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Abstract: Segmentation of high noise imagery like Synthetic Aperture Radar (SAR) 

images is still one of the most challenging tasks in image processing. While level set, a 

novel approach based on the analysis of the motion of an interface, can be used to address 

this challenge, the cell-based iterations may make the process of image segmentation 

remarkably slow, especially for large-size images. For this reason fast level set algorithms 

such as narrow band and fast marching have been attempted. Built upon these, this paper 

presents an improved fast level set method for SAR ocean image segmentation. This 

competent method is dependent on both the intensity driven speed and curvature flow that 

result in a stable and smooth boundary. Notably, it is optimized to track moving interfaces 

for keeping up with the point-wise boundary propagation using a single list and a method 

of fast up-wind scheme iteration. The list facilitates efficient insertion and deletion of 

pixels on the propagation front. Meanwhile, the local up-wind scheme is used to update the 

motion of the curvature front instead of solving partial differential equations. Experiments 

have been carried out on extraction of surface slick features from ERS-2 SAR images to 

substantiate the efficacy of the proposed fast level set method. 
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1. Introduction  

 

From the time of its inception, Synthetic Aperture Radar (SAR) imaging systems have provided a 

remote sensing resource complementary to optical and thermal-infrared sensors. SAR Imagery has 

been applied in a gamut of areas including ecological observation, surface monitoring, target detection, 

and mapping. Primary among the advantages of SAR imaging are day-night and all-weather operation, 

wide area coverage and sensor height-independent image resolution. These functionalities have also 

led to an escalating interest in the last decade towards the usage of SAR imagery for ocean 

environment monitoring. 

Nevertheless, the multiplicative speckle noise caused by microwave illumination degrades the 

quality of the SAR imagery. Speckle impedes visual interpretation of SAR images and may lead to 

interclass confusion. This is particularly so in the quick detection of oil slicks on the sea surface. The 

low backscatter cross section of the surface of oil spillages causes Bragg wave dampening effects on 

the sea. As a result of this an oil spill comes out on the image as a dark slick or dark spot, whereas the 

surrounding water appears bright. Consequently, oil slicks in SAR images are characterized by a high 

noise and low contrast, disturbing their extraction and analysis.  

A variety of methods have been developed to reduce speckles. For example, geometric filters such 

as those of Frost [1] and Lee [2] have been designed. However, convolving the image with filters 

could reduce the segmentation accuracy by blurring the feature boundaries due to high noise [3]. 

Traditional edge segmentation methods, such as border tracing, have drawbacks as well. In these 

methods, use of a small convolution window to preserve image resolution generates an edge map with 

incomplete feature boundaries and spurious edge points, due to high noise. In recent years, several 

novel methods have been attempted for reducing speckles while preserving edges such as Markov 

Random Fields [4][5] and wavelet methods [6]. Unlike these methods, level set provides a new option 

that is able to remove high noise and simultaneously delineate a smooth and stable boundary [7].  

Level set was proposed by Osher and Sethian [8] as an interface propagation technique for various 

applications including image segmentation. In this method, a curve is embedded as a zero level set of a 

higher dimensional surface. Following that, the entire surface is evolved to minimize a metric defined 

by the curvature and image gradient, i.e. the speed terms of the level set will reduce to zero when 

reaching the object boundary. The level set interface can propagate with topological changes, 

significant protrusion and narrow regions. 

In the traditional level set technique, instead of tracking the points on the interface itself, the 

interface is embedded as the zero level set propagates by iterations. For this reason the standard level 

set algorithm could possibly be rather slow for real-time or near real-time image processing. 

Algorithms such as the narrow-band algorithm [9], fast marching algorithm [10] and the two-cycle fast 

algorithm [11] have been developed to make this process more efficient. 

Based upon our previous work using a level set for image segmentation [7], this paper proposes a 

more efficient, three-component based level set algorithm for noisy SAR image segmentation. Firstly, 

it operates in a grid domain, which updates the adjoining pixels around the zero level set, and only the 

boundary and neighboring pixels in the propagation direction are considered in the computation 

process. Next, a single list is selected to track the interface’s properties by keeping pace with the 

propagation boundary to shorten time complexity. At last, the complicated partial differential 
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equations are simplified into a local up-wind scheme to reduce numerical computation time. Moreover, 

an intensity model and a curvature model are applied for noise removal and simultaneous trouble-free 

extraction of surface slicks. To illustrate the effectiveness of the proposed method, experiments were 

conducted on extracting surface slick features from ERS-2 SAR ocean images. In addition the 

proposed techniques were evaluated against other level set methods such as fast marching, and the 

results confirmed the efficiency gains of the proposed method. 

