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Abstract: Point-based methods undertaken by experienced human operators are very 

effective for traditional photogrammetric activities, but they are not appropriate in the 

autonomous environment of digital photogrammetry. To develop more reliable and 

accurate techniques, higher level objects with linear features accommodating elements 

other than points are alternatively adopted for aerial triangulation. Even though recent 

advanced algorithms provide accurate and reliable linear feature extraction, the use of such 

features that can consist of complex curve forms is more difficult than extracting a discrete 

set of points. Control points that are the initial input data, and break points that are end 

points of segmented curves, are readily obtained. Employment of high level features 

increases the feasibility of using geometric information and provides access to appropriate 

analytical solutions for advanced computer technology. 

Keywords: bundle block adjustment; 3D natural cubic splines; arc-length parameterization; 

linear features; line photogrammetry 

 

1. Introduction 

One of the major tasks in digital photogrammetry is to determine the orientation parameters of 

aerial images quickly and accurately, which involves the two primary steps of interior and exterior 

orientation. While the original aerial photography provides the interior orientation parameters, the 

problem remains to determine the exterior orientation with respect to the object coordinate system. 

Exterior orientation establishes the position of the camera projection center in the ground coordinate 

system and the three rotation angles of the camera axis represent the transformation between the image 
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and the object coordinate system. Exterior orientation parameters (EOPs) for a stereo model consisting 

of two aerial images can be obtained using relative and absolute orientation. This is a fundamental task 

in many applications such as surface reconstruction, orthophoto generation, image registration, and 

object recognition. The EOPs of multiple overlapping aerial images can be computed using a bundle 

block adjustment. The position and orientation of each exposure station are obtained by bundle block 

adjustments using collinearity equations that are linearized as having an unknown position and 

orientation with the object space coordinate system. 

The program for bundle block adjustment in most softcopy workstations employs point features as 

the control information. Photogrammetric triangulation using digital photogrammetric workstations is 

more automated than aerial triangulation using analog instruments because the stereo model can be 

directly set using analytical triangulation outputs. Bundle block adjustment reduces the cost of field 

surveying in difficult areas and verifies the accuracy of field observations during the adjustment 

process. Even though each stereo model requires at least two horizontal and three vertical control 

points, this method can reduce the number of control points with accurate orientation parameters. 

EOPs of all the photographs in the target area are determined by the adjustment, which improves the 

accuracy and reliability of photogrammetric tasks. Because object reconstruction is processed by an 

intersection employing more than two images, bundle block adjustment provides the redundancy for 

the intersection geometry and contributes to the elimination of the gross error in the recovery of EOPs. 

A stereo model consisting of two images with 12 EOPs is a common orientation unit. The 

mechanism of object reconstruction from a stereo model is comparable with that of an animal or 

human visual system. The principle aspects of the human vision system, including its neurophysiology, 

anatomy, and visual perception, are well described in Schenk [1]. A point-based procedure relationship 

between point primitives is widely developed in traditional photogrammetry, such that one measured 

point on an image is identified in another image. Even for linear features, data for a stereo model in a 

softcopy workstation is collected as points so that further application and analysis relies on points as 

primary input data units. The coefficients of interior, relative, and absolute orientation are computed 

from the point relationship. Interior orientation compensates for lens distortion, film shrinkage, scanner 

error, and atmosphere refraction. Relative orientation makes the stereoscopic view possible, and the 

relationship between a model coordinate system and an object space coordinate system is reconstructed 

by absolute orientation. Ground control points (GCPs) are widely employed to compute orientation 

parameters. Although the use of many GCPs is a time-consuming procedure and inhibits the robust and 

accurate automation that research into digital photogrammetry aims to achieve, the deployment of a 

computer, storage capacity, photogrammetric software, and a digital camera can reduce the 

computational and time complexity. 

Employing high level features increases the feasibility of gaining geometric information and 

provides a suitable analytical situation for advanced computer technology. With advancing 

development in the extraction, segmentation, classification, and recognition of features, the input data 

for feature-based photogrammetry has been expanded at the expense of a redundancy in the application 

of aerial triangulation. Because the identification, formulation, and application of reasonable linear 

features is a crucial procedure for autonomous photogrammetry, higher order geometric feature-based 

modeling plays an important role in modern digital photogrammetry. The digital image format is suited 
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to this purpose, especially in feature extraction and measurement, and it is useful for precise and 

rigorous modeling of features from images. 

 

2. Line Photogrammetry 

 

2.1. Overview of Line Photogrammetry 

 

Line photogrammetry refers to applications such as single photo resection, relative orientation, 

triangulation, image matching, image registration, and surface reconstruction, which are implemented 

using linear features and the correspondence between linear features rather than points. Interest 

conjugate points such as edge points, corner points, and points on parking lanes operate well for 

determining EOPs with respect to the object space coordinate frame in traditional photogrammetry. 

The most well-known edge and interest point detectors are the Canny [2], Förstner [3], Harris, 

otherwise well-known as the Plessy detector [4], Moravec [5], Prewitt [6], Sobel [7], and SUSAN [8] 

detectors. The Canny, Prewitt, and Sobel operators are edge detectors and the Förstner, Harris, and 

SUSAN operators are corner detectors. Other well-known corner detection algorithms are the 

Laplacian of Gaussian, the difference of Gaussians, and the determinant of Hessian. Interest point 

operators that detect well-defined points, edges, and corners play an important role in automated 

triangulation and stereo matching. For example, the Harris operator is defined as a measurement of 

corner strength as: 
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where Hthr is the threshold parameter on corner strength. The Harris operator searches points where 

variations in two orthogonal directions are large using the local autocorrelation function and provides 

good repeatability under varying rotation, scale, and illumination. The Förstner corner detector is also 

based on the covariance matrix for the gradient at a target point. 

Marr [9] proposes the zero-crossing edge point detector utilizing second order rather than first order 

directional derivatives. The maximum of first order derivatives indicates the location of an edge 

whereas it is the zero of second order derivatives that indicates an edge. Physical boundaries of objects 
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are easily detected because the gray levels change abruptly in boundaries. Because no single operator 

exists in edge detection, several criteria are required for each specific application. Matching point 

features present large percentages of match errors because point features are ambiguous and an 

analytical solution for point matching is not yet developed. Because of the geometric information and 

symbolic meaning of linear features, matching them is more reliable than matching point features in 

the autonomous environment of digital photogrammetry. As the use of linear features does not require 

a point-to-point correspondence, the matching of linear features is more flexible than that for points. 

A number of researchers have published studies on automatic feature extraction and its application 

for various photogrammetric tasks: Förstner [10], Hannah [11], Schenk et al. [12], Schenk and  

Toth [13], Ebner and Ohlhof [14], Ackerman and Tsingas [15], Haala and Vosselman [16], Drewniok 

and Rohr [17,18], Zahran [19], and Schenk [20]. However, point-based photogrammetry based on 

manual measurement and the identification of interest points is not compatible with the autonomous 

environment of digital photogrammetry, but is a labor-intensive interpretation with the limitations of 

occlusion, ambiguity, and semantic information when compared with appropriate robust automation. 

Because point features do not provide explicit geometric information, geometrical knowledge is 

achieved by perceptual organization [21-24]. Perceptual organization derives features and structures 

from imagery without a prior knowledge of the geometric, spectral, or radiometric properties of 

features and is a required step in object recognition. Perceptual organization is an intermediate level 

process for various vision tasks such as target-to-background discrimination, object recognition, target 

cueing, motion-based grouping, surface reconstruction, image interpretation, and change detection. 

Because objects cannot be distinguished by one gray level pixel, an image must be investigated 

entirely to obtain perceptual information. The most recent research related to perceptual organization 

concerns the 2D image implementation at signal, primitive, and structural levels. 

In general, grouping or segmentation has the same meaning as perceptual organization in computer 

vision. This segmentation is typically addressed by two approaches, a model-based method (top-down 

approach) and a data-based method (bottom-up approach), and many researchers have employed edges 

and regions in segmentation. In the edge-based approaches, edges are likened to general forms of 

linear features without discontinuities, and in region-based approaches, iterative region growing 

techniques using seed points are preferred for surface fitting. Model-based methods require domain 

knowledge for each specific application in a manner similar to the human visual system, whereas  

data-based methods employ data properties for data recognition in a global fashion. In data-based 

methods, the same invariant properties in different positions and orientations are combined into the 

same regions or the same features. One approach alone, however, cannot guarantee consistent quality 

so combined approaches are implemented to minimize error segmentation. 

Symbolic representation using distinct points is difficult because interest points contain no explicit 

information about physical reality. While traditional photogrammetric techniques obtain the camera 

parameters from the correspondence between 2D and 3D points, a more general and reliable process is 

required for advanced computer technology such as the adoption of linear features. Line 

photogrammetry is superior in higher level tasks such as object recognition and automation as 

compared with point-based photogrammetry, but selection of the correct candidate linear features is a 

complicated process. The development of the algorithm from point- to line-based photogrammetry 

uses the advantages of both approaches. The selection of suitable features is easier than the extraction 
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of straight linear features and the candidate feature can be used in higher applications. A reason for 

developing curve features is that they will be prior to, and a fundamental aspect of, the next highest 

features such as surfaces, areas, and 3D volumes that consist of free-form linear features. Line-based 

photogrammetry is most suitable in the development of robust and accurate techniques for automation. 

