > 0.8 or T4 < 265 K or 

 ρ1 + ρ2  > 0.6 and T4 < 285 K 
 3) A pixel is assumed to be water if 1 2    0.1 0.1 NDVI 0<and and     

4) It is recognized as strong sun glints if 1 2 0.01   . [6] 

5) It is recognized as the highly reflective clouds if 2 0.6  ; 

6) If one of the following tests (equation (5) or (6)) can be satisfied, it will be classified as a 

fire pixel: 

 3 360T K                                                     (5)   

3 3 3

34 34 34

4 4 4

3.5

4

( ,8 )

B B

B B

B B

T T

T MAX T K

T T K







  

 


   



                                 (6) 

Equation (5) has been described in 4.3. The first expression of equation (6) means that if the 

brightness temperature of MIR channel is higher enough, compared with the mean background 

brightness temperature of the same channel, the pixel may be a fire pixel.  

 
Figure 3. An illustration of the histogram of 34B   

 
 

The second expression of equation (6), which is restricted to daytime pixels, is primarily used to 

reject small convective cloud pixels that can appear warm in the MIR channel (due to reflected 

sunlight) yet cool in the TIR channel [10, 28]. It can also help reduce coastal false alarms that 

sometimes occur when cooler water pixels are unknowingly included in the background window [10]. 

The last expression of equation (6) is that the difference of brightness temperature of MIR and TIR 
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channel should be larger enough. The histogram of 34B , shown in Figure 3, indicates that the mean 

absolute deviation is far less than 8 K. The detailed flow chart of fire detection is shown in Figure 4: 

Figure 4. The flow chart of fire detection. 

 

 

 

5. Results and analysis 

 

The performance of the fire detection algorithm can be evaluated using of the probabilities of 

successful detection and the probabilities of false alarms (i.e. commission error). It is evident that the 

higher probability of fire detection and the lower probability of false alarms, the better performance of 

the algorithm.  

Here the probability of fire detection is defined as the ratio between the true fire pixels which can 

be detected by the algorithm and the total number of fire pixels simulated. Four different solar zenith 

angles, 0°, 30°, 45° and 60° were considered under US Standard Atmospheric conditions in the 

simulation (Figure 5). It can be found that the probability of fire detection will be greatly affected by 

fire temperature and fire area. Solar zenith angle can also slightly affect the performance of algorithm 



Sensors 2009, 9                            

 

973

if the background temperature had not changed. In fact, if we consider the diurnal variation of 

temperature, a fire may be easier to be detected in nighttime or when the solar elevation is low. This is 

because the temperature difference between a fire pixel and its neighborhood in MIR channel is 

relative large. It is clear from the simulation results that the contextual algorithm exhibits a good 

performance for the larger/hotter fires detection under standard atmospheric conditions. It also can be 

seen from Figure 5 that when the simulated fire area is larger than 45 m2 and the simulated fire 

temperature is larger than 800 K, the algorithm has a higher probability of detection. But if the fire 

area is smaller than 10 m2, only when the fire temperature is larger than 900 K may the fire be detected. 

 

Figure 5. Probabilities of fire detection in nadir view for different fire area (m2) and 

temperature (K) under US standard atmospheric conditions with a visibility of 23 km. The 

solar zenith angles are 0, 30, 45 and 60 degree for (a), (b), (c) and (d), respectively. 
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The probabilities of fire detection in nadir view for different fire areas and temperatures under three 

standard atmospheric conditions are shown in Figure 6. It can be found that different atmospheric 

conditions can also slightly affect the results of fire detection only when the fire temperature and fire 

area are small. As in Figure 5, from Figure 6 it is also evident that with the increase of the fire area and 

fire temperature, the probability of fire detection increases quickly. When a fire area is smaller than 9 

m2 and fire temperature is less than 800 K, the probability of detection is zero, i.e. fires cannot be 

detected under these conditions. But with an increasing in fire area, such as a 45 m2 fire area and about 

800 K temperature, the probability of fire detection is about 95%.  

 

Figure 6. Probabilities of fire detection in nadir view for different fire areas (m2) and 

temperatures (K) under standard atmospheric conditions with a visibility of 23 km; (a) 

tropical; (b) midwinter; (c) midsummer. 

