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Abstract: 3D imaging with Time-of-Flight (ToF) cameras is a promising recent technique 

which allows 3D point clouds to be acquired at video frame rates. However, the distance 

measurements of these devices are often affected by some systematic errors which decrease 

the quality of the acquired data. In order to evaluate these errors, some experimental tests on 

a CCD/CMOS ToF camera sensor, the SwissRanger (SR)-4000 camera, were performed and 

reported in this paper. In particular, two main aspects are treated: the calibration of the 

distance measurements of the SR-4000 camera, which deals with evaluation of the camera 

warm up time period, the distance measurement error evaluation and a study of the 

influence on distance measurements of the camera orientation with respect to the observed 

object; the second aspect concerns the photogrammetric calibration of the amplitude images 

delivered by the camera using a purpose-built multi-resolution field made of high contrast 

targets. 
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1. Introduction and State of the Art 

In recent years, a new generation of active cameras, based on the Time-of-Flight principle (ToF), 

has been developed. These devices are usually characterized by no more than a few thousands of tens 

of pixels, a maximum unambiguous measurement range up to thirty meters and small dimensions. The 

main advantages with respect to other 3D measurement techniques are the possibility to acquire data at 

video frame rates and to obtain 3D point clouds without scanning and from just one point of view. 

ToF cameras usually deliver a range image and an amplitude image with infrared modulation 

intensities at video frame rates: the range image (or depth image) contains for each pixel the radial 

measured distance between the considered pixel and its projection on the observed object, while the 

amplitude image contains for each pixel the strength of the reflected signal by the object. In some 

cases an intensity image is also delivered, which represents the mean of the total light incident on the 

sensor (reflected modulated signal and background light of the observed scene). As shown in many 

previous works [1-7], the distance measurements of ToF cameras are influenced by some systematic 

errors. In order to model these errors, previous ToF camera calibration approaches performed a linear 

mapping, adjusting range measurement errors using look-up-tables [3] or splines [4]: in both cases 

they determined the distance errors using high precision measurement racks. Instead, this work 

presents a first attempt to obtain with a low-cost custom-made system a distance error model of a ToF 

camera (SwissRanger-4000 camera) that would be unique for all the SR-4000 camera pixels and which 

could be applied to data acquired with the standard software supplied with this camera. It is worth 

noting that all the tests reported in this paper were performed under indoor controlled conditions. 

In the following section the ToF measurement principle of range imaging cameras is briefly 

described. Then, some experimental tests for the camera distance measurement calibration are reported 

in Section 3. Section 4 reports about the photogrammetric calibration of the amplitude images 

delivered by the camera using a purpose-built multi-resolution field made of high contrast targets. 

Finally, some conclusions and future works are reported in Section 5.  

2. ToF Measurement Principle 

Two main variations of the ToF principle have been implemented above all: one measures distance 

by means of direct measurement of the runtime of a travelled light pulse using arrays of single-photon 

avalanche diodes (SPADs) [8,9]; the other method uses amplitude modulated light and obtains 

distance information by measuring the phase difference between a reference signal and the reflected 

signal [10,11]. While complex readout schemes and low frame rates have prevented the use of SPAD 

arrays in commercial 3D-imaging products up to now, the second category has already been 

implemented successfully in several commercially available 3D camera systems. More information 

about pixel structures and performance limitations of these sensors can be found for instance in [12]. 

The ToF camera that was tested in this work is a phase shift measurement device. The SR-4000 

camera modulates its illumination LEDs (Light Emitting Diodes) at a few tens of MHz and its 

CCD/CMOS imaging sensor measures the phase of the returned modulated signal at each pixel. The 

distance at each pixel is determined as a fraction of the one full cycle of the modulated signal, where 

the distance corresponding to one full cycle (the so called “non-ambiguous range”) is given by: 
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mod2 f

c
D =  (1) 

where c is the speed of light and fmod is the modulation frequency of the emitted signal. All the tests 

described in the following sections were performed using a modulation frequency of 30 MHz (standard 

setting): this results in a non-ambiguity range of 5.00 m. Different modulation frequencies can be 

adopted with this camera, with a maximum non-ambiguity range of 10.00 m [13]. A higher modulation 

frequency might provide better measurement accuracy but a shorter non-ambiguous range. Therefore, 

as a general rule, it can be stated that the modulation frequency should be adjusted based on the 

maximum target distance, remembering that reflective objects beyond the non-ambiguous range are 

frequently aliased [14]. 

