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Abstract: Research on acoustic source localization is actively being conducted to enhance 
accuracy and coverage. However, the performance is inherently limited due to the use of 
expensive sensor nodes and inefficient communication methods. This paper proposes an 
acoustic source localization algorithm for a large area that uses low-cost sensor nodes. The 
proposed mechanism efficiently handles multiple acoustic sources by removing  
false-positive errors that arise from the different propagation ranges of radio and sound. 
Extensive outdoor experiments with real hardware validated that the proposed mechanism 
could localize four acoustic sources within a 3 m error in a 60 m by 60 m area, where 
conventional systems could hardly achieve similar performance. 

Keywords: acoustic source localization; sensor network 
 

1. Introduction 

Acoustic source localization systems have been widely used in various applications such as  
counter-sniper systems [1-5], animal tracking systems [6,7] and a parking lot security system [8]. 
Although several systems have been developed to enhance accuracy, there are still restrictions with 
regards to the sensing range and an efficient acoustic source localization system that uses low-cost 
sensor nodes and works with minimum network overhead is still needed.  

The sensing range of a conventional acoustic source localization system is restricted by the 
characteristics of the delivery ranges of sound sources and radio signals. If a sound is propagated more 
widely than the corresponding radio signal, the localization system may miscalculate because of 
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difficulties in sharing information between sensor nodes. AML (Approximate-Maximum  
Likelihood) [9,10] and MBFM (Muzzle Blast Fusion Method) [1-5] have been proposed to solve this 
problem. AML uses the IEEE802.11 network, which has a broader range than IEEE802.15; however, 
the same problem occurs when the system covers a wider range than that of IEEE802.11. MBFM is a 
centralized system in which nodes, upon detecting an acoustic source, send all of the detected 
information to a base station; this generates network overhead since many nodes may concurrently 
send data to the base station. 

The localization system [11,12] equipped with common sensor nodes is barely able to cover a wide 
area, due to the limited performance of the node hardware. If one acoustic source is propagated within 
multi-hop distance, the number of nodes that detect the source increases. This causes network 
overhead to share the detection information among the nodes. Resource-constrained nodes cannot 
completely handle the overhead; hence, packet losses increase. This may precipitate poor accuracy in 
the system. Moreover, the size of the shared data is often too large for the nodes to manage; thus, a 
system with low-cost nodes can usually sense only a limited area where communication occurs in 
single-hop fashion. 

This paper proposes an acoustic source localization algorithm for systems with multi-hop 
communication, called MDSL (multi-hop distributed source localization). This process can localize 
multiple acoustic sources in a large area with low-cost sensor nodes and does not need additional 
hardware or a centralized communication process. In this algorithm, each node shares detected 
information within a one-hop range, and only one leader node selected in each one-hop group sends 
the result to the base node. At this point, miscalculated results arising from the limited communication 
within each group could be sent to the base node, but the base node can identify the inaccurate results 
and find an accurate position for the acoustic source. The system minimizes network overhead and 
detects multiple acoustic sources within a multi-hop range. Removing miscalculations can also be used 
to distinguish nodes that detect noise. The algorithm is implemented to operate with common sensor 
nodes, using low-cost acoustic sensors with no additional hardware. Extensive outdoor experiments 
with real hardware validate that MDSL can localize multiple acoustic sources in a large area with 
acceptable accuracy. 

The paper is structured as follows: Section 2 discusses related work, followed by our research 
motivation in Section 3. The overall system architecture of the proposed mechanism is described in 
Section 4. The simulation and experiment results are given in Sections 5 and 6, respectively. In  
Section 7, we conclude the paper. 

2. Related Work 

Conventional acoustic source localization systems can be divided into DOA (Direction-of-Arrival)-based 
systems [13,14] and beam-forming-based systems [15-17]. DOA-based systems track an acoustic 
source by determining the direction of the acoustic source with an array of microphones on one sensor 
node. Therefore, DOA-based systems require powerful devices to handle a fast sampling rate, to 
distinguish the detection times of the microphones. The beam-forming-based systems track multiple 
acoustic sources by comparing the waveforms of the acoustic sources. These systems require even 
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more powerful devices, such as PDAs, to perform complex algorithms with the significant amount  
of data generated.  