 

2. Background of Level Set 

 

2.1  Level set method 

 

Level set is an efficient numerical technique for interface propagation. A brief introduction of this 

method is given here. The detailed explanation can be found in Sethian (1999)[10]. 

In the level set method, a scalar Lipschitz function, (x, t) (also known as level set function), 

defines the embedding of an n-dimensional surface in an Rn+1 space surface, where x  Rn+1, and t = 

time t (Figure 1). The set of points on the surface, S, are mapped by   such that: 

S = {x| (x, t) = k}                            (1) 

where k is an arbitrary scalar value, namely S is the k level set of  .  

The essential idea of the level set is to represent the moving front   as the zero level set of the 

time-dependent level set function :{ (x, t = 0) = 0}.  

 

Figure 1. Illustration of level sets. 
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Moreover, the level set is supposed to be topology free, since different topologies of the zero level 

set do not imply the different topologies of a level set . 

In accordance with the propagation of the front, the first order partial differential equation (PDE) of 

the level set is represented as: 
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where F is a scalar function that defines the speed in the outward direction normal to , ||   

represents some appropriate finite different operators for the spatial derivative, and t  the time step.  

The speed term in which the front propagates is defined by the function F:  

advcurvprop FFFF                        (3) 

where Fprop is the propagation expansion speed, Fcurv =   is the dependence of speed on the 

curvature, and Fadv is the advection speed.  Note that   denotes some constants greater than zero and k 

is a curvature of a planar curve.  While dealing with 2D images, the advection factor Fadv is not 

considered as part of the front motion. Hence, the two main speed terms, i.e., Fprop and Fcurv, are 

employed to deal with SAR images, where Fprop is derived from the image intensity gradient, and Fcurv 

from the curvature flow. 

 

2.2  Fast level set methods 

 

As the level set method is formulated from numerical equations for interface propagation, the 

iteration periods of the standard algorithm for boundary expansion are invariably longer. Taking into 

consideration a single pixel and its neighboring pixels, one solution is obtained by updating the value 

of each pixel till the final boundary is reached. For such a solution, O(N2) operations per time step are 

needed. Assuming the total number of iterations to be N, no less than O(N3) iterations will be needed. 

To overcome the problem of longer time requirement, fast level set methods such as narrow-band level 

set and fast marching method have been introduced.   

 

(1) Narrow-band level set 

 

Level set computations are usually carried out using the narrow-band algorithm as described by 

Malladi et al. [8]. The narrow-band algorithm, however, limits the propagation front’s requirements to 

update the properties of the neighboring pixels around the zero level set. As shown in Figure 2, the 

entire two-dimensional grid of data is stored in a square array.  

 

Figure 2. Narrow-band of level set. 
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A one-dimensional array is employed to keep track of the points in the narrow band. Assuming the 

number of points in the front to be k, the band width to be m, the number of iterations to be N, the 

operation count drops down to O(kmN). In the worst possible situation, the narrow band method will at 

most reduce the total operation count to (N3). Even though this indicates a significant progress over the 

brute-force approach, it is still considered slow for (near) real-time image processing applications [9]. 

 

(2) Fast marching level set 

 

In a situation wherein the speed function depends only on the interface position, the speed function 
F (Equation 7) will be reduced to F = Fcurv. Furthermore, if 0curvF , it would be sufficient to solve 

the stationary perspective boundary problem 1||  FT , given that x:T(x) = 0 (where T is the time of 

arrival of the interface at a particular point). The level set in the aforementioned situation can be 

efficiently solved by utilizing the fast marching algorithm developed by Sethian [9]. This algorithm 

marches downwind from the known value and computes new values at each of neighboring grid 

points. Furthermore, it also uses a min-heap data structure to store boundary value points, which 

enables solving the boundary value without iteration. 

A min-heap is a complete binary tree in which the value at any given node is less than or equal to 

the value of its child nodes. In general, finding the smallest element in the min-heap requires O(1) time 

and the remaining elements (say M in number) satisfying the heap property, such as ‘insert’ and 

‘delete’ consume O(log M) time. Hence in the worst scenario, for the fast marching method, the total 

heap operations that include an insert element, a ‘find’ and ‘delete’ smallest element will be 

O(2MlogM) on a grid with M points. In case of a two-dimensional grid with N points in each direction, 

the fast marching method reduces the total operation count to (4N2logN). 