If linear features are employed as control features, they provide advantages over points in the 

automation of aerial triangulation. Photogrammetry based on the manual measurement and 

identification of conjugate points is less reliable than line-based photogrammetry because it has the 

limitations of occlusion (visibility), ambiguity (repetitive patterns), and semantic information when 

considering the need for reliable and effective automation. The manual identification of corresponding 

entities within two images is crucial in the automation of point based photogrammetric tasks. No 

knowledge of the point-to-point correspondence is required in line-based photogrammetry. In addition, 

point features do not carry information about the scene whereas linear features contain the semantic 

information related to real object features. Additional information concerning linear features can 

increase the redundancy of the point system. 

 

2.2. Literature Review 

 

A review of related works begins with those using methods of pose estimation in imagery based on 

linear features that appear in most man-made objects such as buildings, roads, and parking lots. Over 

the years, a number of researchers in photogrammetry and computer vision have used line instead of 

point features; for example, Masry [25], Heikkila [26], Kubik [27], Petsa and Patias [28], Gülch [29], 

Wiman and Axelsson [30], Chen and Shibasaki [31], Habib [32], Heuvel [33], Tommaselli [34], 

Vosselman and Veldhuis [35], Förstner [36], Smith and Park [37], Schenk [38], Tangelder et al. [39], 

and Parian and Gruen [40]. Mulawa and Mikhail [41] originally proved the feasibility of linear features 

for close-range photogrammetric applications such as space intersection and resection, and relative  

and absolute orientation. This was the first step in employing linear feature-based methods in  

close-range photogrammetric applications. Mulawa [42] later developed linear feature-based methods 

for different sensors. 

Whereas straight linear features and conic sections can be represented as unique mathematical 

expressions, free-form lines in nature cannot be described by algebraic equations. Hence, Mikhail and 

Weerawong [43] used splines and polylines to represent free-form lines as analytical expressions. 

Tommaselli and Tozzi [44] proposed that the accuracy of the straight line parameter be a subpixel with 

the representation of four degrees of freedom in an infinite line. Many researchers in photogrammetry 

have described straight lines as infinite lines using minimal representation to reduce unknown 

parameters. The main consideration in straight line expression is in the singularities. Habib et al. [45] 

made a bundle block adjustment using a 3D point set lying on control linear features instead of 

traditional control points. EOPs were reconstructed hierarchically employing automatic single photo 

resection (SPR). 

Habib et al. [46] summarized linear features extracted from a mobile mapping system, a GIS 

database, and maps for various photogrammetric applications such as SPR, triangulation, digital 

camera calibration, image matching, 3D reconstruction, image to image registration, and surface to 

surface registration. In their work, matched linear feature primitives were utilized in space intersection 
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for the reconstruction of object space features, and linear features in the object space were used as 

control features in triangulation and digital camera calibration. 

Mikhail [47] and Habib et al. [48] accomplished the geometrical modeling and the perspective 

transformation of linear features within a triangulation process. Linear features were used to recover 

relative orientation parameters. Habib et al. proposed a free-form line in object space by a sequence  

of 3D points along the object space line. 

Schenk [49] extended the concept of aerial triangulation from point features to linear features. The 

line equation of six dependent parameters replaced the point-based collinearity equation: 
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where a real variable is t, the start point (XA,YA,ZA), and the direction vector (a,b,c). 

The traditional point-based collinearity equation was extended to line features: 
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with xp,yp as photo coordinates, f the focal length, XC,YC,ZC the camera perspective center, and rij the 

elements of the 3D orthogonal rotation matrix. The extended collinearity equation with six parameters 

was derived as the line expression of four parameters (ф,θ,x0,y0) because a 3D straight line has only 

four independent parameters. Two constraints are required to solve a common form of the 3D straight 

equations using six parameters determined by two vectors: 
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where z is a real variable. The advantage of the 3D straight line using four independent parameters is 

that it reduces the computation and time complexity in processes such as bundle block adjustment. The 

collinearity equation as the straight line function of four parameters was developed: 
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where X, Y, and Z were defined in equation (7). 

Zalmanson [50] updated EOPs using the correspondence between the parametric control free-form 

line in object space and the projected 2D free-form line in image space. The hierarchical approach, the 

modified iteratively close point (ICP) method, was developed to estimate curve parameters. The ray 

lies on the free-form line whose parametric equation represented by one parameter follows. Besl and 

McKay [51] employed the ICP algorithm to solve a matching problem of point sets, free-form curves, 
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surfaces, and terrain models in 2D and 3D space. In their work, an ICP algorithm was executed 

without prior knowledge of the correspondence between points. The ICP method affected the 

Zalmanson’s dissertation on the development of the recovery of EOPs using 3D free-form lines in 

photogrammetry. Euclidean 3D transformation was then employed in a search for the closest entity in 

the geometric data set. Rabbani et al. [52] utilized the ICP method in the registration of Lidar point 

clouds to divide them into four categories (spheres, planes, cylinders, and tori) by direct and  

indirect methods. 
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where  ,,,,, 000 ZYX  are the EOPs and 321 ,,   are the direction vector. 

The parametric curve Γ(t) = [X(t) Y(t) Z(t)]
T
 was obtained by minimizing the Euclidian distance 

between two parametric curves: 
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(t,l) had a minimum value at 0//  tl  with two independent variables l and t as in (11). 
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Akav et al. [53] employed planar free-form curves for aerial triangulation with the ICP method. 

Because the effect of the Z parameter as compared with that of X or Y was large in a normal  

plane equation aX + bY + cZ = 1, a different plane representation was developed to avoid  

numerical problems: 
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with   the angle from the XY plane,   the angle around the Z axis, n the unit vector of plane normal, 

and D the distance between the plane and the origin. Five relative orientation parameters and three 

planar parameters were obtained by using the homography mapping system, which searched for the 

conjugate point in an image corresponding to a point in the other image. 

Lin [54] proposed the method of autonomous recovery of exterior orientation parameters by an 

extension of the traditional point-based modified iterated Hough transform (MIHT) to the 3D  

free-form linear feature-based MIHT. Straight polylines were generalized for matching primitives in 

the pose estimation because the mathematical representation of straight lines is much clearer than the 

algebraic expression of conic sections and splines. 
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Gruen and Akca [55] matched 3D curves whose forms were defined by a cubic spline using 

matching least squares. Subpixels were localized by the matching, and the quality of the localization 

was decided by the geometry of image patches. Two free-form lines were defined as: 
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where 32103210 ,,,,,,,],1,0[ bbbbaaaau  are variables and the 3)(),( uguf . 

The Taylor expansion was employed to adopt the Gauss–Markov model: 
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3. Bundle Block Adjustment with 3D Natural Cubic Splines 

 

3.1. 3D Natural Cubic Splines 

 

The choice of the right feature model is important in the development of a feature-based approach 

because an ambiguous feature representation leads to unstable adjustment. A spline is a piecewise 

polynomial function in the n of vector graphics. Splines are widely used for data fitting in computer 

science because of the resultant simplicity in curve reconstruction. Complex figures are well 

approximated through curve fitting and a spline lends strength to the accuracy evaluation, data 

interpolation, and curve smoothing. One of the important properties of a spline is that it can easily be 

morphed. A spline represents a 2D or 3D continuous line within a sequence of pixels and segmentation. 

The relationship between pixels and lines is applied to a bundle block adjustment or a functional 

representation. A spline of degree 0 is the simplest spline, a linear spline has degree 1, a quadratic 

spline has degree 2, and a common natural cubic spline has degree 3 with continuity C
2
. The 

geometrical meaning of continuity C
2
 is that the first and second derivatives are proportional at joint 

points and the parametric importance of continuity C
2
 is that the first and second derivatives are equal 

at connected points. 

The number of break points that are the determination of a set of piecewise cubic functions varies 

depending upon the spline parameters. A natural cubic degree guarantees a second-order continuity, 

which means that the first and second order derivatives of two consecutive natural cubic splines are 

continuous at the break point. The intervals for a natural cubic spline do not need to be the same as the 

distance of every two consecutive data points. The best intervals are chosen by a least squares method. 

In general, the total number of break points is less than that of original input points. The algorithm of a 

natural cubic spline is as below. 
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Generate the break point (control point) set for the spline of the original input data. 

Calculate the maximum distance between the approximated spline and the original input data 

while the maximum distance > the threshold of the maximum distance. 

Add the break point to the break point set at the location of the maximum distance. 

Compare the maximum distance with the threshold. 

 

A larger threshold makes for more break points with a more accurate spline to the original input 

data. N piecewise cubic polynomial functions between two adjacent break points are defined from the 

N + 1 break points. There is a separate cubic polynomial for each segment with its own coefficients. 

Figure 1. Natural cubic splines. 
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The strength of this approach is that segmented lines represent a free-form line with analytical 

parameters. The number of break points is reduced and the input error should be absorbed by a 

mathematical model, especially in the expression of points on a straight line. A natural cubic spline is a 

data-independent curve fitting. The disadvantage is that the whole curve shape depends on all of the 

passing points, and changing any one of these alters the entire curve. 