More recently, several approaches have been studied: AML [9,10], MBFM [1-5] and DSL [11,12]. 
AML combines beam-forming and DOA to track multiple acoustic sources, but requires additional 
hardware based on the IEEE802.11 network; in addition, network overflow could occur if a target area 
is wider than the network range. MBFM checks the whole region where acoustic sources are likely to 
be produced. As low-cost sensor nodes cannot execute a high-complexity algorithm, every node must 
send detected information to the base station, which performs the calculation for final localization. 
This kind of centralized method [2-5] commonly produces network overhead, and the accuracy of the 
system is reduced.  

DSL tracks a single acoustic source using low-performance sensor nodes. For any given acoustic 
source, the sensor nodes share their detection times, and the source location is determined by the node 
that detected the acoustic source the earliest. DSL performs poorly when an acoustic source is spread 
over a broad range. This is because sharing all of the detection information among nodes is difficult in 
practice in multi-hop networks. Another difficulty is the effective removal of miscalculated results 
caused by the characteristics of sound sources and radio signals. When multiple acoustic sources are 
simultaneously produced, it is even more difficult to locate the sources correctly.  

To improve the shortcomings of these methods, this paper proposes a new algorithm that runs on 
inexpensive sensor nodes and detects single or multiple acoustic sources that simultaneously occur in a 
wide region. 

3. Background 

3.1. Distributed Acoustic Source Localization (DSL) 

The proposed system locates acoustic sources based on the DSL (Distributed Acoustic Source 
Localization) [11,12] algorithm. Figure 1(a) shows the concept of DSL for localizing an acoustic 
source. The group is constructed when an acoustic event occurs. In the group, one leader, the nearest to 
the source, is elected. All members of the group individually estimate the source location by 
exchanging the data of the acoustic source with each other. Finally, the leader node estimates the 
source location by gathering the results from other members. Because of this distributed mechanism, 
there is no computational overhead on the leader node in DSL. Figure 1(b) describes the detailed DSL 
localization process. The process is as follows: 

 Acoustic Source Detection: When an acoustic event occurs, all of the nodes that detected the 
event construct the group exchanging information about their position and detection time. 

 Leader Election: The node that has the earliest detection time is elected the leader node. The 
leader node constructs an Essential Event Region (EER) centered on itself. The EER is a 
simplified circular version of the Voronoi Region for resource-constrained WSN devices, and 
its diameter W is calculated as in Equation (1): 

ܹ ൌ α · ∑ ||௣೗ି௣೔||
௛ିଵ

, ݅ ൌ 1,2, ڮ , ݄ and ݅ ് ݈    (1) 

Here, ݌௟ and ݌௜ are the locations of the leader node and i-th node in the group. h is the number 
of nodes in the group.  is the coefficient for environmental constraints. The default value of α 
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is 1, and manually decided by user to reflect the environment. The leader node constructs the 
Voting Grid by dividing the EER by a predefined size and announces it to the other members in 
the group. 

 Distributed Processing: Each node individually estimates the source location by comparing its 
position and detection time with those of other members in the group. For each comparison, the 
partition line is defined as perpendicular to the midpoint of a line between two nodes. The 
source should be located on the side of the node that has an earlier detection time. Therefore, 
the right side grids of the Voting Grid score a point. After the comparison is completed, the 
voting result is sent to the leader node. 

 Confirmation: The leader node aggregates the voting results from other members in the group 
and confirms the final source location. 
 

Figure 1. (a) DSL system overview; (b) DSL algorithm overview. 

 
 
Figure 2 shows an example scenario of the DSL algorithm. At first, node A, B, C, D and E detect an 

acoustic source as shown in Figure 2(a). They share their detection time and position. Node E, which 
has detected the source at 3 ms, is elected as a leader node (Figure 2(b)). Node E creates a Voting Grid 
based on its EER, and sends this to all other nodes. In Figure 2(c), each node votes on the Voting Grid 
by comparing the detection time difference and the distance with those of other nodes. The voting 
results are sent to node E, which aggregates the results from the nodes [Figure 2(d)]. The grid that has 
received the highest score of 37 is estimated as a location of the acoustic source. 
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Figure 2. Example scenario of DSL. 