 

3. The proposed fast level set method 

 

On the whole, the fast marching method is more efficient than the narrow-band algorithm; however, 

it does not take into account the effect of image intensity, which attracts the interface inward or 

outward. Moreover, on above methods, the PDE is solved with a tube in the neighborhood of the zero 

level set, and at every iteration the level set function should be reinitialized and pixels in the tube be 

updated dynamically by solving a PDE for a fixed number of steps. This might well result in a 

tendency to ‘leakage’. Thus, in spite of the advances made by the aforementioned level set methods, 

there still exists room for more improvement.  

In image processing, the accuracy is usually limited by pixel size, especially for the segmentation in 

a noisy image, the achieved boundary is expected to be smooth and quick. The algorithm proposed 

herein, in addition to incorporating the advantages of the aforementioned methods, also functions more 

efficiently. Firstly, considering high noise in the SAR ocean image, a level set formulation is ingrained 

with the intensity and curvature models to construct extension velocity, in order to handle topological 

changes automatically. Subsequently, refer to narrow-band and fast marching methods, the tube is 

simplified to four neighborhood pixels just near the zero level set, and a list is used to replace min-

heap in order to accelerate. Finally, the upwind partial differential equation approximation is used to 

optimize reinitialization and propagate the boundary with available information to a stable boundary.  
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3.1  Intensity model 

 

In a SAR image, the intensity difference is regarded as the primary factor influencing the front 

propagation of an oil slick edge. Therefore, Fprop is derived from the intensity distribution of the pixels: 
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where I(x, y) denotes the intensity of a pixel at the position of x, y, while Ilower and Ihigh denote the 

minimum and maximum thresholds of an oil slick, respectively. This intensity model allows the level 

set surface to move towards the image pixels with grayscale values between Ilower and Ihigh.  

 

3.2.  Curvature model 

 

Besides intensity, curvature is another important factor in determining the propagation. The mean 

curvature of the front at any point can be obtained from the divergence of the unit normal vector to the 

front, i.e.: 
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An up-wind partial differential scheme is employed to obtain the stability of a boundary.  This 

scheme is based on a one-sided derivative that looks in the up-wind direction of the moving wave 

front, thereby avoiding the over-shooting associated with finite forward differences. 

 To compute the derivatives for the level set, three difference operators, i.e. the forward difference 

D+, backward difference D-, and central difference, are used with the eight neighboring pixels. For 

instance, the differences in the x direction on the SAR image with spacing h at time t, i.e. u(x, y, t), are 

defined by first and second order terms as: 
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where 
xD  computes the new value at (x, y) and (x+h, y), hence information for the solution propagates 

from right to left. 
xD  computes the new value at (x, y) and (x-h, y), thus information for the solution 

propagates from left to right. Dx computes the new value at (x+h, y) and (x-h, y), thus information for 

the solution propagates from both sides. 

In a similar manner, the forward, backward or centered Taylor series expansions in the x direction 

can be derived: 

 

  

     (7) 

 

 

 

The curvature is computed using the above derivatives and the difference of the normals method 

introduced by Whitaker and Xue (2001)[12]. The two normals, n+ and n-, are then computed by:  
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The components of divergence are then computed as: 
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Finally, the curvature model is formulated as: 

 

                               
y

n

x

n
F yx

curv 






                         (10) 

















),,(2),,(),,(

),,(),,(),,(

),,(),,(),,(

tyxuhDtyhxutyhxuschemeCentered

tyxuhDtyxutyhxuschemeBackward

tyxuhDtyxutyhxuschemeForward

x

x

x



Sensors 2009, 9                            

 

 

821

Using this equation, the direction and velocity of the speed dependent on the curvature can be easily 

derived. The propagating front of an initial level set to the object boundary starts from inside the 

selected region, and grows outward. This outward growth is influenced by the image intensity and 

curvature. The front propagates till the speed function F reduces to near zero and finally stops at the 

shape boundary. Accordingly, the final algorithm works as follows. 

|)|||(1 n
ijij

n
ijijprop

n
ij

n
ij Ft                 (11) 

The initial estimation of  is propagated forward in time via the up-wind scheme. To assure a stable 

solution, the up-wind scheme approximates  using one-sided derivatives that are always in the up-

wind direction of the propagating surface. 

