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Abstract: A sensor system to measure the 2-D position of an object that intercepts a plane 
in space is presented in this paper. This sensor system was developed with the aim of 
measuring the height and lateral position of contact wires supplying power to electric 
locomotives. The sensor comprises two line-scans focused on the zone to be measured and 
positioned in such a way that their viewing planes are on the same plane. The report 
includes a mathematical model of the sensor system, and details the method used for 
calibrating the sensor system. The procedure used for high speed measurement of object 
position in space is also described, where measurement acquisition time was less  
than 0.7 ms. Finally, position measurement results verifying system performance in real 
time are given.  

Keywords: line-scan calibration; object detection; 2-D measurements; computer vision; 
object position 

 

1. Introduction 
 

The use of visual information to detect the position of objects in relation to other objects is a 
fundamental function of computer vision systems. Many methods and applications have been 
developed in order to perform this task, all with their respective advantages and disadvantages with 
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regards to computational efficiency, complexity, robustness, accuracy and performance. In the 
majority of cases, more than one camera [1-4], or a camera and a structured light source [5-7] have 
been used in order to establish the position of an object. In some applications, the use of line-scans has 
contributed to an overall improvement of the system, as measurement acquisition is faster than with 
matrix cameras, less information needs to be processed, and sensors with greater spatial resolution 
(higher number of pixels) can be used [8,9]. However, a disadvantage of linear sensors is that neither 
traditional calibration methods nor the object detection algorithms developed for matrix camera based 
systems can be applied [10-12]. The calibration patterns used in calibration of the matrix cameras, used 
in 3D measurements, can not be used for calibration of line-scan sensors, because it is virtually 
impossible to match the captured line-image with the interest points of the patterns (circles centers, 
interception lines).  

In the calibration of line-scan sensors, we cannot get 3D measurements without a priori assumption 
of one coordinate, so it is more accurate in this case to optimize the parameters for a 2D calibration. A 
line-scan calibration method using calibration pattern line-images in different positions is presented 
in [13]. Although this requires extreme precision when positioning the pattern, and could thus 
represent a disadvantage, [14] describes the resolution of this potential problem through the use of 
calibration patterns at different depths. Nevertheless, when more than one line scan is used, these 
methods are only capable of obtaining individual intrinsic parameters for each line-scan. However, it is 
not possible to obtain accurate extrinsic parameters, as one of the limitations of these methods is that 
the line-scan sensor array must be approximately parallel to the calibration pattern planes. If two  
line-scans are used to measure position with triangulation techniques, both sensors must be separated 
and thus the pattern cannot be situated in such as way that the planes are parallel to the sensor arrays. 

In this study, we used a 2-D sensor based on two line-scans. Section 2 describes the sensor 
employed and the sensor modeling. Section 3 presents the calibration method used. Section 4 gives the 
experimental results. Finally, Section 5 summarizes the main conclusions. 
 
2. Sensor System 
 

The overall function of the sensor system is based on the capture of contact wire images with two 
line-scans. Following line-image processing and triangulation, it is possible to calculate 2-D 
coordinates for the objects in relation to a specific reference system. 

The system comprises a computer with an image acquisition and processing board (IAB) for each 
line-scan, as shown in Figure 1. This board is responsible for information transfer (images and control) 
between the cameras and the PC. The PC performs line-image processing to determine the 2-D 
coordinates for objects. Image acquisition, control, processing and data presentation is carried out 
using software in C language.  
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Figure 1. Block diagram of 2-D sensor system. 

 
 
2.1. Sensor Modeling 
 

The reference coordinate system does not usually coincide with camera or line-scan coordinates 
(Figure 2). To resolve this issue, and thus obtain coordinates for the line-image of a 2-D point in space 
with respect to a reference system, a projective transformation in 2-D is performed. This enabled us to 
obtain camera system coordinates which corresponded to a scene point. 

Figure 2. Relation between line-scan coordinate system and world coordinate system. 
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Using Figure 2 and a 2-D projective transformation, it was possible to change from one coordinate 
system to the other (Equation 1): 

where R is the rotation matrix defined by: 

and T is the translation vector which defines the relative position between the optical centre of the  
line-scan camera and the world coordinates centre (Equation 3): 

If Equation (1) is expressed by homogeneous coordinates, we obtain Equation (4): 

the values represented in the projection model were calculated through camera calibration. These 
extrinsic parameters (tx, ty, α) link the relative position between the world coordinate system and the 
camera coordinate system.  

