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Abstract: Thanks to their high sensitivity and low-cost, metal oxide gas sensors (MOX) 
are widely used in gas detection, although they present well-known problems (lack of 
selectivity and environmental effects…). We present in this paper a novel neural  
network- based technique to remedy these problems. The idea is to create intelligent 
models; the first one, called corrector, can automatically linearize a sensor’s response 
characteristics and eliminate its dependency on the environmental parameters. The 
corrector’s responses are processed with the second intelligent model which has the role of 
discriminating exactly the detected gas (nature and concentration). The gas sensors used 
are industrial resistive kind (TGS8xx, by Figaro Engineering). The MATLAB environment 
is used during the design phase and optimization. The sensor models, the corrector, and the 
selective model were implemented and tested in the PSPICE simulator. The sensor model 
accurately expresses the nonlinear character of the response and the dependence on 
temperature and relative humidity in addition to their gas nature dependency. The corrector 
linearizes and compensates the sensor’s responses. The method discriminates qualitatively 
and quantitatively between seven gases. The advantage of the method is that it uses a small 
representative database so we can easily implement the model in an electrical simulator. 
This method can be extended to other sensors. 
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1. Introduction  

 

ANNs (artificial neural networks) are used in instrumentation to model complex systems because of 
their multivariable capability and strong non-linearity. With ANNs the extrapolation errors both inside 
and outside the calibration range are lower [1]. ANNs are very efficient for dynamic matter problems, 
offering the advantages of simple implementation and less computation demands, compared to 
numerical models [2]. 

Metal oxide sensors (MOX) are one of the most popular technological choices for sensor arrays, 
due to their high sensitivity [3]. Their main disadvantage is a lack of selectivity. The working principle 
of these sensors is based on the variation of their conductivity in the presence of oxidizing and 
reducing gases. The magnitude of the response depends on the nature and concentration of the gas, and 
on the type of metal oxide [4]. Researchers have examined some aspects of the non linearity of the 
MOX response to certain gases [5-7], like its dependence on the temperature [8,9], but the dependence 
on relative humidity and gas nature was not studied and no model of the MOX sensor has been 
implemented in a simulator.   

The subject of linearization and compensation has been considered in different forms and stages; 
some cases studied include the use of analog to digital converters [10,11], while other work has 
focused on improving the nonlinear response of specific sensors, like the thermistor [12] and the Hall 
effect current sensors [13]. Numerical methods have been developed using modern technologies 
capable of computing linearization algorithms [14,15]. ROM memories are also used to save data 
tables and to solve the linearization problem [16]. They provide a limited solution to the complex 
problem under the assumptions that the range of variation of environmental parameters is small and 
that the influence of the environmental parameters on the sensor characteristics is linear. 

To enhance the selectivity of metal oxide gas sensors various strategies have been used by different 
research groups, including the improvement of the sensitive material [17,18], the use of sensor arrays 
together with pattern recognition techniques [19,20], and measurements performed in dynamic 
operation mode [21,22]. In a dynamic environment these strategies don’t take the influence of the 
environmental parameters into consideration or they provide a limited solution to the problem under 
the assumption that the range of variation is small and that influence on the sensor characteristics  
is linear. 

Figure 1. Multisensory system used. 
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For those purposes, using artificial neural networks we have designed a model and a corrector for 
each one of three industrial MOXs (TGS822, TGS821 and TGS813, by Figaro Engineering) and a 
selective module with the aim of improving the selectivity and eliminating the environmental effects. 
The diagram of the method used is presented in Figure 1. The MATLAB interface was used during the 
design phase and optimization; the results (optimal architecture, bias and weights of the network) are 
used for the implementation of the model, the correctors and the selective module as components in the 
PSPICE simulator library. 
 

2. Sensor Characteristics 

 

We illustrate the design of the TGS822 gas sensor model and the same procedure was followed for 
the TGS821 and the TGS813 units. According to experimental results [23], the TGS 822 sensor used 
to detect the gas concentration has a nonlinear sensitivity (Figure 2a; representation is in logarithmic 
scale) and is dependent on the temperature and humidity of the environment (Figure 2b) where it is 
placed. R0 is the sensor´s resistance in 300 ppm of ethanol, while RS the sensor´s resistance to different 
concentrations of various gases.  

Figure 2. (a) TGS822 sensor’s sensitivity feature [23]. (b) TGS822 dependence on 
temperature and relative humidity [23]. 