  

3.3 Fast Algorithm Implementation Flowchart 

 

The implementation of the proposed level set method has been done through the extraction of the 

surface slick boundaries. For improving computation efficiency, a list is used to record the inside or 

upwind side neighboring pixels, and a 2-dimenation array for storing the level set function . We 

define   as follows: 










           pixels upwindor interior  is x if2-

pixelsneighbor  upwindor  inside is x if1-  

    pixels downwindor exterior  is x if1

)x(                            (12) 

As shown in Figure 3, the procedural implementation flowchart is as follows: 

(1) A single seed (or multiple seeds) of surface slick signatures on the image is (or are) selected and 

used as the starting interface (i.e. the zero level sets). The grayscale upper and lower limits (i.e. Ilower 

and Ihigh) are selected according to the surface slick characteristics in the SAR imagery (i.e. the 

grayscale value of the pixels inside and around the boundaries of the surface slicks). 

(2) The pixels in the image are divided into two sets: the upwind set wherein the pixels are in the 

interface with  equal to -1 or -2, and the downwind set in which the pixels are away from the interface 

with  equal to 1. The pixels in the list record upwind neighbor pixels near to propagation curvature 

and represent the uncertain boundary.  
(3) Subsequently, the front pixel in the list is popped and tagged as the upwind known set. Four 

neighboring pixels are selected and their speed functions F are calculated.  Then, update 1n
ij  by using 

the intensity model and the curvature model based on partial differential equation.  

(4) Fast update level set function. If a pixel is located upwind neighboring to curvature and 1n
ij  is 

less than zero, update its 1n
ij  to -2; and 1n

ij  is more than zero, update its 1n
ij  to 1.  On the contrary, 

if a pixel is located downwind neighboring to curvature and 1n
ij  is less than zero, update its 1n

ij  to -1 

and push the pixel into list. Above first outward then inward updating process limits level set distance 

function into a narrow band by, and simply the re-initialization calculation. 

(5) Lastly, all pixels in the list will be subjected to computation until none of it remains in the list. 
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Figure 3. SAR image segmentation using the proposed fast level set method 

 

 
 

The above algorithm is further illustrated by an example in Figure 4. Pixel a is assumed to be a seed 

and the object region and background are divided into two sets. In order to improve the object 

boundary propagation efficiency, a list is adopted, which aids tracing the boundary change. List serial 

operations such as pop_front, push_back and deletion pixel during each iteration are employed to 

enhance performance. Pixel a is set with an initial value and pushed back into the list. Then, front pixel 

a is popped to compute the value of its neighboring pixels by using the intensity model and the 

curvature model. The use of the up-wind PDE is applied to calculate downwind and upwind 

neighboring pixels level set value. Furthermore, if the 1n
ij  values of downwind neighboring pixels 

such as b and c less than zero, then curvature move outwards, thus updating level set distance function 

and leading to push b and c into the back of list. This completes the first iteration of boundary 

propagation. The iterations are carried on end till no pixel is left in the list.  
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Figure 4. Example of processing stages by the proposed fast level set method. 

 

 

 

 

 

 

 

 

 

 

 

The stable segmentation boundary, which distinguishes the surface slick from different background 

such as sea surface and land, serves as the line between the upwind set and downwind set. While 

selecting a known surface slick pixel as an inner seed in the oil slick, only the interface front 

expanding outwards is considered. Hence if an outer seed (i.e. non surface slick pixel) is selected, the 

interface front will expand inwards.  

The list is a simple but efficient data structure. In the worst scenario, the operation for push back, 

pop front, inserting, or deleting element take O(logM) time assuming there are M elements in the list. 

As a result of using list to replace min-heap, the efficiency of inserting the downwind side pixel 

decreases from O(logM) to O(1) (logM is usually far more than 1). Although the calculation both 

outward then inward for updating level set distance value maybe consume compute time, but the time 

complexity of proposed method will decreases from O(2MlogM) to O(2M) in comparison with 

traditional fast march method. 

  

4. Experimental Results 

 

To confirm the efficiency gain of the proposed level set method as shown in Table 1, two 1024 x 

