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Abstract: Satellite remote sensing (RS) is an important contributor to Earth observation, 
providing various kinds of imagery every day, but low spatial resolution remains a critical 
bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intra-
urban). In this study, a multifractal-based super-resolution reconstruction method is 
proposed to alleviate this problem. The multifractal characteristic is common in Nature. 
The self-similarity or self-affinity presented in the image is useful to estimate details at 
larger and smaller scales than the original. We first look for the presence of multifractal 
characteristics in the images. Then we estimate parameters of the information transfer 
function and noise of the low resolution image. Finally, a noise-free, spatial resolution-
enhanced image is generated by a fractal coding-based denoising and downscaling method. 
The empirical case shows that the reconstructed super-resolution image performs well in 
detail enhancement. This method is not only useful for remote sensing in investigating 
Earth, but also for other images with multifractal characteristics. 

Keywords: super-resolution reconstruction; multifractal analysis; information transfer; 
fractal code; gaussian upscaling 
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1. Introduction 

Super-resolution (SR) reconstruction is an attractive and promising method in digital image 
processing that aims at producing a detailed and spatial resolution-enhanced image from one or more 
low-resolution (LR) images [1,2]. Depending on the number of LR images involved, the SR method 
can involve multi-frame or single-frame SR reconstruction [3]. The former tries to combine 
complementary information from different images based on sub-pixel shifts or different parameter 
information, while the latter focuses on extracting relationships among neighborhood pixels or 
learning a priori pattern structures from image databases that store large amounts of low-high 
resolution image pairs [4-8]. In practice, multi-frame SR is usually applied in video and multi-sensor 
observation, since multiple frames can be easily obtained. It is difficult, however, for some satellite 
remote sensing to get several images of the same scene in a short time, especially for highly dynamic 
scenes. Therefore, sub-pixel unmixing-based, single-frame SR image mapping has become a popular 
topic in remote sensing and has been applied in many kinds of SR mapping [9-13]. It first estimates 
fractions of each endmember (pure component in the image) in pixels and then finds out the position 
of each endmember with spatial correlations or a priori knowledge. In the method, the number of 
endmembers should be greater than one. In atmosphere observation, trace gas distributions, for 
example, often change greatly within hours and are not as stable as landscape observations like land 
cover types whose states remain unchanged for several days or even months. Different observation 
times have different views, thus the traditional multi-frame SR is not suitable for such changeable 
images. The sub-pixel unmixing SR mapping method is invalid for images whose pixel value cannot 
be separated from endmembers, such as elevation, surface temperature, and trace gases density. 

Fractal theory is a very efficient method to depict chaotic, erratic, natural phenomena. After its 
conception in the 1970s by Mandelbrot, fractal theory was applied to numerous domains [14,15]. It is 
considered an appropriate and straightforward method to analyze not only the scale independency of 
geophysical, observable things, but also the extreme variability over a wide range of scales [16]. It 
permits the characterization of complex phenomena in a fully quantitative fashion. The fractal coding 
method was originally applied by Barnsley et al. to image compression based on the Iterated Function 
System theory (IFS) [14]. Since it is difficult to implement the original IFS method in practice, Jacquin 
proposed an automatic grayscale still image coding method, Partitioned IFS (PIFS), that partitioned the 
whole image into smaller segments [17]. The most important precondition of fractal image coding is 
that the object images have the characteristic of self-similarity or self-affinity. It is widely accepted 
that many natural scenes and images have fractal/multifractal characteristic, e.g., trees, clouds, and 
mountains [18]. Therefore a great deal of redundant information exists in these images, which can be 
interpreted by a contractive fractal transform operator W that consists of a geometrical transformation 
and a gray-level (also luminance) transformation on images. Then, only parameters of the 
transformation need to be stored. The original images can be reconstructed by the attractive fixed point 
of the operator W guaranteed by the Collage theorem. Fractal image coding has aroused great research 
interest since its birth in the 1990s, and most is concentrated on the compression ratio and speed 
improvement of image compression [19,20]. In this paper, we propose a super-resolution 
reconstruction and mapping method based on multifractal analysis and coding theory. It does not need 
a priori information or data. 
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The remainder of the paper is organized as follows. In Section 2, we present detailed methods for 
reconstructing super-resolution images based on multifractal analysis and coding. We first investigate 
multifractal methods in order to better explore the multifractal characteristic of images. Then we 
propose the fractal-based super-resolution reconstruction method that consists of parameter estimation, 
denoising, and downscaling. An empirical study is presented in Section 3. Finally, we discuss the 
results and draw conclusions in Section 4. 