A scheme of the phase shift measurement principle is reported in Figure 1: E is the amplitude of the 

emitted modulated signal, B is the mean intensity of the received signal and A is its amplitude. The 

received signal is offset-shifted in intensity with respect to the emitted signal mainly because of 

additional background light [15].  

Figure 1. Scheme of the phase shift measurement principle (the solid curve represents the 

emitted signal while the dotted one represents the received signal). 

 

The received signal is sampled four times in each cycle, at ¼ period phase shifts, i.e., 90° phase 

angle. From the four samples (A0, A1, A2, A3), the parameters A and B and the phase φ can be 

calculated: 
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The distance R is then derived from the phase φ: 

ϕ
π

⋅
⋅

=
mod4 f

c
R  (5) 

The amplitude A may be used as a measure of quality of the distance measurement [10], or simply 

to generate a grayscale image of the observed scene. 

In order to give an idea of the characteristics of the camera tested in this work, the principal 

specifications of the SR-4000 camera are reported in Table 1. For more details about camera 

specifications see [13]. 

Table 1. SR-4000 specifications. 

Pixel array size [-] 176 (h) × 144 (v)  
Field of view [°] 43.6 (h) × 34.6 (v) 
Pixel pitch [μm] 40 
Illumination wavelength with  
standard settings [nm] 

850 

Working range with standard 
settings [m] 

0.3 ÷ 5.0 

Maximum frame rate [fps] 54 
Dimensions [mm] 65 × 65 × 68 
Weight [g] 470 

3. Distance Calibration 

Some experimental tests relative to the calibration of the distance measurements delivered by the 

SR-4000 camera are reported in the following sub-sections. In our tests all the data were acquired with 

the SR_3D_View software provided with the camera, which delivers point coordinates (X, Y and Z), 

amplitude data of the object that has to be detected and a confidence map of the distance 

measurements. In particular, the confidence map is obtained using a combination of distance and 

amplitude measurements and their temporal variations: it represents a measure of probability or 

‘confidence’ that the distance measurement for each pixel is correct, so it can be useful to select 

regions containing high quality measurements or to reject low quality ones.  

3.1. Warm up Time Period Evaluation 

ToF camera measurements are influenced by the internal temperature of the measurement  

system [3,7,16]. In order to determine the camera warm up time period necessary to achieve distance 

measurement stability, the following test was carried out. 

The SR-4000 camera was set up on a photographic tripod, with the front of the camera parallel to a 

white wall. After turning on the camera, five consecutive frames were acquired every five minutes for 

two hours of camera working. The test was carried out at several distances (and integration times) 

between the front of the camera and the wall. The integration time is the length of time that the pixels 

are allowed to collect light. Data were acquired using an integration time equal to the “auto integration 

time” suggested by the SR_3D_View software. This software allows one to automatically adjust the 
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integration time depending on the maximum amplitudes present in the current image. This setting was 

used in order to avoid pixel saturation and to achieve a good balance between noise and high  

frame rate. 

In all cases, the five frames (range images) acquired each time were averaged pixel by pixel in 

order to reduce the measurement noise. Since the camera was not moved from its position in each test, 

variations during the working time of the mean and standard deviation of the averaged range images 

were considered. Since the tests were performed at different distances (and integration times), the 

relative variations of the mean and standard deviation, with respect to their initial values, were 

considered for each test in order to compare them (Figure 2 and Figure 3). In all cases a central sub-

image of 84 × 96 pixels was considered, while in two cases (when the wall filled the entire range 

image), also the entire image of 176 × 144 pixels was considered. 

Figure 2. Relative variations of the mean value of averaged range images during the 

working time of several tests (i.t. means integration time). 