 

 

 
 

The omission pixels are defined as the pixels including fire, but which cannot be detected using 

the algorithm. The omission error is equal to the difference between one hundred percent and 

probability of fire detection [28]. The results of omission errors shown in Figure 7 are the difference 



Sensors 2009, 9                            

 

975

between 100 percent and the detection probability shown in Figure 5. Omission errors will occur when 

the fire area and fire temperature are small. This may also happen when many fire pixels assemble and 

form a “cluster”. Because the temperatures of all neighboring pixels are high and homogeneous in this 

“cluster”, a pixel with a lower temperature can be misidentified as a non-fire pixel. Another reason is 

the high thresholds. Higher thresholds can lead the higher omission errors, while lower thresholds can 

cause the higher commission errors.  

 

Figure 7. Omission errors of fire detection for different fire areas (m2) and temperatures (K) 

under US standard atmospheric conditions with a visibility of 23 km. The solar zenith 

angles are 0, 30, 45 and 60 degree for (a), (b), (c) and (d), respectively. 

 
 

Figure 8. Commission errors of fire detection for different fire areas (m2) and temperatures (K)  

Under the US standard atmospheric conditions with a visibility of 23 km. The solar zenith 

angles are 0 and 30 degree for (a) and (b), respectively 
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Figure 8. Cont. 

 
 

The commission pixels are defined as those, not including fire, but which have been recognized as 

fire. The commission error is defined as the ratio between the number of non-fire pixels detected as 

fire pixels and the sum of fire pixels [28]. The commission errors of fire detection for different fire 

areas and temperatures under the US standard atmospheric condition with a visibility of 23 km are 

shown in Figure 8.  

It was found that the thresholds can affect the results of the commission and omission errors. The 

commission error can be reduced by a higher threshold, but the omission error can be reduced by a 

lower threshold. In this framework, higher thresholds were used to get small commission errors but 

caused more omission errors especially when both of the fire temperature and the fire area were small.  

But when fire area is larger than 45 m2 and fire temperature is larger than 800 K, the omission error is 

very small. By using the thresholds listed in this paper, the commission error was controlled lower 

than 0.1%.  

 

6. Conclusions  

 

The fire detection ability of HJ-1B sensors was evaluated based on a simulation. A contextual 

daytime fire detection algorithm for HJ-1B data was proposed. The work presented in this paper 

provides both qualitative and quantitative evaluation of simulated HJ-1B fire detection with its 

characteristics. The analysis has shown the limitations and advantages of HJ-1B data for this purpose. 

It can be seen from the simulated results that the algorithm performance varies under different fire, 

atmospheric conditions, solar zenith angle, etc. The performance has been characterized in terms of 

probabilities of fire detection and false alarm as functions of fire temperature and fire area. There are 

several general implications from this work: (i) HJ-1B data is capable of detecting the fires as small as 

about 10 m2. This advantage is due to its fine spatial resolution compared with MODIS or AVHRR 

data. However, the fire temperature must be enough high to detect fires with this algorithm when the 

fire area is about 10 m2, otherwise, omission errors may occur; (ii) solar zenith angle and different 

atmospheric conditions can slightly affect the performance of the algorithm; (iii) the factors affecting 

the performance mainly include the threshold, land surface situation, fire temperature and fire area, etc. 

High thresholds can reduce commission errors, but can cause large omission errors, and vice versa. A 
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nighttime fire detection algorithm was not proposed in this work because only daytime AHS data are 

available. The algorithm proposed in this paper is more similar to a regional fire detection algorithm, 

because the study area is not large enough. The simulation also provides an important method for fire 

detection algorithm of HJ-1B evaluation, but which can not represent completely the real landscape. 

So this work is expected to be tested using the provided a candidate fire detection algorithm for the 

HJ-1B satellite in the next study. 
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