Using the pin-hole camera model for a 1-D sensor, as is the case of line-scans, the projection of a 
point Pc(xc, yc) from the scene onto a line-image will bear the coordinate x: 

If (5) is shown in matrix form and with homogeneous coordinates, we obtain: 

Substituting (4) in (6), a general expression is obtained for relating a point in the world coordinate 
system with its corresponding projection onto the line-image:  

A diagram explaining the pin-hole model for a line-scan is shown In Figure 3. If x is represented by 
pixel coordinates xim, and we take into account that the optical axis may coincide with a pixel cx 
different to the centre of the sensor, it is then possible to formulate the Equation (8).  
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Figure 3. Diagram explaining the pin-hole model for a line-scan. 

 
 

The scale factor sx (mm/pixel) is the parameter which relates the line-image system of metric 
coordinates to the pixel array coordinate system provided by the line-scan. This value corresponds to 
pixel size. In this case, the theoretical value given by the manufacturer is 12 μm. 

Substituting (5) in (8) and doing fx = f/sx, the Equation (9) is obtained, which models the line-scans 
according to the parameters of the pin-hole model:  

Using (9), Equation (7) can be rewritten in the following form: 

When the intrinsic parameter matrix Mint and the extrinsic parameter matrix Mext are multiplied,  
a general expression for the projection matrix M = Mint · Mext is obtained, which represents the relation 
between the scene points and their projection onto a line-image.  

If the matrix coefficients are represented by m11…m23, (10) they can be rewritten as (11): 

3. Calculation of Calibration Parameters 
 

An alternative method for obtaining projection matrix M coefficients is to assign a value to one of 
the coefficients (in this case, the value m23 = 1 is chosen), and to express the other projection matrix 
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coefficients according to this value (12). Thus, the Direct Linear Transformation (DLT) coefficient 
vector LT = [L1 L2 L3 L4 L5] is obtained:  

If the DLT coefficient vector is substituted, and the matrices in (11) are multiplied, the unknown 
quantity producing scene point projection onto the line-image is found: 

As can be seen, Equation (13) has five DLT coefficients (L1 ... L5), so at least five 2-D point 
correspondences, visible to both line-scans, are necessary. Therefore, the pattern must have at least 
five known points to establish their correspondence with the captured line-image. 

The number of points of correspondence between the real world and line-images is represented by 
h. The more points used, the greater calibration accuracy becomes. A matrix of h rows is formed, 
where each row corresponds to a point in the pattern: 

To find L, the least squares estimate is used: 

The use of m23 = 1 is justified because the solution is subject to a scale factor, given that the 
projection matrix is homogeneous. The parameter m23 is the ty component of the translation vector 
which locates the line-scan in the world 2-D reference system. Thus, if ty were null, it would not be 
valid for the proposed solution. The parameter m23 is obtained from the L4 and L5 parameters of the 
DLT coefficient matrix: 

To obtain the projection matrix M from the DLT coefficients, an inverse scale change is carried out. 
This is achieved by multiplying each of the elements calculated by m23: 
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Intrinsic parameters 
 
Once the projection matrix has been calculated, calculation of the intrinsic parameters is a  

simple operation: 

 
Extrinsic parameters 

 
The extrinsic parameters are obtained as follows: 

 
3.1. Calibration Pattern 
 

A fundamental steep in the calibration process is the selection of an adequate calibration pattern. As 
for the calibration of matrix cameras, 3-D patterns offer the best results for line-scans calibration. In 
this case, calibration was carried out using a 3-D calibration pattern, comprising a series of parallel 
threads in different positions (Figure 4). The pattern is located in such a way that the threads cross the 
vision plane of the line-scans perpendicularly, as shown in Figure 5. 

Figure 4. Calibration pattern comprising threads. 
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Figure 5. Diagram that show the viewing planes crossed by calibration pattern threads. 

 

 
When many reference threads are used in the proposed pattern, overlapping of the different threads 

projected may occur. This can be detected by the lack of concordance between the number of reference 
points in our pattern and the number of points seen in the line-images. 
 