2. Methods 

The relationship between a high spatial resolution image H and the corresponding low spatial 
resolution image L could be presented by a multiplication process between H and information transfer 
function s, which expresses how information is transferred between different scales [21]: 

L H s e= ⊗ +  (1) 

where ⊗ denotes the multiplication operator and e is the noise. In this paper, we take e as additive 
white Gaussian noise (AWGN), one of the most common cases in practice. The function s moves 
through H continuously with no overlap. Then, the super-resolution reconstruction problem becomes 
how to get H under the condition of L, s, and e. For an arbitrary L, there may be numerous H that can 
generate L with the same s. However, given L, s, and e, H could be determined uniquely if the original 
image/scene has fractal/multifractal characteristic, meaning self-similarity or self-affinity 
characteristics are present in the parts and the whole at different scales (Figure 1). With multifractal 
analysis, we explore the upscaling information transfer function s in a natural scene image from large 
scale to small scale, and estimate the additive white Gaussian noise distribution e in the image. Then, 
we reconstruct a SR image from a single LR image by denoising and downscaling.  
 

Figure 1. Self-similarity between scales. 

 
 

The framework of super-resolution reconstruction using multifractal analysis is shown in Figure 2. 
In the method, a multifractal characteristic is required to reconstruct an SR image, so this aspect was 
explored first. Then we estimated parameters of the additive white Gaussian noise distribution e and 
the information transfer function s. Lastly, an SR image was reconstructed by denoising and 
downscaling in a fractal coding process. 
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Figure 2. Framework of SR construction. 
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2.1. Multifractal Analysis 

Fractal dimension is a basic tool of fractal theory to quantify irregular patterns or behaviors in 
natural physical systems. It reflects the extent of a measure’s smoothness or roughness quite well. For 
fractal objects, the relationship between a certain size and the number of objects can be expressed  
as [22]: 

( ) ~ DN ε ε −  (2) 

where ε is the scale, N(ε) is the number of objects, and D is the fractal dimension. The equation shows 
the power law relation between the scale and the number of objects. Fractal dimension characterizes 
the average properties of a system and cannot provide information on deviations from the average 
behavior of a power law. When calculating the size of N(ε) in the box counting method, a box is 
considered to be either empty or occupied, ignoring the mass density variation in boxes. Thus, it is not 
enough to characterize a system with non-homogeneous or non-isotropic scaling properties. More 
scaling exponents and fractal dimensions are needed to assess it. For such a complex system one could 
resort to multifractal analysis, which adopts a continuous spectrum of exponents for the 
characterization of a system. Covering the support of the measure with boxes of size l and accounting 
for the mass probability (pi) in the i-th box, an exponent αi (singularity strength) can be defined by [23]: 

  ( ) ~ i
ip l lα  (3) 

Given N(αi) is the number of boxes with the same probability pi, we can define f(α) (multifractal 
spectrum) as the fractal dimension of the subset of boxes with exponent α by: Nα(l)～l–f(α), which 
generalizes Equation (2) by including several indices to quantify the scaling of the system. 

A multifractal complex system can be decomposed into a series of subsets with different α, and f(α) 
is such a cluster that represents the subsets’ fractal dimensions. For a multifractal measure, plotting  
α-f(α) yields a concave downward function with a unimodal appearance. 