(a) (b) 

  
 
2.1. The sensor´s use 
 

In Figure 3 a basic gas concentration measurement circuit with the TGS822 sensor is presented. The 
variation of the TGS sensor´s resistance is indirectly measured by the voltage drop appearing on the 
reading resistance RL. If a gas like methane, butane, propane etc. comes into contact with the sensor´s 
surface, it´s resistance reduces in correlation with the gas concentration present. To work with the 
features of the sensor provided, in this case, by Figaro, we have to process this output voltage (VRL) 
and achieve the sensor´s resistance RS with Equation 1: 

RS =  
VC

VRL
− 1 𝑅𝐿 (1)  
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Figure 3. Measurement circuit with TGS sensor. 

 
 
The configuration of the sensor´s connected circuits has to ensure the following conditions: 

• VC can be 5, 6, 12 or 24 V. 
• VH heating voltage has to be 5 V ± 0.2 V. 
• The power supply on the sensor maximum 15 mW. 

If we determine the sensor´s sensitivity feature under standard testing conditions, this characteristic 
has to coincide with the sensitivity feature, provided by the manufacturer, because this feature is 
determined with a relative representation of the sensor´s resistance. Standard testing conditions, 
indicated by Figaro are: 

• Atmospheric conditions: temperature 20 ºC  ± 2 ºC and relative humidity 65% ± 5% 
• VC: 10 ± 0.1 V, VH: 5 ± 0.05 V, RL: 10 K ± 1% 
• Time for the sensor´s supply maintenance: seven days or more 
• Testing gas: ethanol 

 
2.2. Sensor parameters 
 

• Heating resistance: 38.0 Ω ± 3 Ω 
• Sensor´s resistance: 1~10 KΩ at 300 ppm ethanol  
• Resistance ratio: 

𝑅𝑆  𝑖𝑛 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 300 𝑝𝑝𝑚 

𝑅𝑆  𝑖𝑛 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 50 𝑝𝑝𝑚 
= 0.4 ± 0.10  (2)  

Once the value R0 is measured, the sensor´s resistance at different concentrations of various gases 
and different temperature and relative humidity will be determined as follows: with relation (1) we 
calculate RS, then from Figure 2b, for temperature and relative humidity, we read the value RS/R0 
under the given conditions and we obtain a value x. We multiply the value x by R0 and we obtain a 
value y. We divide RS by y and we get RS/R0, uninfluenced by temperature and relative humidity, with 
whose help, from Figure 2a, we will determine the appropriate concentration. 
 

3. Neural Network Model 

 

Using the MATLAB interface and based on experimental results from [23], according to the 
previous paragraph a database is created and arranged as (S, T, RH, C) input and (RS) as output where:  
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S:  Selecting the gas  
T:  Absolute temperature 
RH: Relative humidity  
C: Gas concentration  
RS: Sensor resistance  
We suppose that Ro = 10 kΩ 

Most of this database is used mainly in the training phase by using the LP algorithm (back 
propagation of error), the remaining data are used to test and validate the model. The diagram in  
Figure 4 illustrates the direct modeling of the sensor, where: 

Yd:  Desired output  
Y:  Network output 
e:  Modeling error  

Figure 4. Modeling of the TGS822. 

 
 
To optimize the model architecture an iteration algorithm is used which consists in evaluation of the 

total error as a function of layer number and the number of neurons per layer and after many tests of 
different ANN models. The architecture optimized and that produces the smallest error is summarized 
in Table 1. 

Table 1. Summary the model’s optimized parameters. 

Property Characteristic 

Database Training base 3,800 
Test base 504 

Architecture 9-5-1 Feed-forward MLP 
Activation functions  Logsig-Logsig- linear 
Training rule Retropropagation error  
Training MSE  <0.0001 
Iterations number  3,000 

 
3.1. Model test 

We designed a neural network-based model by taking into account the dependence on temperature 
and relative humidity at the measurement point, in addition to the dependence on gas nature when the 
sensor is placed in a dynamic environment. To illustrate this effect we change concentration, and then 
we note the variation of the sensor’s resistance. Figure 5a shows the difference between the database 
and the ANN model for the sensor’s sensitivity feature. Figure 5c shows the simulation error. The 
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difference between the database and the ANN model for the dependence on temperature and relative 
humidity is shown in Figure 5b. 