3.2. Calibration Results 
 

In our case, calibration was carried out using a total of 16 threads in the pattern. Table 1 gives the 
calibration parameters obtained, and calibration error, ε. This error quantifies the difference between 
the coordinates for each point on the real line-images xim_real with respect to those calculated by means 
of its projection xim_proy. Applying the projection matrix xim for each of the calibration pattern h points: 

Table 1. Calibration results. 

Parameter Left hand Line-scan Right hand Line-scan 
tx, cm 53.34 −53.35 
ty, cm 106.35 106.12 

α, degrees −21.8 21.7 
fx 2,577.0 2,565.9 

cx, pixels 1,033.9 1,019.7 
ε, pixels 0.63 0.49 

 
With the value of sx = 12 µm and the scale factors obtained, focal length for each line-scan can be 

calculated. Focal length of the left hand line-scan is fL = 30.7487 mm, and focal length of the right 
hand line-scan is fR = 30.4995 mm. 
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3.3. Calculation of 2-D Position with Two Calibrated Line-scan 
 

Once both line-scans have been calibrated, it is possible to obtain a correspondence between a 2-D 
point and its projection on both line-images. The model for a single calibrated line-scan, based on a 
pin-hole model, can be expressed by (11). If the same calibration pattern, located in a particular 
position, is used to calibrate both line-scans, the Equation (23) can be obtained, which establishes the 
relation between the two previous models, and yields the parameters [xw,yw] according to the  
line-images captured for each line-scan, and the corresponding projection matrices: 

the system of linear equations (23) represents two straight lines which are cut at the points [xw,yw]. In 
this system of equations, the other unknown parameters are mL and mR. To obtain the geometric 
location of the points [xw,yw], an inverse operation to that carried out for Equation (23) is performed, 
giving (24): 

with the projection matrices for each line-scan and the Equation (24), it is possible to calculate the 2-D 
position of a point in the measurement zone, whose projection in each line-image is L

imx  and R
imx . Using 

the n (n = 2048) values of L
imx  and R

imx , we calculated two matrices of nxn (2048 x 2048), where each 

value corresponded to the position in xw (lateral decentring) and the position in yw (height). We called 
these matrices the “Sensor Matrices”. 

To summarise, the system for measuring 2-D position is defined by two matrices, called “sensor 
matrices”, which contain the coordinates (x,y) for each scene point projected onto the line-scans at the 
coordinate L

imx  and R
imx . By reading these matrices, the geometric location of a scene point can be 

identified. For this, it is only necessary to know pixel position in the projection of the object to be 
measured on each line-scan. These pixel values are then used to read the sensor matrices, stored during 
the calibration process. In this way, the calculation time for measurements carried out in real time  
is reduced. 
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4. Experimental Results 
 

In this section, we describe some practical experiments which were carried out with the aim of 
verifying the performance of the measuring system proposed. The experiments were aimed at 
establishing the accuracy of measurements under real operating conditions. In order to achieve this, 
measurements were taken of a moving contact wire, to verify efficiency of the tracking algorithms. In 
addition, static measurements were taken of the threads in different positions, in order to calculate 
magnitude of error in measurements.  
 
4.1. Measuring the 2-D Position of Static Objects 
 

The aim of this experiment was to verify the accuracy of lateral decentring (X) and height (Y) 
measurements taken with the system when the system sensor and the measured objects were static. The 
calibration pattern structure, with 16 white 0.5 mm diameter threads, was placed in a known position 
with the coordinates (XS1real,YS1real). The base reference system was situated at a central point between 
the two line-scans. Once the position measurements had been taken with the system sensor  
(XS1sensor,YS1sensorl), the values obtained were compared with the real values. Figure 6 shows the 
calibration pattern with the 16 reference threads placed in the sensor measurement zone. The various 
threads are numbered and marked by a yellow dot. 

 
Figure 6. Diagram showing the planes of vision to be crossed by the calibration pattern 
threads. The distance between the line-scans is 106.5 cm, and the angles αLS_L = 67.68 
degrees and αLS_R = 67.28 degrees. 
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As an example, Table 2 gives both real and measured coordinate values for the threads in one 
particular calibration pattern position. The same experiment was carried out for different thread and 
pattern positions, but always ensuring that the position of the threads within the measurement zone 
coincided. From a total of 524 measurements, maximum error of x was 2.1 mm, and standard error  
was 0.82 mm. For height measurements (y), maximum error was 3.2 mm and standard error was 0.94 
mm. This error was due to incorrect thread placement, calibration error and/or sensor system 
resolution. 