(a) Acoustic source detection (b) Leader election 

               
(c) Distributed processing (d) Confirmation 

              

3.2. Problems 

DSL was previously evaluated in a small-scale environment, where all of the nodes were within a 
one-hop range. However, DSL may malfunction in large-scale environments, since an acoustic signal 
can propagate over a multi-hop range. We review the problems here, and then propose the MDSL 
algorithm as the solution, in the following section. 

Figure 3. No virtual leader in a broad range. 

 

DSL tracks an acoustic source by selecting the earliest node that detects the source as the leader 
node. When nodes are deployed in a large area and communicate in a multi-hop fashion, each node 
shares the detection data within a one-hop range; nodes outside this range cannot receive the data. One 
leader node is selected in every one-hop region where the source is detected, and several leaders may 
be generated, as detection may occur in more than one region. Consequently, localization could be 
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wrongly conducted by these leaders with regard to a single acoustic source. However, this situation 
does not always happen when an acoustic source spreads over the multi-hop range. Figure 3 shows a 
case where the system reports only one result even though an acoustic source was very dispersed. 
Node 3 could choose node 2 as a leader, since node 2 detected a source earlier than node 3; however, 
node 2 could choose node 1 as a leader. Eventually, only node 1 is selected as the actual leader. 

There are two cases that generate wrong virtual leaders. One occurs when an acoustic sound is 
detected by more than two node groups, but these are too far apart from each other to communicate. 
The other occurs when the direction of the source is different from the direction of the data 
transmission, as shown in Figure 4. An acoustic source is produced near node 1. Node 4 can 
communicate directly with just one (node 3) of the nodes deployed within one-hop distance of node 1. 
Therefore, node 4 selects itself as the leader, since the node detects the source earlier than any other 
node in its group, thereby becoming a virtual leader, even though it is not the node nearest the acoustic 
source. If the flooding method is employed to overcome this situation, all nodes that detect the acoustic 
source should communicate to share detection information. However, the network overhead then 
increases and a large memory space is required to manage the shared data. Low-cost sensor nodes 
cannot handle these problems due to hardware limitations. 

Figure 4. Virtual leaders in broad range. 

 

Other problems with DSL are the absence of management for detecting errors from the sensor nodes 
and for noise detection. The acoustic sensor in each node is low-performance hardware; hence, error 
sensing may occur frequently and randomly. The system would perform poorly if nodes that detect the 
noises were not appropriately separated. 

4. Distributed Acoustic Source Localization in Large-Scale Sensor Networks 

4.1. System Overview 

Figure 5 illustrates how MDSL tracks two acoustic sources produced simultaneously. Every node is 
equipped with one microphone, and the MDSL program is installed on each node. The detection time 
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is synchronized to the global time. When acoustic sources are produced, every node that detects them 
transmits the detection time, along with its unique node ID and position, to other nodes within a one-
hop range. The node that detects the source the earliest is selected as the leader, based on the collected 
data. Using the Essential Event Region created around the leader node, the range where the source 
could belong is calculated, and nodes that detected extraneous noises are removed. Localization is then 
performed using the DSL algorithm. Each node sends the detection data to the leader node, which 
sends its result to the base node. In certain cases, when an acoustic source is spread over a multi-hop 
range, virtual leader nodes are generated that are unable to perceive the real leader node. These virtual 
leader nodes also send their results to the base node. The base node can distinguish virtual leader nodes 
within the received results by analyzing the Essential Event Region. This part of the process is 
regarded as a centralized method, but virtual leader nodes are generated only in special cases; thus, 
network overhead rarely becomes a problem. We analyze the virtual leader overhead in Section 5.  

Figure 5. MDSL overview. 