Besides the singularity spectrum, the generalized dimension Dq is another important index to 
describe the singular measure through scaling the pi distribution moments in the form [23]: 

( ) ( )
1

, ( ) ( 1)N l q q
i qi

p l q q Dτ τ
=

= = −∑  (4) 

where pi is the probability of the measure in the i-th box; q is the moment order (-∞ < q < ∞), Dq is the 
generalized fractal dimensions, and τ(q) is the correlation exponent of the q-th order moment. For a 
multifractal measure, the generalized dimension Dq is strict monotonous decreasing functions. 
Specially, when q takes a value of 0, 1, or 2, we can get capacity dimension D0, entropy dimension D1, 
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and correlation dimension D2, respectively. The relationship between them is D0 ≥ D1 ≥ D2, where 
equality occurs when the measure is mono-fractal [24]. 

2.2. Super-Resolution Reconstruction 

Besides its high compression ability, fractal coding has some important properties for image 
resolution enhancement [25]: (1) Resolution independence: after being converted to fractal code, the 
image code is resolution independent and, theoretically, digital images of any resolution can be 
generated at the decoding step. The infinite scaling property is also called “fractal scaling”.  
(2) Similarity preservation: in fractal-generated images, some similarities can be preserved at different 
scales. (3) Nonlinear operation: fractal coding is an adaptive, locally linear, yet globally nonlinear 
method and is beneficial for restoring missing details for resolution enhancement. Because of fractal 
coding’s flexibility, some researchers process images for purposes beyond compression, such as image 
interpolation, image zooming, and image restoration and denoising. Ghazel et al. proposed a fractal-
based method to restore noise-free images from noisy images by establishing a relationship between 
the fractal code of the original noise-free image and the noisy counterpart based upon some knowledge 
of the noise [26]. Chen et al. proposed super-resolution image reconstruction in Discrete Cosine 
Transform (DCT) domain [25]. To the best of our knowledge, however, in most fractal coding research 
and applications the shrinking operation of geometrical transformation is achieved by either 
downsampling by taking every n pixels or averaging over n by n pixels. This strategy is acceptable in 
common fractal coding applications, such as image compression and texture segmentation. But, when 
it comes to resolution enhancement or super-resolution reconstruction, it is imprudent to ignore the 
fact that physical systems that exhibit chaotic or fractal behavior in nature lose information 
exponentially between different scales [23,27]. It is important to consider a proper information transfer 
function in the fractal image coding process. In this study we concentrated on the general upscaling 
process, and explored the relationship between a noise-free image and a noisy image under the general 
framework. Then a fractal coding-based image restoration and super-resolution reconstruction method 
was proposed. The main flow of the SR image reconstruction contains the following steps:  
(a) parameter estimation, including the information transfer function and noise distribution; (b) fractal 
image encoding and image restoration (noise-free PIFS codes and the image were generated from the 
corresponding noisy image); (c) upscaling the LR image with a magnification coefficient.  

2.2.1. Information transfer function (ITF) 

The information transfer function s measures the information transfer mechanism between different 
scales in nature (Figure 3). It describes how information is preserved and lost in the upscaling process, 
where large textures and shapes are preserved while small details are eliminated because of synthesis. 
From the view of optical imaging, the information transfer function (ITF) has a close relationship with 
the point spread function (PSF), s(I) = S↓(f(I)), where f( ) is the point spread function and S↓( ) is the 
downsampling function. 
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Figure 3. Information transfer function s. 

   
 (a) General model   (b) Downsampling   (c) Averaging 

 
It is worthwhile to explore the relationship between the information transfer function and traditional 

downsampling and averaging shrinking methods. Given ω is a discrete template of the information 
transfer function s( ): (1) If ωk = 1, ωj = 1, j ≠ k, where (j, k = 1, 2, …, n2), this is the down-sampling 
shrinking method (Figure 3b); (2) If ωj = 1/n, where (j = 1, 2, …, n2), then the shrinking method is 
averaging (Figure 3c). Downsampling and averaging shrinking methods are two special cases of the 
information transfer function. Thus, the relationship between the ITF and traditional downsampling 
and averaging shrinking methods is generalization and specialization. 