The correspondence between the 3D curve in the object space coordinate system and its projected 

2D curve in the image coordinate system is implemented using an accommodating natural cubic spline 

curve feature because of its boundary conditions that retain zero second derivatives at the end points. A 

natural cubic spline is composed of a sequence of cubic polynomial segments as in Figure 1 with 

x0,x1,…,xn as the n + 1 control points and X0,X1,…,Xn-1 as the ground coordinates of n segments. 

 

3.2. Extended Collinearity Equation Model for Splines 

 

Collinearity equations are the commonly used condition equations to determine relative orientation. 

The space intersection calculates a point location in object space using the projection ray intersection 

from two or more images, and the space resection determines the coordinates of a point on an image 

and the EOPs with respect to the object space coordinate system. The space intersection and the space 
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resection are the fundamental operations in photogrammetry for further processes such as triangulation. 

The basic concept of the collinearity equation is that all points on the image, the perspective center, 

and the corresponding point in the object space are all on a straight line. The relationship between the 

image and object coordinate systems is expressed by three position parameters and three orientation 

parameters. Collinearity equations play an important role in photogrammetry because each control 

point in object space produces two collinearity equations for every photograph in which the point 

appears. If m points appear in n images, then 2mn collinearity equations can be employed in the bundle 

block adjustment. The extended collinearity equations relating a natural cubic spline in object space 

with ground coordinates (Xi(t),Yi(t),Zi(t)) with image space having photo coordinates (xpi,ypi) are seen 

as (16). A natural cubic spline allows the utilization of the collinearity model for expressing orientation 

parameters and curve parameters as below: 
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with (xpi,ypi) as the photo coordinate, f the focal length, XC,YC,ZC the camera perspective center, and rij 

the elements of the 3D orthogonal rotation matrix 
TR  by the angular elements (,,) of EOPs. 

Figure 2. The projection of a point on a spline.  

 

The extended collinearity equations can be written as follows: 
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To recover the 3D natural cubic spline parameters and the exterior orientation parameters in a 

bundle block adjustment, a nonlinear mathematical model of the extended collinearity equation is 

differentiated. The models of exterior orientation recovery are classified into linear and nonlinear 
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methods. Whereas linear methods decrease the computation load, the accuracy and reliability of linear 

algorithms are not excellent. Nonlinear methods are more accurate and predictable. However, 

nonlinear methods require initial estimates and they increase the computational complexity. The 

relationship between a point in image space and a corresponding point in object space is established by 

the extended collinearity equation. Prior knowledge of the correspondences between individual points 

in the 3D object space and their projected features in the 2D image space is not required in extended 

collinearity equations with 3D natural splines. One point on a cubic spline has 19 parameters 

(XC,YC,ZC,,,,a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3,t). The differentials of (17) are derived by (18): 
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with differentials of du, dv, and dw (19). 
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(19). 

Substituting du, dv, and dw in (18) by the expressions found in (19) leads to: 

dtNdcNdcNdcNdcNdbNdbNdbNdbN

daNdaNdaNdaNdNdNdNdZNdYNdXNdy

dtMdcMdcMdcMdcMdbMdbMdbMdbM

daMdaMdaMdaMdMdMdMdZMdYMdXMdx

CCCp

CCCp

19318217116015314213112011

310291807654321

19318217116015314213112011

310291807654321

        

        













 

(20) 

M1,…M19,N1,…N19 denotes the partial derivatives of the extended collinearity equation for curves. The 

linearized extended collinearity equations by Taylor expansion, ignoring the 2nd and higher order 

terms, can be written as follows: 
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with u
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 being the approximate parameters by  00
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and ex,ey the stochastic errors of xp,yp, the observed photo coordinates with zero expectation, 

respectively. Orientation parameters including the 3D natural cubic spline parameters are expected to 

recover correctly because the extended collinearity equations with these splines increase redundancy. 

 

3.3. Arc-Length Parameterization of 3D Natural Cubic Splines 

 

The assumption made in bundle block adjustment by the Gauss–Markov model is that all the 

estimated parameters are uncorrelated. Hence, the design matrix of the adjustment must be full rank, 

nonsingular, and normal. However, because the spline parameters are not independent of their location 

parameters, additional observations are required to obtain parameter estimations. In a point-based 

approach, the point location relationship between image and object space is established for the pose 

estimation to include the fundamental camera position and orientation, the remote sensing, and the 

computer vision. The coordinates of a point are necessary for the space intersection and resection. To 

remove any rank deficiency caused by datum defects in point-based photogrammetry, some constraints 

are adopted to estimate the unknown parameters. The most common constraints are coplanarity, 

symmetry, perpendicularity, and parallelism. The minimum number of constraints is equal to the rank 

deficiency of the system. Inner constraints are often used in a photogrammetric network, which can be 

applied to both the object features and the camera orientation parameters. Angle or distance condition 

equations provide information on the relativity between observations in object space and points in 

image space. Absolute information can be obtained from the fixed control points. 

In this research, an arc-length parameterization is applied as an additional condition equation to 

solve the rank deficient problem in extended collinearity equations using 3D natural cubic splines. The 

concept of differentiable parameterization is that the arc length of a curve can be divided into minute 

pieces and these can be summed such that each piece will be approximately linear. The sum of the 

squares of derivatives is the same with a velocity vector because a parametric curve can be considered 

as a point trajectory. A velocity vector describes the path of a curve and movement characteristics. If a 

particle on a curve moves at a constant rate, the curve is parameterized by the arc length. While the 

extended collinearity equation provides the only information, curves have additional geometric 

constraints such as arc length, tangent of location, and curvature. These support space resection under 

the assumption of properly accounting for additional independent observations in both the image and 

object space. Arc length in object space is determined by a geometric integration using a construction 

from the differentiable parameterization of a spline. Arc length in image space is calculated by a 
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geometric integration of a construction from the differentiable parameterization of the photo 

coordinates derived from a spline in the object space: 
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(22) 

where f is the focal length and: 

 

















































































2

321

2

321

2

321

3

3

2

210

3

3

2

210

3

3

2

210

32

32

32

),,(

)('

)('

)('

),,(

)(

)(

)(

tctcc

tbtbb

tataa

R

tw

tv

tu

Ztctctcc

Ytbtbtbb

Xtatataa

R

tw

tv

tu

T

C

C

C

T





                

(23) 

Because the problem of the arc-length parameterization of splines has no analytical solution, several 

numerical approximations of reparameterization techniques for splines or other curve representations 

have been developed. While most curves are not parameterized for arc length, the arc length of a  

B-spline can be reparameterized by adjusting its knots. Wang et al. [56] approximated the 

parameterized arc length of spline curves by generating a new curve that accurately approximated the 

original spline curve to reduce the computation complexity of the arc-length parameterization. They 

showed that the approximation of the arc-length parameterization works well in a variety of real-time 

applications including driving simulations. 

Guenter and Parent [57] employed a hierarchical approach algorithm to develop a linear search  

arc-length subdivision table for parameterized curves to reduce the arc-length computation time. A 

table of the correspondence between parameter t and the arc length can be established to accelerate the 

arc-length computation. After dividing the parameter range into intervals, the arc length of each 

interval is computed for mapping parameters to the arc length. A reference table for various intervals 

of arc length can be developed. Another method of arc-length approximation is to use explicit 

functions such as the Bézier curve, which has advantages in fast function evaluations. Adaptive 

Gaussian integrations employ a recursive method that starts from a few samples and adds on more as 

necessary. Adaptive Gaussian integration also uses a table that maps curves or spline parameter values 

according to the arc-length values. 

Nasri et al. [58] proposed an arc-length approximation method of circles and piecewise circular 

splines generated by control polygons or points using a recursive subdivision algorithm. While  

B-splines have various tangents over the curve depending upon the arc-length parameterization, 

circular splines have constant tangents whose vectors are useful in arc-length computation. 
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Simpson’s rule is the numerical approximation of definite integrals. The geometric integration of 

the arc length in the image space can be calculated by this rule as follows: 
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(24) 

with )(,, 00

2

0

1 tftt  being the approximate parameter using the following: 
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000000 ,,,,,,,,,,,,,,,,,, iCCC tccccbbbbaaaaZYX   and with ae  being the stochastic 

error of the arc length between two locations with zero expectation. A1,…A20 denote the partial 

derivatives of the arc-length parameterization of a 3D natural cubic spline. 