 

4.2. Algorithm 

MDSL improves on DSL by making it possible to detect multiple acoustic sources produced in 
regions where nodes communicate in multi-hop. The key idea of MDSL is that it separates the nodes 
that detected noise, and removes the miscalculated results during the localization step. MDSL can 
detect only one acoustic source within a one-hop range; in other words, we assume that acoustic 
sources produced simultaneously are in different one-hop regions. This is acceptable, since the system 
aims to cover a very large region. The simultaneous sources are defined as the sound events that are 
produced while nodes detect a source and that share their detected information with neighboring nodes. 
We use the PER (Possible Event Region) to achieve high accuracy in localization. The PER is easily 
calculated by expanding the concept of the EER in DSL. 
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4.2.1. Possible Event Region 

Figure 6 illustrates that the PER is constructed by expanding the EER around the leader node. The 
EER is the region where an acoustic source was probably produced. Since the region has a circular 
shape to lower its computational complexity, a non-EER region is formed as shown in Figure 6. When 
an acoustic source is produced in this region, the system cannot appropriately track the source, since its 
accurate location is not included in the EER. Therefore, we replaced the EER with the PER, which is 
the circle including its EER and most of the non-EER in the vicinity. The radius rPER of the PER is 
obtained as in Equation (2):  

௉ாோݎ ൌ |ห݌௟ െ |௙௔௥ห݌ െ ݎாாோ     (2) 

where pl means the position of leader node, pfar indicates the position of the farthest node from the 
leader node in the group, and rEER is the radius of the EER obtained from Equation (1), with a default α 
value. The PER is superior to the EER because the inaccuracy of localization, which is calculated from 
a source produced in the non-EER, is reduced. The computational overhead of the PER is also kept as 
low as that of the EER by finding the farthest node in the vicinity.  

Figure 6. MDSL Possible Event Region. 

 

4.2.2. Noise Removal 

Sensor nodes are deployed in various environments; hence, these are likely to detect unexpected 
noises that consequently reduce localization accuracy. MDSL removes noises using the PER. Each 
node decides whether it detected the same source as a leader node by using the PER, the distance from 
the leader node and the difference in detection time. In other words, the time difference multiplied by 
the velocity of sound is calculated as a distance unit. The system removes noise by evaluating if it is 
included inside the PER, using the difference between the real distance among nodes and the 
calculated distance by detection times. We consider two extreme cases: an acoustic source that is 
produced exactly at the middle of two nodes or just at the leader node. In the former case, the 
calculated value is equal to the distance between the nodes. The calculated distance is 0 because the 
two nodes have the same detected time, due to simultaneous detection of the source. In the latter case, 
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the calculated distance is the same as the real distance, because of the gap between the detected times. 
We divide the calculated distance by 2, since the sound that the leader node detects can be no closer 
than halfway between them. If the sound is produced in the non-EER, the value in the latter case 
exceeds the middle value, and the node is considered to have detected a noise. Therefore, noises are 
removed under the condition given in Equation (3) using the PER, instead of the EER, because a real 
acoustic source could be regarded as noise. 

   (3) 

Dist(L,i) represents the distance between a leader node and the i-th node. iT is the detection time of 
the i-th node, and LT is the time of leader node.  represents the velocity of sound and PERL the radius 
of the leader node’s PER. 

Figure 7 shows the pseudo code that removes nodes that detected noise. First, nodes in the group 
receive the PER from the leader node. All nodes in the group are then checked to confirm whether the 
noise is included in the PER by Equation (3). If it is not, a noise is considered to have been detected, 
and the node is excluded from localization. 

Figure 7. Pseudo code for noise removal. 

 

4.2.3. Virtual Leader Removal 

Virtual leader nodes are removed using the PER of the leader node. Each node that detects the 
acoustic source broadcasts the data to its one-hop neighbors. At this point, nodes that are unable to 
receive information about the real leader node select virtual leader nodes among them. Every leader 
node sends its localization result to the base node, regardless of whether the leader node is a virtual 
one. However, the virtual leader nodes are detected at the base node by the following method. 

All of the leader nodes send information about their detection time and the PER. Since the real 
leader node is the closest to the source, the real leader node detects the signal earlier than the virtual 
leader nodes, so the virtual leader nodes are distinguished by comparing their detection times. Using 
Equation (4), a node that is included within the PER is chosen as a virtual leader node, and the others 
are considered real leader nodes that detected different acoustic sources from each other. 