In practice, getting the information transfer function s is quite challenging, especially when there is 
little a priori knowledge of how information is exhibited and changes in different spatial scales. It is 
widely accepted that physical systems lose information at an exponential rate [23]. Furthermore, the 
Gaussian pyramid has played an important role in a wide range of image visualizations and is 
consistent with the visual characteristics of human perception [28-30]. A Gaussian function would be 
an optimal approximation of the process of information transfer in upscaling. A typical expression of a 
2D Gaussian function is formed as: 

2 2

22
2

1( , )
2

x y

G x y e δ

πδ

+
−

=
 

(5)

where x is the distance from the origin in the horizontal axis, y is the distance from origin in the 
vertical axis, and δ is the standard deviation of the Gaussian distribution (Figure 3a). Gaussian 
upscaling can also be viewed as a generalized form of averaging when δ → 0 and downsampling when 
δ → ∞. Especially in discrete space, a Gaussian upscaling template is the same as an averaging 
template when the size of the domain block is four times the size of the range block in fractal coding, 
where domain block and range block are some suitable partition for the object image (see Section 2.2.2 
for details). 

2.2.2. Fractal encoding 

Let I denote an image of interest defined by an image function u(x, y, p), where (x, y) is the pixel 
coordinate of the image and p is the intensity value of the pixel. R and D are range blocks and domain 
blocks of image I, respectively, which are a kind of suitable partition for the image. Each range block 
Ri∈R (i = 1, 2, …, M, M is the number of range blocks) is associated with a domain block Dj∈D  
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(j = 1, 2, …, N, N is the number of domain blocks) by a contractive mapping wj, which consists of two 
transformations: a geometrical transformation gij: Dj →Ri ( Ri, Dj ⊂ Ω, Ω denotes the space of  image 
gray level; i = 1, 2, …, M; j = 1, 2, …, N) and a gray-level transformation φj : Θ →Θ (Θ is the set of 
real number) [31]: 

( , , ) , ( , , ) ( ( , ), ( ))j j ij jx y p D w x y p g x y pϕ∀ ∈ =  (6)

where i = 1, 2, …, M; j = 1, 2, …, N. 
Generally, the geometrical transformation  gij can be formed as: 

( ) ( ( ))ij ij ijg s r=i i  (7)

where rij( ) is an affine mapping operator to make a domain block Dj similar to a range block Ri and 
sij( ) is a shrinking operator to make the domain block Dj have the same size with the range block Ri. In 
a uniform partitioning scheme, Ri and Dj are usually square pixel blocks, and the size of Dj is several 
times the size of Ri. In discrete cases, eight affine mapping operators are often used, namely, a 
horizontal flipping, a vertical flipping, two diagonal flippings, and four rotations (±90°, and ±180°). 
The luminance transformation, also called gray-level mapping, is a first-order linear prediction of the 
form [26]: 

( )t tϕ α β= +  (8)

where φ(t) and t are the intensities of the pixels within Ri and gij
(k)(Dj) (k denotes the k-th affine 

mapping operator), respectively; α is a scalar factor; and β is a transform term. The parameters α and β 
can be determined by minimizing the following collage error according to the Collage theorem [25]:  

( ) ( )

2
( )k k

ij ij ij j ij ig D Rα βΔ = + −  (9)

where k denotes the k-th affine mapping operator; the norm ║ ║2 calculates the Euclidian distance 
between the transformed domain block gij

(k)(Dj) and the range block Ri. 
Thus, the fractal code of Ri can be represented by a five-element set (i, j, k, αij, βij), where i, j, and k 

are the indexes of range block Ri, domain block Dj, and affine mapping operator rk( ), respectively; and 
αij and βij are the corresponding coefficients of collage error. All these sets of range blocks together are 
called the PIFS code of image I. In fractal coding, the overlapped range block partition method is 
sometimes adopted to avoid blocky artifacts and to capture finer details. This increases computation 
time, however, and requires more memory. 