 

As can be observed from Figures 2 and 3, both the mean value and the standard deviation of the 

distance measurements vary during working time: a maximum variation of about -6 mm was detected 

for the mean value, while a maximum variation of about 3 mm was measured for the standard 

deviation. Since the calculated variations are nearly constant after forty minutes of camera working, 

one can stand that a warm up period of forty minutes can be sufficient to achieve a good measurement 

stability of the SR-4000 camera. 
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Figure 3. Relative variations of the standard deviation of averaged range images during 

the working time of several tests (i.t. means integration time). 

 

3.2. Systematic Distance Measurement Error Evaluation 

In order to evaluate the systematic distance measurement errors of the SR-4000 camera, a custom-

made system was set up. The camera was positioned parallel to a vertical plywood panel  

(1.85 m × 2.52 m) supported by two adjustable tripods. The distance between the camera front and the 

panel was accurately measured using two parallel metal tape-measures (Figure 4a). This solution was 

designed in order to obtain an economic way to estimate the camera distance measurement accuracy. 

Unfortunately, since the purchased panel wasn’t perfectly flat, laser scanner and total station surveys of 

the plywood were performed in order to create a detailed model of the panel. A Mensi S10 laser scanner, 

which acquired about 780,000 points with sub-millimetric precision, was employed (Figure 4b). 

Figure 4. (a) Data acquisition with the SR-4000 camera. (b) Laser scanner survey of the 

panel with Mensi S10. 

               
                                       (a)                                                                         (b) 
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After the camera warm up, the panel was positioned each five centimeters in the 0.50 ÷ 4.50 m 

distance range between the camera front and the plywood. Thirty consecutive frames were acquired for 

each panel position, using an integration time equal to the “auto integration time” suggested by the 

SR_3D_View software. 

The acquired data were processed using a custom-made Matlab® application in order to evaluate the 

distance measurement errors and estimate a first distance error model. Since the panel did not fill the 

entire images delivered by the camera in almost half of the test distance gap, we limited our analysis to 

7,921 pixels which are contained in a sub-image of 89 × 89 pixels centered with respect to the central 

pixel of the camera sensor. For pixel in row i and column j position, let us define the following terms: 
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where hi,j is the discrepancy for pixel i,j,f represents a generic frame, n = 30 is the number of acquired 

frames, mi,j,f  is the measured distance for pixel i,j at the fth frame and ri,j is the real distance between 

pixel i,j and its orthogonal projection on the panel. This latter term was obtained from accurate metal 

tape-measures measurements combined with the panel model in order to take into account the panel 

curvatures. 

The variation of the mean values of the discrepancies (g) of all the considered pixels according to 

the mean measured distance (s) is reported in Figure 5. As can be observed from this figure the 

discrepancies between measured distance and real distance show a maximum value of 11 mm and a 

minimum value of −8 mm. These measurement errors are smaller than those of other Swiss Ranger 

cameras tested in previous works [3,7,17,18]. Besides, some tests similar to the ones reported  

in [17,18] were performed, which highlighted that the SR-4000 camera measurements are not affected 

by the scattering artifacts caused by multiple internal reflections occurring inside the SR-3000 line of 

sensor, which significantly limited its distance measurement accuracy [17,18]. 

However, from Figure 5 one can observe that a systematic trend of the measurement errors still 

remains which needs to be corrected. We modeled these measurement errors (discrepancies) with the 

following distance error model (e): 

)sin( 3210 λλλλ +⋅⋅⋅+= mme  (9) 

where m is the pixel measured distance, λ0 is a constant error and λ1 represents a scale factor which 

multiplies a “wiggling error” modeled by a sinusoidal function (λ2 = angular frequency,  

λ3 = phase shift). 
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Figure 5. Variation of the mean values of the discrepancies (g) of all the considered pixels 

according to the mean measured distance (s) and distance error model. 

 

3.3. Control Measurements 

In order to obtain a first check of the proposed distance error model, a procedure similar to the one 

adopted in Section 3.2 was adopted. After the camera warm up, the panel was randomly positioned at 

several distances from the camera. After averaging the thirty frames acquired for each position, each 

pixel distance measurement was corrected with the distance error model (9). The mean values of the 

residual discrepancies for 7,921 pixels are represented in Figure 6. 