 

3.4. Model Integration 

 

The objective of bundle block adjustment is twofold, namely to calculate the exterior orientation 

parameters of a block of images and also the coordinates of the ground features in object space. In the 

determination of orientation parameters, additional interior conditions such as lens distortion, 

atmospheric refraction, and principal point offset can be obtained by self-calibration. In general, 

orientation parameters are determined by bundle block adjustment using a large number of control 

points. This establishment of control points, however, means expensive fieldwork, so an economical 

and accurate adjustment method is required. Linear features have several advantages to complement 

points in that they are useful for higher level tasks and they are easily extracted in man-made 
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environments. The line photogrammetric bundle adjustment in this research aims at the estimation of 

exterior orientation parameters and 3D natural cubic spline parameters using the correspondence 

between splines in object space and spline observations of multiple images in image space. Nonlinear 

functions of orientation parameters, spline parameters, and spline location parameters are represented 

by extended collinearity and arc-length parameterization equations. Five observation equations are 

produced by each two points, and these are four extended collinearity equations (21) and one  

arc-length parameterization equation (24). An integrated model provides not only for the recovery of 

the image orientation parameters but also enables surface reconstruction using 3D curves. Of course, 

as the equation system of the integrated model has seven datum defects, control information about the 

coordinate system is required to obtain parameters. This is a step toward higher level vision tasks such 

as object recognition and surface reconstruction. In the case of straight lines and conic sections, 

tangents are additional observations in the integrated model. Conic sections, like points, provide good 

mathematical constraints because such sections provide nonsingular second degree equations. Such 

equations provide information for reconstruction and transformation and conic sections are divided by 

the eccentricity e. Because such sections can adopt more constraints than points and straight line 

features, they are useful for close range photogrammetric applications. In addition, conic sections have 

strength in correspondence establishment between 3D sections in object space and their counterpart 

features in 2D projected image space. 

Ji et al. [59] employed conic sections for the recovery of EOPs, and Heikkila used them for camera 

calibration. A Hough transformation reduces the time complexity of conic section extraction using five 

parameter spaces for a SPR, camera calibration, and triangulation. 

Parameters are linearized in the previous sections and the Gauss–Markov model is employed for the 

unknown parameter estimation. The equation system of the integrated model is described as: 
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tArc , m as the number of images, n the number of 

points on a spline segment, k the kth image, and i the ith spline segment. Because the equation system 

of the integrated model has seven datum defects, the control information for the coordinate system is 

required to obtain seven transformation parameters. In a general photogrammetric network, the rank 

deficiency referred to as datum defects is seven. Estimates of the unknown parameters are obtained by 

the least squares solution, which minimizes the sum of squared deviations. A nonlinear least squares 

system is required in a conventional nonlinear photogrammetric solution to obtain orientation 

parameters. Many observations in photogrammetry are random variables that are considered as 

different values in the case of repeated observations such as the image coordinates of points. Each 

measured observation represents a random variable estimate. If image point coordinates are measured 

using a digital photogrammetric workstation, the values are measured slightly differently. The 

integrated and linearized Gauss–Markov model and the least squares estimated parameter vector with 

its dispersion matrix are: 
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(26) 

with ),0(~ 12

0

PNe   being the error vector with zero mean and cofactor matrix 
1P , a variance 

component 2

0 , which can be known or not, IM̂  is the least squares estimated parameter vector, and 

 IMD 


 is the dispersion matrix. 

If one or more of the three estimated parameter sets i

t

i

SP

k

EOP  ,,  are considered as stochastic 

constraints, the reduction of the normal equation matrix can be applied. Control information is 

implemented as stochastic constraints in a bundle block adjustment. The distribution and quality of 

control features depend on the number and the density of control features, the number of tie features, 

and the degree of overlap of the tie features. If adding stochastic constraints removes the rank 

deficiency of the Gauss–Markov model, bundle adjustment can be implemented employing only the 

extended collinearity equations for the 3D natural cubic splines. Fixed exterior orientation parameters, 

control splines, or control spline location parameters can be stochastic constraints. 
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3.5. Evaluation of Bundle Block Adjustment 

 

Bundle block adjustment must be followed by an evaluation postadjustment analysis to check the 

suitability of project specifications and requirements. Iteratively reweighed least squares and least 

median of squares are the appropriate implementation of a statistical evaluation that removes poor 

observations. The important element affecting bundle block adjustment is the geometry of aerial 

images. Generally, the previous flight plan is adopted to obtain suitable results. A simulation bundle 

block adjustment is implemented before employing a flight plan within the new project design because 

such a simulation can reduce the effect of error measurements. 

A qualitative evaluation that allows the operator to recognize the adjustment characteristics is often 

used after bundle block adjustment. The sizes of the residuals in images are drawn for the evaluation. 

The image residuals can be points or long lines and if all image residuals have the same orientation, 

then the image has a systematic error such as atmospheric refraction or an orientation parameter error. 

In addition, a lack of flatness in the focal plane may cause systematic errors in the image space, which 

affects the accuracy of a bundle block adjustment. Distortions are different from one location to 

another in the entire image space. The topographic measurement of the focal plane can correct the lack 

of focal plane flatness. Image coordinate errors are correlated in the case of systematic image errors. A 

poor measurement can result in an indicated opposite residual direction or an exaggerated residual. 

The three main elements in the statistical evaluation of bundle block adjustments are precision, 

accuracy, and reliability. Precision is calculated employing parameter variances and covariances, 

because a small variance indicates that the estimated values have a small range and a large variance 

means that the estimated values are not calculated properly. The range of the parameter variance is 

from zero, in the case of error free parameters, to infinity, in the case of completely unknown 

parameters. A dispersion matrix may contain diagonal elements that are parameter variances. These 

and any off-diagonal elements are covariances between two parameters. Accuracy can be verified 

using check points that are not contained in bundle block adjustment like control points. Reliability can 

be confirmed from other redundant observations. The extended collinearity equations are a 

mathematical model for bundle block adjustment. The mathematical model consists of both functional 

and stochastic models. The functional one represents the geometrical properties and the stochastic one 

describes the statistical properties. Repeated measurements at the same location in the image space are 

represented with respect to the functional model and the redundant observations of image locations in 

the image space are expressed with respect to the stochastic model. While the Gauss–Markov model 

uses indirect observations, condition equations such as coordinate transformations and the coplanarity 

condition can be employed in the adjustment. 

The Gauss–Markov model and the condition equation can be combined into the Gauss–Helmert 

model. In addition, functional constraints such as points having the same height or straight railroad 

segments can be added into the block adjustment. 

The difference between condition and constraint equations is that condition equations consist of 

observations and parameters, and constraint equations consist of only parameters. With the advance of 

technology, the photogrammetrical input data has increased so adequate formulation of adjustment is 

required. All the variables are involved in the mathematical equations and the weight matrix of the 

variables changes from zero to infinity depending upon the variances. Variables with near to zero 
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weight are considered as unknown parameters and variables with close to infinite weight are 

considered as constants. Most actual observations exist between the two boundary cases. Assessment 

by postadjustment analysis is important in photogrammetry to evaluate the results. One of the 

assessment methods is to compare the estimated variance with the two-tailed confidence interval based 

on the normal distribution. The two-tailed confidence interval is computed by a reference variance 2

0  

with 2  distribution as: 
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(27) 

where r is degrees of freedom and   is a confidence coefficient (or a confidence level). If 2

0  has a 

value outside of the interval, we can assume that the mathematical model of adjustment is incorrect 

through the wrong formulation or linearization, blunders, or systematic errors. 

 

3.6. Pose Estimation with an ICP Algorithm 

 

In the previous spline segment case, the correspondence between spline segments in the image and 

the object space was assumed. In the present consideration, it is not known which image points belong 

to which spline segment. The ICP algorithm can be utilized for the recovery of EOPs because the 

initial estimated parameters of the relative pose can be obtained from the orientation data for general 

photogrammetric tasks. The original ICP algorithm steps are as follows. The closest point operators 

search the associate point using the nearest neighboring algorithm and then the transformation 

parameters are estimated using a mean square cost function. The point is transformed by the estimated 

parameters and this step is iteratively established towards convergence into a local minimum of the 

mean square distance. The transformation, which includes translation and rotation between two clouds 

of points, is estimated iteratively towards convergence into a global minimum. In other words, the 

iterative calculation of the mean square errors is terminated when a local minimum falls below a 

predefined threshold. A small global minimum or a fluctuated curve requires more memory-intensive 

and time-consuming computation. In every iteration step, a local minimum is calculated with varying 

transformation parameters, but convergence into a global minimum with the correct transformation 

parameters is not always the result. 

By the definition of a natural cubic spline, each parametric equation of a spline segment ))(( tSi  can 

be expressed as: 
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(28) 

with )(),(),( tZtYtX iii  as the object space coordinates and iii cba ,,  as the coefficients of the ith  

spline segment. 

The ray from the perspective center (XC,YC,ZC) to the image point (xp,yp,–f) is: 
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where: 
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with kkkk

C

k

C

k

C ZYX  ,,,,,  EOPs at the kth iteration. 

A point on the ray searches the closest to a natural cubic spline by minimizing the following target 

function for every spline segment. Transformation parameters related to an image point and its closest 

spline segment can be established using the least squares method: 

tlstationarytSltl i   ,  )()(),(
2


                    

(31) 

The global minimum of ),( tl  can be calculated by ∇ 0),(  tl  or 0//  tl . 

Substituting (28) and (29) into (31) and taking the derivatives with respect to l and t leads to: 

   

 

  

  
   032            

32            

32
2

1

0            

2

1

2

321

3

3

2

2103

2

321

3

3

2

2102

2

321

3

3

2

2101

3

3

3

2

2103

2

3

3

2

21021

3

3

2

2101

















tctcctctctccldZ

tbtbbtbtbtbbldY

tataatatataaldX
t

dtctctccldZ

dtbtbtbbldYdtatataaldX
l

iiiiiiiC

iiiiiiiC

iiiiiiiC

iiiiC

iiiiCiiiiC

 

(32) 

Convergence into a global minimum does not exist because equation (32) is not a linear system in l 

and t. The relationship between an image space point and its corresponding spline segment cannot be 

established with the minimization method. 