     (4) 

Here, Dist(i,j) represents the distance between the i-th leader node and the j-th leader node. iT and jT 
are the detection times of the i-th and j-th leader nodes, respectively.  is the velocity of sound, and 
PERi represents the radius of the i-th leader node’s PER. 
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Figure 8 shows the pseudo code for removing virtual leader nodes. The base node stores collected 
data from leader nodes to the Group Table. Each set of data in Group Table is then compared to the 
others to check if its PER includes their position. If the PER includes one of them, the same source was 
detected, and it is excluded from localization. 

Figure 8. Pseudo code for virtual leader removal. 

 

5. Simulation 

We conducted a simulation to evaluate the performance of MDSL when nodes are deployed in a 
large multi-hop area and multiple acoustic sources are simultaneously produced. Virtual leader nodes 
are generated if the sound spreads over the range of the radio signal. We simulated this situation and 
examined whether MDSL tracks the accurate position of the source by adequately removing virtual 
leader nodes. 

The simulation was performed in a rectangular region where ten communication hops are needed in 
width and eight in height. One thousand nodes were randomly deployed in this region. The number of 
acoustic sources was from 1 to 7, and sources were produced in random positions and propagated over 
the whole region. With simulation, each node detected only one source that was the closest, because 
nodes begin calculations for the localization of their sources without detecting other sources. The 
detection data was shared with nodes within one-hop range, and the earliest node among each group 
was selected as the leader node. 
 

Figure 9. (a) Created virtual leaders when seven 
sources are produced. 

(b) The simulation result after the virtual leaders 
are removed by MDSL. 
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Virtual leader nodes were generated at this point. Figure 9(a) shows simulation results indicating 
that virtual leaders appeared when seven sources are produced. Nodes construct groups depending on 
the sources, and the number of groups is larger than the number of sources. Figure 9(b) shows results 
after removing virtual leader nodes from Figure 9(a), using the MDSL algorithm. The simulation was 
repeated independently 100 times according to the number of acoustic sources. The performance of 
MDSL is analyzed based on how many times the virtual leader nodes were removed. Figure 10(a) 
shows the transmission overhead of MDSL, MBFM and DSL in a large area, assuming error-free data 
transmission, as the number of acoustic sources increased. All nodes that detect acoustic sources in 
MBFM forward their detection data into a base server. The definition of the y axis is the number of 
transmissions in the case of sharing the detection information and routing the results from the leader 
nodes. We assume that the base server is located in a fixed position. Therefore, the number of 
transmissions in MDSL, MBFM and DSL are around 300, 1,300 and 33,000, respectively. Thus, the 
proposed mechanism is shown to efficiently manage network overhead that arises from radio 
transmission among multiple-hop nodes covering a large area.  

Figure 10. (a) Transmission overheads of MDSL, MBFM and DSL. 

 
(b) Number of minimum, average and maximum virtual leaders. 
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Figure 10(b) shows the number of minimum, average, and maximum virtual leaders, depending on 
the number of acoustic sources. As the number of sources increases, the maximum number increases  
to 20, 23, 21, 27, 26, 26 and 27, respectively. Approximately 30 virtual nodes out of 1,000 are 
generated and participate in routing in the worst case. The proposed algorithm effectively reduces 
network overhead for localization. When one acoustic source is used, 10.24 virtual leader nodes are 
created on average. As the number of sources increase, the average number of virtual leader nodes 
increases, to 10.99, 11.65, 11.72, 13.39, 13.43 and 14.03, respectively. As more acoustic sources are 
produced, more virtual leader nodes are generated. This is because of the increased number of nodes 
that detect different sounds within the same group, on average. However, the number of virtual leader 
nodes is very small compared to that of all nodes.  

Figure 11 shows the percentage of nodes removed by the MDSL algorithm among the virtual leader 
nodes. In the case of one acoustic source, 99.02% of the virtual leader nodes are removed. As the 
number of acoustic sources increases, 97.18%, 94.59% 89.33%, 87.98%, 85.33% and 80.18% are 
removed, respectively. We see that the percentage of removal is higher than 80% in every case, 
although the percentage drops as the number of acoustic sources increases. We should note that almost 
all virtual leader nodes are removed in the simulation using only one producing source; in practice, 
multiple acoustic sources are rarely produced simultaneously. 