Figure 5. (a) Model and database TGS822 sensor’s sensitivity feature. (b) Model and 
database TGS822 dependence on temperature and relative humidity. (c) Simulation error 
vs. concentration. 

(a)       (b) 

 
(c) 

 
 
3.2. Implementation of TGS822 model 
 

By using the ABM (Analog Behavioral Modeling) PSPICE Library components and the results 
(optimal architecture, bias and weights of the network) the sensor model designed previously is 
implemented as a component in the PSPICE simulator library. 

In order to test the model introduced on PSPICE simulator, it has been implemented in the electrical 
circuit shown in Figure 6. 
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Figure 6. Simulation circuit. 

 

3.3. Simulation results 

Temperature is fixed at 20 °C , relative humidity at 65%, concentration is varied from 300 to 5,000 
ppm. A PARAMETRIC DC SWEEP analysis gives the variation of the résistance against the 
concentration C with different gas. Results are represented in Figure 7 where:  

 𝑹𝒔 = (
𝐕𝟏

𝑽 𝑨 
− 𝟏)𝐑𝟏 

 R1 = Ro = 10 kΩ 

Figure 7. Variation of the résistance ratio (Rs/Ro) vs. gas concentration C at 20 °C  
and 65% RH. 

 

By analogy to the first test, we carried out a second test. With a PARAMETRIC DC SWEEP 
analysis, we fixed the gas as ethanol, the concentration to 300 ppm and the relative humidity RH as a 
parameter then we varied the temperature from –10 to 40 °C . Figure 8 illustrates the obtained results. 
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Figure 8. Variation of the résistance ratio (Rs/Ro) vs. temperature T at 300 ppm of ethanol.  

 
 

4. Corrector 

Using the circuit in Figure 3 and by analogy to the model we design the corrector. The database is 
arranged as (T, RH, VRL, VS) where:  

T:  Absolute temperature 
RH: Relative humidity  
VRL: Sensor's output voltage  
Vs: Corrector's output voltage 

The generation of the training base and test base is similar to that of the model's one. However, in 
the corrector, the temperature T, relative humidity RH and the sensor's output voltage VRL are taken as 
inputs, and the corrector's output voltage Vs is taken as output. The diagram of Figure 9 illustrates the 
methodology used in the corrector design. 

Figure 9. Modeling of the TGS822 corrector. 

 

The corrector was trained in a similar manner as in the case of the model. After many tests, the 
optimized architecture which produces the smallest error is summarized in Table 2. 
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Table 2. Summary of the corrector's optimized parameters. 

Property Characteristic 

Database Training base 3,800 
Test base 504 

Architecture 9-8-1 Feed-forward MLP 
Activation functions  Logsig-Logsig- linear 
Training rule Retropropagation error  
Training MSE  <0.00001 
Iterations number  5,000 

 
4.1. Corrector test 
 

We designed an ANN-based corrector for the TGS822. To illustrate the effect of this corrector we 
change concentration, and then we note the variation of the corrector’s output. Figure 10a shows that 
the corrector correctly linearizes the sensor’s sensitivity feature (representation is in linear scale). The 
corrector’s effect in environmental parameters dependency is shown in Figure 10b. 

Figure 10. (a) TGS822 feature effect (b) TGS822 corrector temperature and relative 
humidity dependency effect (c) Corrector sensitivity simulation error. 
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4.2. Implementation of the TGS822 corrector  
 

In order to test the effect of the corrector on electrical environment, the latter is implemented on the 
PSPICE simulator. The corrector and the TGS822 model have been implemented in the circuit shown 
in Figure 11.  

Figure 11. Electrical circuit of the corrector test. 

 

 
4.3. Simulation results 

Temperature is fixed at 20 °C, relative humidity at 65% and concentration is varied from 300 to 
5,000 ppm. A PARAMETRIC DC SWEEP analysis gives the results represented in Figure 12 with 
different gases. 

Figure 12. Variation of the corrector’s input and output vs. concentration C at 20 °C  
and 65% RH. 
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The parametric simulation shows that the corrector linearizes the sensor’s response whatever the gas. 
By analogy to the first test, we carried out a second test with a PARAMETRIC DC SWEEP analysis, 
we fixed the gas as ethanol, the concentration to 300 ppm and the relative humidity RH as a parameter 
then we varied the temperature from –10 to 40 °C. Figure 13 illustrates the obtained results.  

Figure 13. Variation of the corrector’s input and output vs. temperature T at 300 ppm  
of ethanol. 