Figure 6. Mean values of the discrepancies (g) of all the considered pixels before and after 

distance error model correction. 
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Figure 6 shows that, after applying the proposed distance error model (9), the absolute values of 

residual discrepancies are smaller than the discrepancies without correction in the 1.5–4.0 m distance 

measurement range. For measurement distances up to 1.5 m and longer than 4.0 m, our distance error 

model generates greater absolute residual discrepancy values; in fact, as can be observed from  

Figure 5, this model badly fits distance deviations especially for longer distances than 4.0 m. 

Since the 1.5–4.0 m distance measurement range is the most useful measurement range for our 

purposes (architectural and archaeological surveys, object modeling and 3D indoor scene 

reconstruction), the proposed model is suitable for our applications. Nevertheless, we will try to 

improve this aspect in future works. For instance, the measurement errors for distances shorter than  

1.5 m and longer than 4.0 m could be modeled by polynomial functions. 

3.4. Influence of Camera Orientation on Distance Measurements 

The signal emitted by the camera impinges the observed object with an angle which depends on the 

camera orientation with respect to the normal of the object surface. We can define alpha as the angle 

between the camera optical axis and the normal to the object surface, as shown in Figure 7.  

Figure 7. Alpha angle between camera optical axis and the normal to the object surface. 

 
 

Some previous works have already examined the influence of the emitted signal angle of incidence 

on distance measurement precision [1-19]. While in [19] only some statements are given about the 

influence of the angle of incidence on the residuals obtained after an automated segmentation of range 

videos acquired under simplified real-world conditions, in [1] a more significant test is performed. In 

this latter work, range images were acquired with different constant integration times of a reference 

panel which was rotated; in this way, the distance measurement precision decreased for an increasing 

angle because there was less reflected light with respect to the frontal position of the panel. Instead, in 

this work, we analyze this aspect from a more practical point of view: our analysis deals with data 

acquired with the SR_3D_View software using the “auto integration time”, so changing the integration 

time for each object position as a generic user could do acquiring data of the object to be surveyed.  
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In order to evaluate if there is an influence of the alpha angle on the precision of distance 

measurements acquired in this way, the following system was set up. The camera was positioned on a 

photographic tripod, with the camera front parallel to a Plexiglas panel, which was fixed to a Leica TS 

(Figure 8); the panel was covered with white sheet.  

Figure 8. System used to evaluate the influence of the alpha angle on camera distance measurements. 

  
 

After the camera warm up, using the Leica TS, the panel was accurately rotated each two grad in 

the 0 ÷ 50 grad rotation interval (Figure 9), both in clockwise direction and counterclockwise 

direction, while the SR-4000 camera was fixed. Fifty consecutive frames were acquired for each panel 

position, using an integration time equal to the “auto integration time” suggested by the SR_3D_View 

software. The distance between the panel and the camera was about 1.6 m.  

In order to accurately estimate the distribution of the distance measurements around their mean 

value, a reference plane for each panel position was estimated after outlier elimination from the 

acquired range images thanks to a robust estimator, the Least Median Squares (LMS) estimator [20]. 

This estimator has a high breakdown point, which means that it can discriminate outliers and leverage 

points up to a percentage of 50% of the considered data. The parameter which has more influence on 

the LMS results is the threshold value of rejection L, that represents a preliminary hypothesis on the 

percentage of outlier contamination. After testing this estimator on several randomly generated range 

images containing different percentages of outliers, we adopted a threshold value of rejection L = 1.5.  

The LMS estimator was applied on a sub-image of 65 × 61 pixel dimensions, which was centered 

with respect to the panel centre in each position. Thanks to this estimator it was possible to select some 

reliable points into the sub-image which were necessary for a robust plane estimation. Then the 

differences between the range image (obtained after averaging fifty frames) and the estimated 

reference plane were calculated for each panel position, always considering the sub-image of  

65 × 61 pixel dimensions. The mean and standard deviation values of that differences are reported in 

Figures 10 and 11 respectively. In the case of alpha angles larger than fifty grad the area of the panel 
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was too small for a reliable estimation of a reference plane, so our analysis was limited to fifty grad in  

both directions. 