Figure 11. Virtual leaders removed by MDSL. 

 

Figure 12 demonstrates the accuracy of MDSL. In this figure, the accuracy is represented by the 
percentage of a distance error with deployment size. For example, when the deployment size  
is 100 m × 100 m and the distance error is 1m, then the percentage accuracy is 99%. If multiple sounds 
are produced within a one-hop range, only one source is detected, and this influences the localization 
result. When one source produced sound, 91.06% accuracy was accomplished, and in cases where 
from 2 to 7 acoustic sources were active, the detection accuracy was 90.28%, 85.54%, 80.27%, 
82.10%, 86.61% and 84.35%, respectively. MDSL consistently achieves high accuracy of more  
than 80% although the accuracy drops as the number of acoustic sources increases. 
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Figure 12. Localization accuracy of MDSL.  

 

With this simulation, MDSL is shown to be effective for performing localization of multiple 
acoustic sources in a large area.  

6. Experiments 

6.1. Experimental Setup 

Figure 13 shows the devices used for the experiments. We used 16 Telos [18] motes, which were 
equipped with one microphone each, and we used four pairs of two 1.2W speakers to simultaneously 
produce multiple acoustic sources. One mote was configured as a base node and connected to a laptop 
via a serial port. The motes were running the RETOS operating system [19,20]. The maximum 
sampling rate of the microphone was 2.8 KHz in this setup. Using ETA [21], which employs a reactive 
method for time synchronization, our system maintained time synchronization while routing the time 
information. The experiments proceeded as follows: Section 6.2 discusses the detection time error and 
its solution in MDSL, followed by experiments on the localization accuracy and response time in 
Section 6.3. Finally, the experimental results in a multi-hop environment are given in Section 6.4. 

Figure 13. Experiment setup. 
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6.2. Detection Time Error  

MDSL localizes an acoustic source based on the TDOA algorithm; hence, the accuracy of the 
detection time is a key factor determining the localization accuracy of MDSL. We conducted 
experiments to measure the detection time error in MDSL. Two nodes were deployed at the same 
position and an acoustic source was produced 5m from the nodes. We then measured the difference in 
detection times between the two nodes. As shown in Figure 14(a), the maximum difference was 19,600 μs 
in 30 tests, which is sufficiently large to induce a significant localization error. To understand the 
cause of this timing difference, we conducted further experiments. We first checked the time error that 
could have been caused by the ETA time synchronization algorithm. We placed two nodes at the same 
position, then turned on the LED of one node when its current time was sent to the other node, which 
subsequently turned on its LED upon receiving the packet. We compared the time difference of the 
two LED signals measured by an oscilloscope with that calculated by ETA. The experimental results 
showed that the detection time errors caused by ETA were lower than 30 μs in 30 tests, which was 
insignificant and would not affect the accuracy of MDSL.  

 
Figure 14. (a) Detection time error in MDSL. (b) Cause of the detection time error. 

(c) Reduction in detection time error with the proposed algorithm. 

 
 

Second, we analyzed the inherent error in detection time due to the low sampling rate of the sensor 
employed in MDSL. Figure 14(b) illustrates the cause of detection time error with the wave form of 
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the acoustic source. A1, B1 and B2 indicate the sampling times of nodes A and B. At time A1, node A 
detects an acoustic event since the sensing value is higher than the threshold. Node B cannot detect the 
acoustic event at time B1 since the sensing value is lower than the threshold. Therefore, node B will 
detect an acoustic event at time B2. This detection time error on node B reduces the localization 
accuracy of DSL. To address this problem, we developed a detection algorithm, which makes use of 
two levels of thresholds and a buffering technique. Two thresholds are provided, where the second 
threshold is defined as half of the first one. In addition, a buffer is used to maintain the measured 
sensing value and the corresponding measurement time. When the sensing value is higher than the first 
threshold, the system looks for the buffer to find a more accurate detection time. The detection time is 
replaced by the corresponding measurement time of the sensing value, which is the first sensing value 
higher than the second threshold in the buffer. With this algorithm, the detection time of node B in 
Figure 14(b) is now replaced by B1. Figure 14(c) shows the result of the new detection algorithm in the 
same experiment. The time difference is 1,856 μs at most, and the average time difference is 338 μs, 
which is significantly smaller than the 4,297 μs obtained with DSL. This result shows that the 
proposed detection algorithm effectively reduced the detection time error caused by low sampling rate. 