 
 
The response of the parametric simulation shows that the corrector eliminates the environmental 

parameters’ effect. 
 

5. The Selective Module 

By analogy to the model and the corrector we design the selective module. The database is arranged 
as (Ve1, Ve2, Ve3, Vsn, Vsc), where Ve1, Ve2, Ve3 are taken as input of the selective model and they 
are the output of the correctors, Vsn is taken as output and it defines the gas nature, Vsc is taken as 
output and it defines the gas concentration. Note that: 

 Vcon is a voltage varing linearly from 0.4 to 5 V corresponding to a concentration variation from 
400 to 5,000 ppm. 

 Vsc is a voltage varing from 1 V to 10 V, the table 3 indicates their matched gases. 
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Table 3. Cont. 

Isobutane 4 
Ethanol 5 
Benzene 6 
n-Hexane 7 
Acetone 8 

Hydrogen 9 
Propane 10 

 
The selective module was trained in a similar manner as in the case of direct model and corrector. 

The optimized architecture characteristics are summarized in Table 4. 

Table 4. Summarizing of the optimized parameters of selective module. 

Property Characteristic 

Database Training base 250 
Test base 50 

Architecture 5-2-2 Feed-forward MLP 
Activation functions  Logsig-Logsig- linear 
Training rule Retropropagation error 
Training MSE  <10−6 
Iterations number  1,000 

 
5.1. Implementation of the selective module 
 

The selective module was implemented in the same manner as the sensor model and the corrector. 
The schematic shown in Figure 14 represents the electrical circuit used for testing the technique used 
in electrical environment.  

Figure 14. Electrical circuit of the method test. 
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5.2. Simulation results 
 
5.2.1. Concentration effect 
 

To study the concentration effect we fixed the temperature at 20 °C , relative humidity at 5% and 
concentration is varied from 300 to 5,000 ppm. A DC SWEEP analysis gives the results represented in 
Figure 15 for the choice of the methane and Figure 16 for the choice of the CO, where Ve1, Ve2 and 
Ve3 are the corrector output, Vsng is the selective module output for the gas nature and Vsc is the  
selective module output for the gas concentration.  

Figure 15. Variation of the inputs and the outputs the selective module vs. concentration C 
at 20 °C and 65%RH for the detection of (a) methane (b) CO. 

(a)                                                    (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 15a shows that the method identifies the gas as methane (V(G) = 2V, Table 3), and the 

quantity of this gas (linear variation of V(H) against C). Figure 15b shows that the method discriminates 
the gas as CO (V(G) = 3V, Table 3), and the quantity of this gas (linear variation of V(H) against C). 
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5.2.2. Temperature effect 
 
The effect of the temperature is analyzed with a DC SWEEP analysis. 2,500 ppm of hydrogen is 

used for the test. We fixed the relative humidity to 65% then we varied the temperature from −10  
to 40 °C . Figure 16 illustrates the results of this simulation. 

Figure 16. Variation of the corrector and the selective module’s inputs and outputs vs. the 
temperature T at 65% RH for 2,500 ppm of hydrogen. 

 
 
Figure 16 shows that the method discriminates 2,500 ppm of hydrogen (V(H) = 2.5 V, V(G) = 9 V), 

and stay unchanged vs. the temperature.  
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5.2.3. Relative humidity effect 
 

We introduce the humidity effect with a DC SWEEP analysis. Figure 17 illustrates the relative 
humidity influence on the corrector and the selective module outputs. 

Figure 17. Variation of the inputs and the outputs of the correctors and the selective 
module vs. the relative humidity RH at 20 °C for the detection of 1,300 ppm of benzene. 

 
 
Figure 17 shows that the method discriminates 1,300 ppm of benzene (V(H) = 1.3 V, V(G) = 6 V), 

and stay unchanging vs. the humidity.  
 

6. Conclusions 
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accurately reproduces the behavior of the gas sensors in a dynamic environment by taking into account 
the nonlinearity of their responses, the dependence on temperature and relative humidity at the 
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to correct the nonlinear response and to compensate gor temperature and relative humidity influences 
on the target sensor variations which is tested by Matlab and PSPICE simulation results. We wire all 
the components with the selective module with the aim of increasing the selectivity. The new 
technique discriminates and qualitatively and quantitatively measured seven gase,s tested between 300 
and 5,000 ppm, with few sensors and this method can be easily extended to other kinds of sensors. 
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