1024 pixel SAR images (Figures 5 and 6) of the Bohai Sea recorded on June 5, 1996 were used to 

segment surface slicks with single and multiple initialization of level sets, respectively. In the first 

experiment, an arbitrary shape, i.e., a point, was manually defined as a single initial level set, whereas 

in the second experiment, a threshold was set to obtain multiple initial level sets. Ilower and Ihigh were 

defined as the lowest and highest grayscale values of the slicks, and were selected according to the 

grayscale distribution of oil slicks in the radar image. The ratio between the intensity model and the 

curvature model constrained the smoothness of the evolving surface to prevent some of the leaking 

that was common in the connected-component structures.  If the ratio were equal to 0.0, i.e., only using 

the curvature model, the proposed method would become the traditional level set segment.     
In the first experiment (Figure 5a), the priori information, i.e. zero level set was selected as a single 

seed in the slick at random shown in Figure 5b. In accordance with the procedure described in the 

previous section, the SAR image was segmented using the proposed level set method. Considering the 

grayscale distribution of dark slicks in the image (Figure 5a), the lowest and highest grayscales, i.e., 

Ilower and Ihigh, were measured and set to 0.0 and 0.45, respectively. In addition, for balancing the 

d

a

c
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intensity and curvature models, the ratio between the former and latter models was adjusted to 50% 

for propF  and 50% for curvF . The sequence of interface propagation is illustrated from Figures 5c to 5e. It 

can be found that the interface boundary expands from an initial seed point to a stable boundary.  The 

result using the traditional fast marching method, which only depends on the curvature flow, is also 

shown in Figure 5f.  In the boundary with a distinct change such as coast, both methods arrived at a 

similar shape, but in the region of slicks with a slowly gradual change, the fast marching method 

obtained a more smooth but enlarged shape. 

 

Figure 5. The proposed fast level set method with single seed for initialization of level sets. 

 

(a) ERS-2 SAR image of the Bohai Sea on 

June 5, 1996. 

(b) The white cross point indicates the 

initialization of level sets for oil slicks  

 
(c) An interface boundary expanding 

snapshot 

 
(d) An interface boundary expanding 

snapshot 
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Figure 5. Cont. 

 
(e) Stable interface boundary obtained 

using the proposed method with Ilower = 

0.0 and Ihigh = 0.45  

 
(f) Interface boundary obtained using the 

fast marching method 

 
In the second experiment with a low contrast SAR image (Figure 6a), our program started with a 

heap filled with multiple seeds, which used the automated thresholding result as the initial level set 

(Figure 6b).  Due to the low grayscale of slicks and low contrast with background, the lowest and 

highest grayscales, Ilower and Ihigh, were respectively detected in the image (Figure 6a) and specified as 

0.0 and 0.10, respectively. propF  and curvF  were set as 50% and 50%, respectively. Comparing with the 

oil slick boundary obtained by the seed filling method with the same seeds (Figure 6d), the boundary 

extracted by the proposed level set method (Figure 6c) is much smoother.  

 

Figure 6. The proposed fast level set method with multiple seeds for initialization of level sets. 

 

 

(a) ERS-2 SAR image at the Bohai Sea on June 5,

1996. 

(b) Initialization of level sets with a grayscale

threshold of 0.0-0.02 



Sensors 2009, 9                            

 

 

826

Figure 6. Cont. 

 

 

The result for the fast marching method, which only depends on the curvature flow, is displayed in 

Figure 6e.  It can be observed that the proposed method gave a shape closer to the seed filling result 

than the fast marching method for an oceanic radar image with high noise and low contrast. 

To test the efficiency of the proposed method, it was compared with the ordinary level set and fast 

marching methods in terms of mean processing time for oil slick patches (Figures 7a and 7b). The 

experiments were performed on a 2.0 GHz Pentium 4 PC, which has 1 Gbytes of memory, 20 Kbytes 

L1 cache, and 512 Kbytes L2 cache.  

As recorded in the calculation, with the first SAR image, the extracted oil slick amounts to 79,796 

pixels, whereas in the second image, the extracted oil slick amounts to 87,116 pixels. Apparently, the 

ordinary level set method lags behind the fast marching and the proposed methods because it has to 

iterate calculations on the entire image. Although the fast marching and the proposed fast level set 

methods deal with the pixels close to the slick propagation boundary in a similar way, the proposed 

 

(c) Stable interface boundary with (Ilower = 0.0 

and Ihigh = 0.1) obtained using the proposed 

method 

(d) Segmentation using the seed filling 

method 

(e) Interface boundary obtained using the fast marching method. 
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method is more efficient than the fast marching method in both the images (Figures 5 and 6) with the 

single initial seed for the first image (Figure 5) and multiple seeds for the second image (Figure 6). As 

shown in Figure 7, with the increase of the slick patch size, the efficiency gain tends to be bigger. This 

indicates that the proposed method is particularly suited for large-size patch processing. 