6.3. Localization Accuracy and Response Time 

We conducted experiments to find appropriate node spacing for system deployment. We deployed 
five nodes with a node spacing that varied from 8 m to 25 m, and then measured the localization error 
ten times for each case. Figure 15(a) shows that the average error grew as the node spacing increased. 
In particular, the error was rapidly increased from 21 m node spacing and beyond. Based on this 
experiment, the node spacing of 20m was chosen for the subsequent experiments, as this value is 
considered reasonable in terms of both cost and accuracy. Further experiments were conducted to find 
the relation between the number of nodes and the localization accuracy. We localized an acoustic 
source in an outdoor space of 40 m by 20 m by changing the number of nodes from 1 to 8 with the 
same node spacing of 20 m. As shown in Figure 15(b), the distance error was 20m when only two 
nodes were deployed, while the error was lower than 2 m when seven nodes were used. This result 
shows that the localization accuracy of MDSL strongly depends on the number of nodes that detect the 
source. This is a tradeoff between the cost and the accuracy. 

Figure 15. (a) Deployment range vs. localization 
accuracy when five nodes are deployed. 

(b) Localization accuracy when the deployment 
range is 20 m. 
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Figure 15. Cont. 

(c) Response time of MDSL when eleven nodes are deployed in the basement of 90 m  
by 60 m with 20 m node spacing. 

 

We additionally conducted experiments to estimate the response time of MDSL. Eleven nodes were 
deployed in a basement of 90 m by 60 m, with 20 m node spacing. We performed 30 measurements of 
the delay between the occurrence of an acoustic source and the completion of the localization process. 
As shown in Figure 15(c), the delay was less than 2 seconds, which was fast enough to respond to an 
acoustic event. 

6.4. Results in a Multi-Hop Environment 

We had three goals for evaluating the accuracy of MDSL in a large area where source localization is 
seemingly difficult to achieve. First, we analyzed how many virtual leaders were removed when one 
acoustic source was produced and the node groups were far from each other. We validated that our 
system tracked the acoustic source via the data gathered in the base node. Second, we measured the 
rate of removal of the virtual leaders when nodes were deployed randomly, without separate groups, so 
that virtual leaders were produced due to the different ranges between the sound and radio signals. We 
validated, through this experiment, that MDSL is an efficient system for localization with multi-hop 
communication. Finally, we measured the rate of removal of virtual leaders when multiple acoustic 
sources were simultaneously producing sound at a long distance from each other. Through this 
experiment, we validated that MDSL performs well even when multiple acoustic sources are active. 

First, we deployed nodes that were divided into separate groups and produced one acoustic source. 
We then measured the rate of removal of the virtual leader nodes. Figure 16(a) shows the deployment 
among independent groups, with three nodes in each group. We conducted this experiment in a large 
area (60 m × 60 m) to form separate groups, and each node was put on the ground to reduce the range 
of its radio signal. Nine nodes were used to detect an acoustic source, and three groups, each formed 
by three nodes, were constructed, which were designated ‘A’, ‘B’ and ‘C.’ Three acoustic sources 
‘A1’, ‘A2’ and ‘A3’ were produced, one by one, at different times by a signal gun. A1 and A2 were at 
a horizontal distance of 1 m from the closest node, and A3 was at a vertical distance of 1 m. Figure 16(b) 
shows the result of MDSL tracking for A1, A2 and A3. The distance errors were 1.4 m, 1.1 m and 1.0 m, 

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

D
el

ay
(s

ec
)

Experiment number



Sensors 2009, 9   
 

 

9941

respectively. When A1 was active, virtual leaders were generated in groups B and C; however, MDSL 
eliminated them and accepted only the leader node in group A. Virtual leaders were also created when 
A2 and A3 were produced, and MDSL also removed them. We validated that our system performed 
well when nodes were divided into separate groups.  