Figure 9. Range images (top) and amplitude images (bottom) acquired with different alpha 

angles in clockwise direction (arbitrary color scales). 

 
0 grad 10 grad 20 grad    30 grad     40 grad        50 grad 

  

Figure 10. Mean values of the differences between range image and estimated reference plane.  

 
 

From Figure 10 one can observe that the mean value of the differences between the estimated plane 

and the SR-4000 distance measurements shows small fluctuations around the zero value according to 

the alpha angle: these small fluctuations are limited to about 2 mm in both clockwise and 

counterclockwise directions. Instead, the standard deviation value varies according to the alpha angle 

(Figure 11): this variation is contained in about 2 mm. This trend is justified by the adopted procedure: 

since the data were acquired with the “auto integration time” for each panel position, the reduction of 

the amount of reflected light from the panel is limited to about 20% with respect to the reflected light from 

the initial position (alpha angle equal to zero) (Figure 9 bottom). The distance measurement standard 
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deviation is in inverse proportion with respect to the amplitude of the reflected light [15,16,21]; therefore, 

an amplitude reduction of about 20% will approximately result in an increment of about 25% of the 

distance measurement standard deviation. Since the typical standard deviation value of the distance 

measurements is 4 mm [13], a 25% increment of that value is negligible. This aspect is confirmed by 

the afore reported results.  

Figure 11. Standard deviation values of the differences between range image and 

estimated reference plane. 

 

In conclusion, adopting the “auto integration time” for data acquisition, there is no appreciable 

variation of the distance measurement precision for camera orientations included within the considered 

alpha angle interval. 

4. Photogrammetric Calibration 

The photogrammetric calibration was considered separately from the distance measurement 

calibration, according to some previous works [3,4,22]. In [3], a planar test-field whose targets are 

represented by Near-Infra-Red (NIR) LEDs was built, while in [4-22] a planar test-field with a black 

and white checkerboard pattern was employed. In order to have targets well distributed in the three 

dimensions, a purpose-built multi-resolution field made of forty-one high contrast targets with 

different depths was created in our case (Figure 12). All the target coordinates were carefully 

measured with a total station survey in order to obtain accurate control point coordinates.  

For the photogrammetric calibration the iWitness© software was employed, which uses the ten-

parameter “physical” model commonly employed in digital close-range photogrammetry [23]. The 

interior orientation parameters are principal distance (c), principal point offsets (x0, y0), three 

coefficients of radial distortion (K1, K2, and K3), two decentering distortion coefficients (P1, P2) and 
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the affinity non-orthogonality parameters (b1, b2, rarely employed in CCD cameras). The following 

expression is employed for the estimation of the radial distortion correction (dr):  

7
3

5
2

3
1 rKrKrKdr ⋅+⋅+⋅=  (10) 

where r is the radial distance between the principal point and a generic point of the image. The Ki 

coefficients are usually highly correlated, with most of the error signal generally being accounted for 

by the cubic term K1 r
3. The K2 and K3 terms are typically included for photogrammetric and wide-

angle lenses, and in higher-accuracy vision in metrology applications [24]. 

In our case the following parameters were estimated: principal distance (c), principal point 

coordinates (x0, y0), radial distortion coefficients (K1, K2, K3) and decentering distortion coefficients 

(P1, P2). 

Different sets of amplitude images of the multi-resolution field were acquired, according to the 

typical conventions which should be followed in the case of camera self-calibration: the network 

should display moderate to large convergence angles between different images with a sufficient 

number of points imaged in more than two photographs; moreover, the images should be acquired with 

different orientations within the network (in both 90˚ ‘portrait’ and ‘landscape’ orientations) and the 

object feature points should be well distributed in three dimensions. 

Figure 12. Multi-resolution field made of forty-one high contrast targets with different depths. 