 

Figure 7. Comparison of the proposed method with the ordinary level set and fast marching methods 
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(b) Process time for the second image 
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For accuracy assessment, we compared the segmented results using the proposed, seed filling, and 

fast marching methods with the boundary interpreted manually, and the results for the images in 

Figures 5 and 6 are listed in Table 1.  Clearly, the proposed method achieved a better accuracy than the 

other two methods. 

 

Table 1. Accuracy assessment between the proposed, seeding filling, and fast marching methods 

 Proposed method Seed filling Fast marching 

Experiment 

I (Figure 5) 

Area matching error 4.1% 4.9% 9.1% 

Perimeter matching error 22.5% 43.0% 24.7% 

Experiment 

II (Figure 6) 

Area matching error 1.9% 3.1% 6.1% 

Perimeter matching error 19.3% 34.3% 23.9% 

 

5. Conclusions 

 

In this paper a more efficient level set method for the feature extraction of oil slicks in SAR images 

has been proposed. It is based on the theory of level set flow propagation, which uses the intensity 

gradient as the front advancing impetus. The segmentation of oil slicks in oceanic SAR images has 

been carried out to verify the effectiveness of the proposed method and the results showed that it can 

arrive at more smooth and ideal boundaries than other level set segmentation methods that only depend 

on the curvature flow. 

The algorithm developed in this paper not only relies on the image intensity and curvature speed 

functions, but also employs a list to accelerate the interface front processing. The experimental results 

show that the proposed method is more efficient than other level set methods, especially for large-size 

image segmentation. This enables the proposed method to be used in near real-time image processing. 

Furthermore, the high noise can be removed simultaneously and the accuracy of the boundary can be 

maintained. It is expected that the proposed method epitomizes a prototype for comprehensive 

processing of high noise and low contrast remote sensing images. 

 

Acknowledgements 

 

This research was funded by the Ministry of Science and Technology of PRC under Contract No.  

2006AA12Z116 and the State Key Laboratory of Remote Sensing Science, IRSA, CAS. Their Support 

is gratefully acknowledged. 

 

References  

 

1. Frost, V.S.; Stiles, J.; Shanmugan, K.; Holtzmann, J. A model for radar images and its application 

to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and 

Machine Intelligence 1982, 4, 157-166.  

2. Lee, J.S. Speckle suppression and analysis for synthetic aperture radar images. Optical 

Engineering 1986, 25, 636-643.  



Sensors 2009, 9                            

 

 

829

3. Durand, J.M.; Gimonet, B.J.; Perbos, J.R. SAR data filtering for classification. IEEE Transactions 

on Geoscience and Remote Sensing 1987, 25, 629-637. 

4. Dong, Y.; Forster, B.C.; Miline, A.K. Comparison of radar image segmentation by Gaussian- and 

Gamma-Markov random field models. International Journal of Remote Sensing 2003, 24, 711-722. 

5. Sveinsson, J.R.; Atli Benediktsson, J. Almost translation invariant wavelet transformations for 

speckle reduction of SAR images. IEEE Transactions on Geoscience and Remote Sensing 2003, 41, 

2404- 2408.  

6. Achim, A.; Tsakalides P.; Bezerianos A. SAR image denoising via Bayesian wavelet shrinkage 

based on heavy-tailed modeling. IEEE Transactions on Geoscience and Remote Sensing 2003, 1, 

1773-1784. 

7. Huang, B.; Li, H. G.; Huang, X. A level set approach to segmentation of oil slicks in SAR images. 

International Journal of Remote Sensing 2005, 26, 1145–1156.  

8. Osher, S.; Sethian, J. Fronts propogating with curvature-dependent speed: algorithms based on 

Hamilton-Jacobi formulations. Journal of Computational Physics 1988, 79, 12-49.  

9. Malladi, R.; Sethian, J.A.; Vemuri, B.C. Shape modeling with front propagation: a level set 

approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 1995, 17, 158-176.  

10. Sethian, J.A. Level Set Methods and Fast Marching Methods: Evolving Interfaces. In 

Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science. Cambridge 

University Press: Cambridge, 1999; pp. 86-99. 

11. Shi, Y.G.; Clem Karl, W. A fast implementation of the level set method without solving partial 

differential equations, Technical Report ECE-2005-02. ECE Department, Boston University: 

Boston, MA, USA,  Jan 2005.  

12. Whitaker, R.T.; Xue, X.W. Variable-conductance, level-set curvature for image denoising. In 

Proceedings of IEEE International Conference on Image Processing. Thessalonika, Greece, 2001; 

pp. 142-145. 

 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 

 