Table 2. Real and sensor measured coordinates for different points (threads). 

Thread 
XS1 real 
mm 

XS1 sensor 
mm 

Error 
mm 

YS1 real 
mm 

YS1 sensor 

mm 
Error 
mm 

1 −490 −489.6322 0.3678 1,070 1,069.5631 0.4369 
2 −220 −219.7668 0.2332 1,070 1,071.817 1.817 
3 0 0.1267 0.1267 1,070 1,069.8788 0.1212 
4 220 221.2802 1.2802 1,070 1,069.5836 0.4164 
5 490 489.8626 0.1374 1,070 1,071.0224 1.0224 
6 −490 −490.0087 0.0087 1,370 1,368.6644 1.3356 
 7 −220 −220.5975 0.5975 1,370 1,369.9805 0.0195 
8 0 −0.5668 0.5668 1,370 1,369.8184 0.1816 
9 220 219.1745 0.8255 1,370 1,370.5471 0.5471 
10 490 490.9952 0.9952 1,370 1,369.9767 0.0233 
11 −220 −220.2104 0.2104 1,670 1,671.0066 1.0066 
 12 0 −0.4616 0.4616 1,670 1,669.8844 0.1156 
13 220 219.5798 0.4202 1,670 1,668.9608 1.0392 
14 −220 −219.9084 0.0916 2,030 2,031.5914 1.5914 
15 0 1.7755 1.7755 2,030 2,029.9706 0.0294 
16 220 218.9772 1.0228 2,030 2,030.5424 0.5424 

4.1. Measuring the 2-D Position of a Moving Object 

This second experiment aimed to verify the validity of the monitoring algorithm and the system’s 
capacity for measuring the position of an object (contact wire) moving at high speed. 

To move the contact wire one end was attached to a bearing placed in a constant position so that 
only the wire could rotate. The other end was attached to another support located on an aluminium bar 
which in turn was attached to an engine rotor. The engine rotates the aluminium bar parallel to the 
plane of view of the line-scans. The rotor axis was positioned so that whatever the position of the 
rotating bar, the contact wire was always located within the field of vision of the cameras. A 
photograph of the experimental structure assembled in order to generate contact wire movement is 
shown in Figure 7. 
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Figure 7. Structure assembled in order to generate contact wire movement. 

 
 

The graphs in Figure 8 give height and decentring measurements at a sample speed of 100 frames 
per second (fps). The small jumps in the curves are due to the experimental structure used. 

Figure 8. Contact wire measurements at a sample speed of 100 fps: Height and  
lateral decentring. 

 
To verify real time sensor system operation, line-scan tests were carried out for various acquisition 

times. Maximum acquisition and processing speed without loss of samples was 1,430 frames per 
second, using a PC with P4 2.0 GHz processor and 512 MB of RAM. This high speed was achieved 
because it was only necessary to find centroids of the line-images captured. Once the centroids had 
been obtained, a matrix reading is sufficient to obtain the values of x and y.  
 
5. Conclusions 
 

This paper has presented a 2-D sensor system based on two line-scans. Among other applications, it 
can be used to verify the geometry of contact wires supplying power to electric locomotives. A 
mathematical model has been reported.  
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In addition, has been proposed and described a method for calibrating the sensor system. This 
method is based on the calibration of both line-scans using the calibration pattern position. The 
calibration pattern is a 3-D structure with various parallel threads attached. Calibration provides the 
matrices containing the coordinates (x,y) for each scene point, corresponding to the projection of these 
points onto each line-scan. To obtain the coordinates (x,y) is only necessary to know pixel position in 
the projection of the object in each line-scan. These pixel values are then used to read the sensor 
matrices which contain the coordinates (x,y). In this way, processing time may be less than 0.7 ms. 

Experiments were carried out in order to verify system operation. The first experiment examined 
static measurement error, and from a total of 524 measurements, the maximum error of x was found to  
be 2.1 mm, with a standard error of 0.82 mm. In the case of height measurement (y), maximum error 
was 3.2 mm and standard error was 0.94 mm. The second experiment measured contact wire position 
when moving, in order to verify monitoring algorithms. Maximum acquisition and processing speed 
without sample loss was 1430 frames per second, using a PC with P4 2.0 GHz processor and 512 MB 
of RAM.  
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