                     
 

In this work three different amplitude image sets were acquired in order to obtain reliable results. 

The comparison of the obtained results confirmed the stability of the camera internal parameters, 

which are reported in Table 2. 

The final standard deviations of the computed control point coordinates using the calibration 

parameters are σx = 0.7 mm, σy = 0.6 mm and σz = 1.5 mm. The recovered camera positions for two of 

the three amplitude image sets employed during the calibration procedure are displayed in Figure 13. 

In this case the photogrammetric calibration was only used for lens distortion correction of the 

amplitude images acquired with the SR_3D_View software. An example of the results obtained with a 

custom made Matlab® application using the estimated interior orientation parameters on an amplitude 

image of a test field after averaging thirty frames is reported in Figure 14. 
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Table 2. Estimated internal parameters of the SR-4000 camera. 

Principal distance c = 9.980 mm  

Principal point offsets 
x0 = 0.004 mm 

y0 = 0.144 mm 

Radial distortion 
coefficients 

K1 = 1.0780e–002            

K2 = −1.0478e–004 

K3 = –1.2968e–005 

Decentering distortion 
coefficients 

P1 = –6.1760e–004             

P2 = –3.3225e–004 

Figure 13. Recovered camera positions for two of the three amplitude image sets 

employed for the camera photogrammetric calibration. 

 

 

Figure 14. (a) Amplitude image of a test field obtained after averaging thirty frames (b) 

Amplitude image obtained after averaging thirty frames and after correction from lens 

distortion. 

     
                                   (a)                                                                                (b) 
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5. Conclusions and Future Works 

ToF cameras represent an interesting powerful recent tool for many applications which need 3D 

point clouds, such as mobile-mapping, metric surveys, object modeling, reverse engineering, robot 

navigation and real time applications [21,25-28]. 

The 3D imaging technique allows one to generate point clouds such as in the case of the LiDAR 

technique and photogrammetry but with the great advantage of real time acquisition, low cost and 

handiness. However, the accuracy and the application fields of ToF cameras are still not comparable 

with those of the aforementioned techniques and the procedures to achieve suitable metric products 

with this methodology are still under study.   

Previous works and our tests demonstrated that ToF camera measurements are affected by 

systematic errors which are caused by both their internal components and the observed scene. These 

errors cannot be fully eliminated, but they can be reduced to some extent thanks to calibration 

procedures. 

For these reasons the main objectives of the present work were the validation and calibration of data 

acquired using the ToF SR-4000 camera. Two main aspects were separately considered: the calibration 

of the distance measurements and the photogrammetric calibration of the amplitude images delivered 

by the camera. Concerning the distance measurement calibration, a camera warm up period of forty 

minutes was determined in order to achieve distance measurement stability; then, we proposed a 

distance error model which provides an excellent reduction of distance errors in the 1.5–4.0 m distance 

measurement range, which is the most useful measurement range for our purposes (architectural and 

archaeological surveys, object modeling and 3D indoor scene reconstruction). Nevertheless, in future 

works, we will try to improve the proposed distance error model to make it suitable for the entire 

camera operating range. For instance, the measurement errors for distances shorter than 1.5 m and 

longer than 4.0 m could be modeled by polynomial functions.  

Moreover, we demonstrated that there is a negligible variation of the distance measurement 

precision varying the camera orientation in the considered interval of horizontal angles using the “auto 

integration time” suggested by the SR_3D_View software. 

In order to obtain a reliable camera photogrammetric calibration using the amplitude images 

delivered by the camera, a purpose-built multi-resolution field made of several high contrast targets 

with different depths was employed and the typical conventions of digital close-range photogrammetry 

were adopted for image acquisition. The comparison of the obtained results using different sets of 

amplitude images demonstrated the stability of the estimated camera internal parameters. 

In future works, we will perform some tests on the camera response to different object reflectivity 

in order to eventually integrate the proposed model with this aspect. Furthermore, some tests have 

been already performed for the ToF camera application to real object surveys and for the integration of 

the acquired data with the radiometric content obtained from digital images achieved with  

external devices.  
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