 

4. Experiments and Results 

 

This section demonstrates the feasibility and the performance of the proposed model for the 

acquisition of spline parameters, spline location parameters, and image orientation parameters based 

on control and tie splines in the object space within the simulated and real data sets. In general 

photogrammetric tasks, the correspondence between image edge features must be established either 

automatically or manually, but in this study correspondence between image edge features is not 

required. In a series of six experiments with the synthetic data set, the first test recovers spline 

parameters and spline location parameters in an error free EOPs case. The second test recovers the 

partial spline parameters related to the spline shape. The third procedure estimates the spline location 

parameters with error free EOPs. The fourth step calculates EOPs and spline location parameters, 
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followed by the fifth step that estimates EOPs with full controlled splines in which the parametric 

curves used as control features are assumed to be error free. In the last experiment, EOPs and tie spline 

parameters are obtained using the control spline. 

Object space knowledge concerning splines, their relationships, and the orientation information of 

images can be considered as control information. Spline parameters in a partial control spline or 

orientation parameters can be considered as stochastic constraints in the integrated adjustment model. 

The starting point of a spline is considered to be a known parameter in the partial control spline in 

which a0,b0, and c0 of the X, Y, and Z coordinates of a spline are known. The number of unknowns is 

displayed in Table 1 and Figure 3, where n is the number of points in the object space, t shows the 

number of spline location parameters, and m represents the number of overlapped images in the  

target area. 

Table 1. Number of unknowns. 

EOP Spline Number of unknowns 

Known 

EOP 

Tie spline 12(n–1) + t 

Partial control spline 9(n–1) + t 

Full control spline t  

Unknown 

EOP 

Partial control spline 6m + 9(n–1) + t  

Full control spline 6m + t 

Figure 3. Different examples. (a) Known EOPs with tie splines, (b) Known EOPs with 

partial control splines, (c) Known EOPs with full control splines, (d) Unknown EOPs with 

partial control splines, and (e) Unknown EOPs with full control splines. (Red: Unknown 

parameters, Green: Partially fixed parameters, Blue: Fixed parameters). 

 

Four points on a spline segment in one image are the only independent observations so additional 

points on the same segment do not provide nonredundant information to reduce the overall deficiency 

of the EOP and spline parameter recovery. To verify the information content of an image spline, we 

demonstrate that any five points on a spline segment generate a dependent set of extended collinearity 

equations. Any combination of four points yielding eight collinearity equations are independent 

observations, but five points bearing 10 collinearity equations produce a dependent set of observations 
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related to the correspondence between a natural cubic spline in the image and the object space. More 

than four point observations on an image spline segment increase the redundancy related to the 

accuracy but do not decrease the overall rank deficiency of the proposed adjustment system. In the 

same fashion, the case using a polynomial of degree 2 can be implemented. Three points on a quadratic 

polynomial curve in one image are the only independent sets, so additional points on the same curve 

segment are a dependent observation. More than the independent point observations on a polynomial 

increase the redundancy related to the accuracy, but they do not provide nonredundant information. 

The amount of information carried by a natural cubic spline can be calculated with the redundancy 

budget. Every spline segment has 12 parameters and every point measured on a spline segment 

contributes one additional parameter. Let n be the number of points measured on one spline segment in 

the image space and m be the number of images that contain a tie spline. 2nm collinearity equations 

and m (n − 1), the arc-length parameterizations, are equations and 12 (the number of one spline 

segment parameters) + nm (the number of spline location parameters) are unknowns. The redundancy 

is 2nm − m − 12 for one spline segment, so that if two images (m = 2) are used for bundle block 

adjustment, the redundancy is 4n − 14. Four points are required to determine spline and spline location 

parameters, in which case one spline segment and one degree of freedom to the overall redundancy 

budget is solved by each point measurement with the extended collinearity equation. Arc-length 

parameterization also contributes one degree of freedom to the overall redundancy budget. The fifth 

point does not provide additional information to reduce the overall deficiency but only strengthens the 

spline parameters. This means it increases the overall precision of the estimated parameters. 

This fact shows the advantage of adopting splines in which the number of degrees of freedom is 

four because in straight tie lines only two points per line are independent. Independent information, the 

number of degrees of freedom of a straight line, is two from two points or a point with its tangent 

direction. A redundancy is r = 2m − 4 with a line expression of four parameters because there are 2 nm 

collinearity equations and the unknowns are 4 + nm [49]. Only two points (n = 2) are available to 

determine four line parameters with two images (m = 2) so at least three images must contain a tie line. 

The information content of t tie lines on m images is t (2m − 4). One straight line adds two degrees of 

freedom to the redundancy budget and at least three lines are required in the space resection. An 

additional point on a straight line does not provide additional information to reduce the rank deficiency 

of the recovery of EOPs but only contributes image line coefficients. If spline location parameters or 

spline parameters enter the integrated adjustment model through stochastic constraints, employing 

extended collinearity equations is enough to solve the system without the arc-length parameterization. 

The redundancy budget of a tie point is r = 2m − 3 so tie points provide one more independent 

equation than the tie lines. However, using tie points requires a semiautomatic matching procedure to 

identify the tie points on all the images, and using linear features provides a more reliable and accurate 

basis for object recognition, pose determination, and other higher photogrammetric activities than 

using point features. 

 

4.1. Synthetic Data Description 

 

To evaluate the new bundle block adjustment model using natural cubic splines, an analysis of the 

sensitivity and robustness of the model is required. The model suitability can be verified by using the 
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estimated parameters with a dispersion matrix that includes standard deviations and correlations. The 

accuracy of bundle block adjustment is determined by the geometry of a complete block of images and 

the quality of the position and attitude information of a camera. A novel approach is a simulation of the 

bundle block adjustment. This is required prior to an actual experiment with real data in order to 

evaluate the performance of the proposed algorithms. Such a simulation can control the measurement 

errors to minimize random noise affecting the overall geometry of a block. Individual observations are 

generated based on the general situation of bundle block adjustment in order to estimate the properties 

of the proposed algorithms. A simulation allows adjustment for geometric problems or conditions with 

various experiments. A spline is derived via three ground control points (3232, 4261, 18), (3335, 4343, 52), 

and (3373, 4387, 34). Several factors that affect the estimates of exterior orientation parameters, spline 

parameters, and spline location parameters are discerned using the proposed bundle block adjustment 

model together with both the simulated image and the real image blocks. 

Figure 4. Six image block. 

 

Table 2. EOPs of six bundle block images for simulation. 

Parameter ][mXC  ][mYC  ][mZC  [deg]   [deg]   [deg]   

Image 1 3000.00 4002.00 503.00 0.1146 0.0573 5.7296 

Image 2 3305.00 4005.00 499.00 0.1432 0.0859 −5.7296 

Image 3 3610.00 3995.00 505.00 0.1719 0.4584 2.8648 

Image 4 3613.00 4613.00 507.00 0.2865 −0.0573 185.6383 

Image 5 3303.00 4617.00 493.00 −0.1432 0.4011 173.0333 

Image 6 2997.00 4610.00 509.00 −0.1833 −0.2865 181.6276 
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Figure 5. Natural cubic spline. 

 

4.2. Experiments with Error Free EOPs 

 

Spline parameters and spline location parameters are dependent upon various controls, and the 

unknowns can be obtained by a combined model of extended collinearity equations and the arc-length 

parameterization equations of splines. Splines in the object space are considered as tie lines in the same 

fashion as tie points in a conventional bundle block adjustment. Data on the exterior orientation 

parameters is considered as control information in this experiment. A well-known fact in employing 

the least squares system is that good initial estimates of true values make the system swiftly 

convergent towards the correct solution. 

Normally distributed random noise is added to points in the image space coordinate system in all 

the experiments. This has a zero mean and  = 5m standard deviation. Generally, the larger the 

noise level the more accurate are the approximations required to achieve the ultimate convergence of 

the results. A worst case scenario for estimation is that the large noise level causes the proposed model 

not to converge towards the specific estimates because the convergence radius is then proportional to 

the noise level. The parameter estimation is sensitive to the noise of the image measurement. Error 

propagation related to the noise in image space observation is one of the most important elements in 

the estimation theory. The proposed bundle block adjustment can be evaluated statistically using the 

variances and the covariances of parameters because a small variance indicates that the estimated 

values have a small range and a large variance means that the estimates are not properly calculated. 

The range of parameter variance is from zero in the case of error free parameters to infinity with 

completely unknown parameters. The result of one spline segment is expressed in Table 3 with 0
 as 

the initial values and ̂  as the estimates. The estimated spline and spline location parameters along 

with their standard deviations are established without the knowledge of the point-to-point correspondence. 
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Table 3. Spline parameter and spline location parameter recovery. 