Figure 16. (a) Deployment among 
independent groups in broad range. 

(b) Result among independent groups in 
broad range. 

 

 
Second, we deployed nodes evenly in a large area, and measured the accuracy of MDSL.  

Figure 17(a) shows the deployment of nodes and acoustic sources on the playground. We deployed  
11 nodes in a large area of 60 m × 60 m, and each node was put on the ground to reduce the range of 
its radio signal. Four acoustic sources, designated ‘A1,’ ‘A2,’ ‘A3’ and ‘A4’, were produced, one by 
one, at different times by a signal gun. Each source was produced at a vertical distance of 1 m, 2 m,  
3 m, and 4 m from its closest node. Figure 17(b) shows the result of MDSL tracking for A1, A2, A3 
and A4. The distance errors were 1.7 m, 1.5 m, 2.1 m and 2.6 m, respectively. These errors are 
acceptable, if we consider that the system is implemented with only low-cost sensor nodes in a large 
area. When A1 was produced, two virtual leaders were generated, and MDSL removed them. When 
A2, A3 and A4 were produced, 3, 3, and 2 virtual leaders were generated, respectively, and MDSL 
also removed all of these. With this result, MDSL was confirmed to be effective for tracking a single 
acoustic source with a number of nodes deployed in a large area. 

Finally, we measured the rate of removed virtual leaders when increasing numbers of acoustic 
sources were simultaneously producing sound at quite a long distance from each other. Figure 18 
shows the deployment of the nodes and acoustic sources. We divided 8 nodes into 4 groups, designated 
‘A,’ ‘B,’ ‘C’ and ‘D,’ so that each group consisted of 2 nodes to perform localization. The experiment 
was conducted in an area 8 m x 8 m square, and each group was deployed 2 m around its corner of this 
area. We recorded a clapping sound, which was produced by the speakers as an acoustic source. Each 
node communicated directly only within its group; in other words, the nodes of each group separated 
data received from others and only used the data from its group. This is because it is hard to perform 
an outdoor experiment using simultaneous acoustic sources, and the small experimental area allowed 
every node to communicate with the others. With this filtering, we obtained similar results to those that 
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would have been obtained in multi-hop fashion. Since our speakers produced only unidirectional 
acoustic sources, we put speakers outside rather than inside the nodes. We performed the experiments 
by increasing the number of sources from 1 up to 4, in this order: {A1-1}, {A1-2, A2-2}, {A1-3, A2-3, 
A-3-3} and {A1-4, A2-4, A3-4, A4-4}, where the first number represents the position of an acoustic 
source and the second is the experiment number. We repeated each experiment 20 times. 

Figure 17. (a) Deployment for virtual leader 
removal in broad range. 

(b) Result in broad range. 

  

Figure 18. Deployment for MDSL virtual leader removal with increasing numbers of 
acoustic sources. 

 

In the experiment that used one acoustic source within group A, virtual leaders were generated in 
groups B, C and D; however, MDSL removed all of them. In the second experiment, with sound 
simultaneously produced by two acoustic sources within groups A and B, virtual leaders were created 
in groups C and D, and these were perfectly eliminated by MDSL. In the third experiment, a virtual 
leader was created in group D and removed by MDSL. In the last experiment, no virtual leader was 
generated when four acoustic sources were producing sound, and the system performed localization 



Sensors 2009, 9   
 

 

9943

well. Thus, we were able to validate that MDSL is an effective system for tracking a number of 
simultaneous acoustic sources by removing the virtual leader nodes. 

7. Conclusions 

The contributions of this paper are three-fold. First, an efficient algorithm is proposed that allows 
localization to be performed in a large area that conventional systems can hardly cover due to the 
different ranges of acoustic sources and radio signals. Second, our system detects multiple acoustic 
sources that are simultaneously produced, enhancing its practicality when considering that multiple 
sources are sometimes generated in real-life environments. Finally, our algorithm has low enough 
complexity to be installed in low-cost sensor nodes. This is a very useful feature, allowing coverage of 
a large area with only low-cost sensor nodes. The experimental results validated that the proposed 
mechanism indeed detects up to four multiple acoustic sources that are produced simultaneously in a  
large area. 
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