Spline location parameters 

 Image 1 Image 2 Image 3 

1t  7t  2t  8t  3t  9t  
0  0.02 0.33 0.09 0.41 0.16 0.47 

̂  0.0415 0.0046 0.3615 0.0016 0.0917 0.0017 0.4158 0.0032 0.1412 0.0043 0.4617 0.0135 

 Image 4 Image 5 Image 6 

4t  10t  5t  11t  6t  12t  
0  0.18 0.51 0.25 0.52 0.33 0.57 

̂  0.2174 0.0098 0.4974 0.0079 0.2647 0.0817 0.5472 0.0317 0.3133 0.0127 0.6157 0.1115 

Spline parameters 

 
10a  11a  12a  13a  10b  11b  

0  3322.17 72.16 −45.14 27.15 4377.33 69.91 

̂  3335.0080 

 0.0004 

70.4660 

 0.0585 

−48.8529 

 0.8310 

16.5634 

 1.2083 

4343.0712 

 0.0004 

63.0211 

 0.0258 

 
12b  13b  10c  11c  12c  13c  

0  −17.49 13.68 48.82 10.15 –27.63 21.90 

̂  −28.7770 

 0.2193 

9.8893 

 0.2067 

51.9897 

 0.0006 

8.1009 

 0.0589 

−39.3702 

 0.7139 

13.3904 

 1.0103 

 

If no random noise is added to image points, the estimates converge to the true values. The quality 

of initial estimates is important in the least squares system because it determines the iteration number 

of the system and the accuracy of the convergence. The assumption is that two points on one spline 

segment are measured in each image so the total number of equations is 2  6 (the number of images)  2 

(the number of points) + 6 (the number of the arc length), and the total number of unknowns is 12 (the 

number of spline parameters) + 12 (the number of spline location parameters). The redundancy (=the 

number of equations − the number of parameters), that is, the degrees of freedom, is six. While some 

of the geometric constraints such as slope and distance observations are dependent on the extended 

collinearity equations using splines, other constraints such as slope and arc length increase the 

nonredundant information in the adjustment to reduce the overall rank deficiency of the system. 

The coplanarity approach is another mathematical model of the perspective relationship between the 

image and the object space features. The projection plane defined by the perspective center in the 

image space and the plane including the straight line in the object space are identical. Because the 

coplanarity condition is only for straight lines, the coplanarity approach cannot be extended to curves. 

Object space knowledge about the starting point of a spline can be employed in bundle block 

adjustment. Because the control information about a starting point is available for only three 

parameters of a total of 12 unknown parameters to a spline, a spline with control information about a 

starting point is called a partial control spline. Three spline parameters related to the starting point of a 

spline are set to stochastic constraints and the result is seen in Table 4. The total number of equations 

is 2  6 (the number of images)  2 (the number of points) + 6 (the number of the arc length) = 30, and 

the total number of unknowns is 9 (the number of partial spline parameters) + 12 (the number of spline 
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location parameters) = 21 so the redundancy is nine. A convergence of partial spline and spline 

location parameters has been archived with a partial control spline. 

Table 4. Partial spline parameter and spline location parameter recovery. 

Spline location parameters 

 Image 1 Image 2 Image 3 

1t  7t  2t  8t  3t  9t  
0  0.04 0.36 0.09 0.40 0.14 0.45 

̂  0.0525 0.0067 0.3547 0.0020 0.1128 0.0047 0.4157 0.0091 0.1575 0.0028 0.4543 0.0083 

 Image 4 Image 5 Image 6 

4t  10t  5t  11t  6t  12t  
0  0.21 0.50 0.27 0.54 0.31 0.61 

̂  0.1916 0.0037 0.5128 0.0087 0.2563 0.0044 0.5319 0.0056 0.2961 0.0139 0.6239 0.1147 

Spline parameters 

 11a  12a  13a  11b  12b  13b  
0  75.14 −52.87 30.71 70.05 −40.33 10.98 

̂  71.7099 

 0.0795 

−47.2220 

 0.6872 

−15.8814 

 2.6439 

62.3703 

 0.0579 

−28.7260 

 0.6473 

7.1137 

 1.7699 

 11c  12c  13c  
0  0.82 −30.72 10.51 

̂  7.1198 

 0.9483 

−35.3841 

 1.3403 

8.1557 

 3.5852 

In the next experiment, spline location parameters are estimated with known EOPs and a full 

control spline. Because spline parameters and spline location parameters are dependent upon other 

parameters, the unknowns can be obtained from the model of an observation equation with stochastic 

constraints. In this experiment, spline parameters are set to stochastic constraints and the result is seen 

in Table 5. 

Table 5. Spline location parameter recovery. 

Spline location parameters 

 Image 1 Image 2 

1t  7t  13t  2t  8t  14t  
0  0.01 0.37 0.63 0.09 0.44 0.71 

̂  0.0589 0.0015 0.3570 0.0076 0.6712 0.0197 0.1134 0.0072 0.4175 0.0054 0.7069 0.0080 

 Image 3 Image 4 

3t  9t  15t  4t  10t  16t  
0  0.17 0.46 0.74 0.21 0.49 0.81 

̂  0.1757 0.0031 0.4784 0.0071 0.7631 0.0095 0.2039 0.0102 0.4869 0.0030 0.8122 0.0044 

 Image 5 Image 6 

 5t  11t  17t  6t  12t  18t  
0  0.26 0.53 0.84 0.29 0.61 0.89 

̂  0.2544 

 0.0050 

0.5554 

 0.0069 

0.8597 

 0.0089 

0.3151 

 0.0095 

0.6284 

 0.0052 

0.9013 

 0.0086 
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The total number of equations is 2  6 (the number of images)  3 (the number of points) = 36, and 

the total number of unknowns is 18 (the number of spline location parameters) so the  

redundancy is 18. Because spline location parameters are independent of each other, the arc-length 

parameterization is not required. The result indicates that a convergence of spline location parameters 

has been achieved with fixed spline parameters considered as stochastic constraints. The proposed 

model is robust with respect to the initial approximations of spline parameters. The uncertain 

information related to the representation of a natural cubic spline is described in the dispersion matrix. 

 

4.3. Recovery of EOPs and Spline Parameters 

 

The object space knowledge of splines is available to recover the exterior orientation parameters in 

a bundle block adjustment. Control spline and partial control spline approaches are applied to verify 

the feasibility of using control information with splines. In both cases, equations of the arc-length 

parameterization are not necessary if we have enough equations to solve the system because spline 

parameters are independent of each other. In the experiment for a full control spline, the total number 

of equations is 2  6 (the number of images)  4 (the number of points) + 3 (the number of arc lengths) 

 6 (the number of images) = 66, and the total number of unknowns is 36 (the number of EOPs) + 24 

(the number of spline location parameters) = 60. The redundancy is six. In the case of the partial 

control spline with one spline segment, the total number of equations is 2  6 (the number of images)  4 

(the number of points) + 3 (the number of arc lengths)  6 (the number of images) = 66, and the total 

number of unknowns is 36 (the number of EOPs) + 9 (the number of partial spline parameters) + 24 

(the number of spline location parameters) = 69. Thus, one more segment is required to solve the 

underdetermined system. The total number of equations using two spline segments is 2  6 (the 

number of images)  4 (the number of points)  2 (the number of spline segments) + 3 (the number of 

arc lengths)  6 (the number of images)  2 (the number of spline segments) = 132, and the total 

number of unknowns is 36 (the number of EOPs) + 9 (the number of partial spline parameters)  2 (the 

number of spline segments) + 24 (the number of spline location parameters)  2 (the number of spline 

segments) = 102. The redundancy is 30. A convergence of the EOPs of an image block and the spline 

parameters has been achieved in both experiments. 

Table 6 expresses the convergence achievement of EOPs and spline location parameters. The 

correlation coefficient between parameter XC and   is high (  1) in the dispersion matrix, that is, 

two parameters are highly correlated among the EOPs. The correlation coefficient between parameters 

YC and  is approximately 0.85. In general, the correlation coefficient between parameters XC and  is 

higher than between parameters YC and . 

Because a control spline provides the object space information about the coordinate system having 

datum defects of seven, tie spline parameters and EOPs can be recovered simultaneously. In the 

experiment of combined splines, the total number of equations is 2  6 (the number of images)  3 (the 

number of points)  2 (the number of splines) + 12 (the number of arc lengths)  2 (the number of 

splines) = 96, and the total number of unknowns is 36 (the number of EOPs) + 12 (the number of tie 

spline parameters) + 18 (the number of tie spline location parameters) + 18 (the number of control 

spline location parameters) = 84.  
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Table 6. EOP and spline location parameter recovery. 

EOPs 

Parameter ][ mXC  ][ mYC  ][ mZC  [deg]   [deg]   [deg]   

Image 1 

0  3007.84 4001.17 501.81 8.7090 −9.7976 −12.5845 

̂  3001.5852 

 0.0154 

4001.2238 

 0.0215 

503.2550 

 0.1386 

–0.8908 

 0.3895 

0.3252 

 0.1351 

6.0148 

 0.8142 

Image 2 

0  3308.17 4001.17 497.52 10.23 8.3144 −5.5004 

̂  3305.1962 

 0.3804 

4004.9827 

 0.1785 

501.2641 

 0.2489 

−0.1247 

 0.0308 

−0.5497 

 0.0798 

−5.2858 

 0.4690 

Image 3 

0  3612.68 3993.37 506.32 5.2731 7.2581 −10.135 

̂  3611.8996 

 0.1226 

3995.7891 

 0.0695 

505.1299 

 0.0337 

0.1486 

 0.4467 

0.1192 

 0.0168 

2.3372 

 0.0794 

Image 4 

0  3619.75 4612.78 506.88 6.2571 −5.3482 183.66 

̂  3612.7128 

 0.0258 

4613.0145 

 0.01895 

507.0654 

 0.0251 

−0.0921 

 0.7485 

−0.152 

 0.4505 

184.5016 

 0.2289 

Image 5 

0  3301.84 4618.63 497.61 −6.1731 7.5182 187.7145 

̂  3302.8942 

 0.0467 

4617.0538 

 0.0249 

492.9424 

 0.0704 

−0.6347 

 0.1413 

0.2662 

 0.8006 

171.9808 

 0.6445 

Image 6 

0  2999.59 4615.74 508.49 −7.1651 −4.8427 185.1057 

̂  2997.9827 

 0.0513 

4610.1432 

 0.0249 

509.2952 

 0.0401 

−0.1360 

 0.5659 

−0.1279 

 0.6225 

183.1789 

 0.2271 

Spline location parameters 

 Image 1 Image 2 

 
1t  7t  13t  19t  2t  8t  

14t  20t  
0  0.04 0.28 0.52 0.76 0.08 0.32 0.56 0.80 

̂  

0.0432 

 0.0033 

0.2980 

 0.0012 

0.517

6 

 0.0

039 

0.7705 

 0.0077 

0.0813 

 0.0082 

0.3338 

 0.0041 

0.5715 

 0.0039 

0.8136 

 0.0069 

 Image 3 Image 4 

 3t  9t  15t  21t  4t  10t  16t  22t  
0  0.12 0.36 0.60 0.84 0.16 0.40 0.64 0.88 

̂  

0.01294 

 0.0036 

0.3578 

 0.0092 

0.602

4 

 0.0

046 

0.8437 

 0.0079 

0.1594 

 0.0115 

0.4112 

 0.0057 

0.6418 

 0.0029 

0.9783 

 0.0037 

 Image 5 Image 6 

 5t  11t  17t  23t  6t  12t  18t  24t  
0  0.20 0.44 0.68 0.92 0.24 0.48 0.72 0.96 

̂  

0.2039 

 0.0057 

0.4461 

 0.0125 

0.671

3 

 0.0

080 

0.9264 

 0.0061 

0.2483 

 0.0085 

0.4860 

 0.0073 

0.7181 

 0.0084 

0.9613 

 0.0079 

 

Knowledge of object space information about a spline referred to as a full control spline is available 

prior to aerial triangulation. A control spline is considered to be a stochastic constraint in the proposed 
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adjustment model and the representation of a control spline is the same as that of a tie spline. The 

result for combined splines that demonstrates the feasibility of using tie splines and control splines for 

bundle block adjustment is illustrated in Table 7. 

Iteration with an incorrect spline segment in which a spline in the image space does not lie on the 

projection of a 3D spline in the object space results in a divergence of the system. A control spline is 

taken to be error free, but in reality this assumption is not correct. The accuracy of control splines is 

propagated into the proposed bundle block adjustment algorithm, but initial data such as a GIS 

database, maps, or orthophotos cannot be without error. 

Table 7. EOP, control, and tie spline parameter recovery. 

EOPs 

Parameter ][ mXC  ][ mYC  ][ mZC  [deg]   [deg]   [deg]   

Image 1 

0  3014.87 4007.18 500.79 0.9740 −8.6517 7.2155 

̂  3000.5917 

 0.0011 

4001.8935 

 0.0059 

503.2451 

 0.1572 

−0.0974 

 0.1432 

0.4297 

 0.0974 

6.6005 

 0.2807 

Image 2 

0  3315.37 4008.57 503.31 −8.4225 −3.3232 7.2766 

̂  3305.1237 

 0.0057 

4005.0571 

 0.0043 

498.8916 

 0.0784 

−0.5214 

 0.3610 

−0.1948 

 0.1375 

−6.1421 

 0.5558 

Image 3 

0  3613.85 3991.17 508.37 −1.3751 5.3783 4.3148 

̂  3609.5400 

 0.1576 

3995.1419 

 0.0803 

505.1791 

 0.0428 

4.5378 

 5.4947 

1.1746 

 0.3610 

2.2288 

 0.4870 

Image 4 

0  3618.46 4617.61 503.18 8.5541 2.4287 182.7735 

̂  3613.1988 

 0.0599 

4612.8281 

 0.0206 

507.2056 

 0.0472 

1.1803 

 0.2578 

–0.4068 

 0.2979 

185.7014 

 0.1089 

Image 5 

0  3305.71 4620.37 491.17 −8.7148 −5.1487 183.1114 

̂  3302.9716 

 0.0718 

4617.0808 

 0.0592 

492.9357 

 0.0660 

−0.6990 

 0.1087 

1.0485 

 0.1437 

172.8671 

 0.2137 

Image 6 

0  3002.72 4613.63 491.22 8.5475 5.0124 178.2353 

̂  2996.9737 

 0.0315 

4610.8773 

 0.0672 

509.3724 

 0.0027 

−3.2888 

 0.0688 

0.5672 

 0.3837 

182.2693 

 0.2478 

Control spline location parameters 

 Image 1 Image 2 Image 3 

1t  7t  13t  2t  8t  14t  3t  9t  15t  
0  0.04 0.36 0.66 0.11 0.41 0.71 0.16 0.46 0.76 

̂  0.0597 

 0.0173 

0.3495 

 0.0085 

0.6518 

 0.0065 

0.0982 

 0.0074 

0.4085 

 0.0096 

0.7087 

 0.0067 

0.1494 

 0.0094 

0.4499 

 0.0089 

0.7564 

 0.0156 

 Image 4 Image 5 Image 6 

4t  10t  16t  5t  11t  17t  6t  12t  18t  
0  0.19 0.51 0.79 0.24 0.54 0.86 0.29 0.59 0.91 

̂  0.2018 

 0.0043 

0.4984 

 0.0078 

0.8065 

 0.0096 

0.2573 

 0.0086 

0.5586 

 0.0068 

0.8553 

 0.0110 

0.3172 

 0.0088 

0.6137 

 0.0078 

0.8958 

 0.0085 

Tie spline location parameters 

 
Image 1 Image 2 Image 3 

1t  7t  13t  2t  8t  14t  3t  9t  15t  
0  0.03 0.34 0.67 0.09 0.39 0.71 0.14 0.47 0.73 
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̂  
0.0680 

 0.0073 

0.3577 

 0.0067 

0.6694 

 0.0033 

0.1141 

 0.0116 

0.4032 

 0.0073 

0.6937 

 0.0054 

0.1495 

 0.0124 

0.4599 

 0.0075 

0.7618 

 0.0054 



Sensors 2009, 9              

 

 

9658 

Table 7. Cont. 

 
Image 4 Image 5 Image 6 

4t  10t  16t  5t  
11t  17t  6t  

12t  18t  
0  0.21 0.49 0.81 0.26 0.56 0.83 0.31 0.58 0.92 

̂  
0.1975 

 0.0026 

0.5109 

 0.0019 

0.8068 

 0.0216 

0.2488 

 0.0773 

0.5733 

 0.0027 

0.8527 

 0.0138 

0.3308 

 0.0034 

0.6142 

 0.0115 

0.9018 

 0.0317 

Tie spline parameters 

 10a  11a  12a  13a  10b  11b  
0  3341.44 73.13 −48.32 −20.72 4337.49 56.97 

̂  
3335.0147 

 0.0012 

71.2914 

 0.0478 

−47.5124 

 0.7959 

−14.8527 

 1.8668 

4342.0369 

 0.0009 

62.4762 

 0.0804 

 12b  13b  10c  11c  12c  13c  
0  −36.55 2.57 44.16 3.65 −28.22 7.99 

̂  
−28.0982 

 0.4851 

6.8679 

 1.4219 

51.5228 

 0.0008 

6.8220 

 0.0421 

−36.9681 

 1.9215 

13.0338 

 2.0048 

 

4.4. Tests with Real Data 

 

In this section, actual experiments with real data are undertaken to verify the feasibility of the 

proposed bundle block adjustment algorithm using splines for the recovery of EOPs and spline 

parameters. Medium scale aerial images covering the area of Jakobshavn Isbrae in West Greenland are 

employed for this study. The aerial photographs were obtained by Kort and Matrikelstyrelsen (KMS: 

Danish National Survey and Cadastre) in 1985. KMS established aerial triangulation using GPS 

ground control points with a  1 pixel root mean square error under favorable circumstances and 

images were oriented to the WGS84 reference frame. Technical information on the aerial images is 

described in Table 8.  

Table 8. Information about aerial images used in this study. 

Vertical aerial photograph 

Data 9 July 1985 

Origin KMS 

Focal length 87.75 mm 

Photo scale 1:150,000 

Pixel size 12 μm  

Scanning resolution 12 μm  

Ground sampling 

distance 

1.9 m 

 

The diapositive films were scanned with a RasterMaster photogrammetric precision scanner, which 

has a maximum image resolution of 12 μm and a scan dimension of 23 cm  23 cm to obtain digital 

images for a softcopy workstation as seen in Figure 6. 
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Figure 6. Test images. (a) Image 762, (b) Image 764, (c) Image 766, and (d) Target area. 

 

 

The first experiment is the recovery of spline parameters with known EOPs obtained by manual 

operation using a softcopy workstation. A spline consists of four parts and the second segment 

parameters are recovered. The total number of equations is 2  3 (the number of images)  3 (the 

number of points) + 2 (the number of arc lengths)  3 (the number of images) = 24, and the total 

number of unknowns is 12 (the number of spline parameters) + 9 (the number of spline location 

parameters) = 21 so the redundancy is three. Table 9 shows the convergence achievement of spline and 

spline location parameters. 

Table 9. Spline parameter and spline location parameter recovery. 

Spline location parameters 

 Image 762 Image 764 

1t  4t  7t  2t  5t  8t  
0  0.08 0.38 0.72 0.22 0.53 0.82 

̂  0.0844 0.0046 0.4258 0.0058 0.6934 0.0072 0.2224 0.0175 0.5170 0.0104 0.8272 0.0156 

 Image 766 

3t  6t  9t  
0  0.32 0.59 0.88 

̂  0.3075 0.0097 0.6176 0.0148 0.9158 0.0080 
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Table 9. Cont. 

Spline parameters 

 10a  
11a  

12a  13a  
0  535000.00 830.00 −150.00 50.00 

̂  535394.1732 0.1273 867.6307 0.7142 −173.1357 7.6540 24.3213 21.3379 

 10b  11b  12b  13b  
0  7671000.00 150.00 140.00 −300.00 

̂  7672048.3173 0.2237 143.1734 1.6149 130.8147 10.9058 −290.1270 26.7324 

 10c  11c  12c  13c  
0  0.00 −10.00 −50.00 50.00 

̂  2.1913 0.0547 −3.7669 0.1576 −39.8003 9.1572 27.7922 19.6787 

 

Estimation of spline parameters including their location parameters is established by the 

relationship between splines in the object space and their projection in the image space without the 

knowledge of the point-to-point correspondence. Because bundle block adjustment using splines does 

not require conjugate points generated by point-to-point correspondence knowledge, a more robust and 

flexible matching algorithm can be adopted. Table 10 shows the available object space information 

without knowledge of the point-to-point correspondence (the full control spline). All locations are 

assumed as lying on the second spline segment and the second spline segment as calculated from the 

softcopy workstation is used as control information. 

Table 10. Spline location parameter recovery. 

Spline location parameters 

 Image 762 Image 764 Image 766 

1t  4t  2t  5t  3t  6t  
0  0.15 0.60 0.30 0.75 0.45 0.90 

̂  0.1647 0.0048 0.6177 0.0091 0.2872 0.0034 0.7481 0.0093 0.4362 0.0155 0.9249 0.0087 

 

The next experiment is the recovery of EOPs with a control spline. The spline control points are 

(534415.91, 767199305, −18.97), (535394.52, 7672045.02, 2.127), (536110.66, 7672024.29, −13.897), 

and (536654.04, 7671016.20, −2.51). Even though edge detectors are often used in digital 

photogrammetry and remote sensing software, the control points are extracted manually because edge 

detection is not our main goal. Among the three segments, the second spline segment is used for the 

EOP recovery. The information of the control spline is obtained by a manual operation using the 

softcopy workstation with an estimated accuracy of ±1 pixel. The convergence radius of the proposed 

iterative algorithm is proportional to the estimated accuracy level. The image coordinate system is 

converted into the photo coordinate system using the interior orientation parameters from KMS. The 

association between a point on a 3D spline segment and a point on a 2D image is not established in this 

study. Of course, 3D spline measurement in the stereo model using the softcopy workstation cannot be 

without error so the accuracy of the control spline is propagated into the recovery of EOPs. The result 

is illustrated in Table 11. The spline control information is utilized as stochastic constraints in the 

adjustment model. Because adding these constraints removes the rank deficiency of the Gauss–Markov 
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model corresponding to spline parameters that are dependent upon spline location parameters, a bundle 

block adjustment can be made using only the extended collinearity equations for natural cubic splines. 

 

Table 11. EOP and spline location parameter recovery. 

EOPs 

Image ][ mXC  ][ mYC  ][ mZC  [deg]   [deg]   [deg]   

762 

0  547000.00 7659000.00 14000.00 3.8472 2.1248 91.8101 

̂  
547465.37 

 15.0911 

7658235.41 

 13.0278 

13700.25 

 5.4714 

0.3622 

 0.8148 

0.5124 

 0.1784 

91.5124 

 0.1717 

764 

0  546500.00 7670000.00 13500.00 0.1125 0.6128 90.7015 

̂  
546963.22 

 12.5460 

7672016.87 

 17.1472 

13708.82 

 7.1872 

−0.3258 

 0.6913 

−0.5217 

 0.8632 

91.1612 

 1.1004 

766 

0  546000.00 768000.00 13700.00 1.4871 5.9052 92.0975 

̂  
546547.58 

 13.8104 

7685836.75 

 12.1486 

13712.20 

 8.4854 

1.2785 

 1.4218 

0.5468 

 1.1957 

92.9796 

 0.6557 

 

Spline location parameters 

 Image 762 Image 764 

1t  4t  7t  10t  2t  5t  
0  0.08 0.32 0.56 0.80 0.16 0.40 

̂  0.0865 0.0097 0.3192 0.0159 0.5701 0.0072 0.8167 0.0088 0.1759 0.0067 0.4167 0.0085 

 Image 764 Image 766 

8t  11t  3t  6t  9t  12t  
0  0.64 0.88 0.24 0.48 0.72 0.96 

̂  0.6557 0.0131 0.8685 0.0092 0.2471 0.0086 0.4683 0.0069 0.7251 0.0141 0.9713 0.0089 

 

5. Conclusions 

 

In this paper, traditional least squares of a bundle block adjustment process have been augmented 

by support splines instead of conventional point features. Estimation of EOPs and spline parameters 

including location parameters is established by the relationship between splines in the object space and 

their projection into the image space without any knowledge of the point-to-point correspondence. 

Because bundle block adjustment using splines does not require conjugate points generated by the 

point-to-point correspondence knowledge, a more reliable and flexible matching algorithm can be 

adopted. Point-based aerial triangulation with experienced human operators is effective for traditional 

photogrammetric activities but is not appropriate within the autonomous environment of digital 

photogrammetry. Feature-based aerial triangulation is suitable for the development of reliable and 

accurate automation techniques. If linear features are employed as control features, they provide 

advantages over point features in aerial triangulation automation. Point-based aerial triangulation 

based on manual measurement and the identification of conjugate points is less reliable than  

feature-based aerial triangulation because it has the limitations of visibility (occlusion), ambiguity 

(repetitive patterns), and semantic information in the light of robust and appropriate automation. 

Automation of aerial triangulation and pose estimation is obstructed by the correspondence problem, 
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but the employment of splines is one way to overcome occlusion and ambiguity issues. The manual 

identification of corresponding entities in two images is crucial in the automation of photogrammetric 

tasks. A further problem of point-based approaches is their weak geometric constraints as compared 

with feature-based methods, so accurate initial values for the unknown parameters are required. 

Feature-based aerial triangulation can be implemented without conjugate points because the measured 

points in each image are not the conjugate points in this proposed adjustment model. Thus, tie splines 

that do not appear in all the overlapped images together can be employed in feature-based aerial 

triangulation. Another advantage of employing splines is that the adoption of high level features 

increases the feasibility of geometric information and provides an appropriate analytical solution that 

emphasizes the redundancy of aerial triangulation. 

3D linear features expressed by 3D natural cubic splines are employed as the mathematical model 

of linear features in the object space and its counterpart in the projected image space for bundle block 

adjustment. To solve overparameterization of 3D natural cubic splines, arc-length parameterization 

using Simpson’s rule is developed, and in the case of straight lines and conic sections, spline tangents 

can be additional equations to the overparameterized system. Photogrammetric triangulation by the 

proposed model, including the extended collinearity and arc-length parameterization equations, is 

developed to show the feasibility of tie and control splines for the estimation of the exterior orientation 

of multiple images, splines, and spline location parameters. A useful stochastic constraint for a spline 

segment is examined for its utility to become a full or partial control spline such as known EOPs with a 

tie, partial control, and full control spline, and unknown EOPs with a partial and full control spline. In 

addition, the information content of an image spline is calculated and the feasibility of a tie spline and 

a control spline for a block adjustment is described. A simulation bundle block adjustment is 

implemented prior to the actual experiment with real data in order to evaluate the performance of the 

proposed algorithms. A simulation can control the measurement errors so that random noises 

minimally affect the overall geometry of a block. The individual observations are generated based on 

the general situation of bundle block adjustment to estimate the properties of the proposed  

algorithms. A simulation allows adjustment for geometric problems or varying conditions within 

individual experiments. 
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