2.2.3. Image denoising 

The process of upscaling from domain block Dj to range block Ri is a multiplication operation 
between information transfer function s and Dj. The function s denotes information transfers from the 
domain blocks scale to the range blocks scale. The formalism presents the shrinking process:  
r(x, y) = s(d(x, y)), where r and d are two images of the same scene at the range block scale and 
domain block scale, respectively (Figure 3). Then, the density value of pixel v within Ri can be 
expressed by a linear expression: 

1

n n
i ii

v ω λ×

=
=∑  (10)
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where λi (i = 1, 2, …, n2) are density values of pixels within Dj that are contained within the extent of 
Ri, and ωi (i = 1, 2, …, n2) are the discrete values of the shrinking function in discrete space, subjected 
to ∑ωi = 1 (0 ≤│ωi│≤ 1). 

Ghazel et al. restored noise-free images from noisy images based on fractal coding with an 
averaging operation method to produce the transformed block from the parent block of the same size 
as the child block [26]. As mentioned before, the upscaling information transfer function usually has a 
more complicated form rather than averaging operations. With the analogous image denoising method 
defined by Ghazel et al., we restored the fractal code of the noise-free image from the corresponding 
noisy image with additive white Gaussian noise (AWGN) for general upscaling. λi is the sum of the 
noise free density value λ̃i  and noise ei, where ei is independent, identically distributed (i.i.d.) and 
drawn from a normal distribution with mean 0 and variance δ2

e, and ei is not correlated with λ̃i : 
2, (0, )i i i i ee e Nλ λ δ= +� ∼  (11)

From Equations (10) and (11): 

1 1
( )n n n n

i i i i ii i
v e v eω λ ω× ×

= =
= + = +∑ ∑� �  (12)

The symbol “～” denotes the noise-free counterpart to be estimated. Since ei is an independent and 
identically-distributed random variable, and is not correlated with λ̃i , the relationship of the 
mathematical expectation and variance between v and ṽ can be represented in the form: 

1
( ) ( ) ( )n n

i ii
E v E v e E vω×

=
= + =∑� �  (13)

2 2 2 2
1 1

( )n n n n
v i i v i ei i

Var v eδ ω δ ω δ× ×

= =
= + = + ⋅∑ ∑��  (14)

where E(v) and E( ṽ ) are mathematical expectations of v and ṽ , respectively; and δ2
v  and δ̃2

v  are 
mathematical variances of v and ṽ, respectively. After estimating the least-squares coefficients α and β 
from Ghazel et al. (2003), let σ = ∑ωi (i = 1, 2, …, n2), then: 

2 2 2 2( , ) / [ ( , ) / ] / [1 / ]X X e XCov X Y Cov X Yα δ δ σ δ δ= = + ⋅� �� �  (15)

where the image is regarded as a random field, and X and Y are random variables representing the 
density value distribution of the upscaled domain block and the range block, respectively. The numerator 
is the noise-free version α̃ of α. Thus, the noise-free image fractal code parameters α̃ and β̃ are: 

(1 / ) , ( ) ( )E Y E Xα σ γ α β α= + = −�� �  (16)

where γ = δ̃2
X  / δ2

e  is the signal-to-noise ratio. Meanwhile, the corresponding collage error is  
represented as: 

( ) ( ) 2

2 ( ) 2 2 ( ) 2 ( ) 2 2

[(( ) ) ]

( [( ) ] ) 2 [ ] 2 [ ] 2 [ ] ( [ ] )

k k
ij ij j ij i

k k k
ij j e ij ij j ij ij j ij i e

E X Y

E X E X E X Y E Y E Y

α β

α σδ α β β α β δ

Δ = + −

= − + + − − + −

�� � ��
� � �� � �

 (17)

Then, the noise-free image can be restored from the noisy image with PIFS coding. 
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2.2.4. Fractal decoding and downscaling 

The set of five elements (i, j, k, α̃ij, β̃ij) constitutes the PIFS code of a noise-free image Ĩ. The PIFS 
code depicts the fractal self-similarity and self-affinity from which a fractal image can be decoded at 
different scales with different magnification/minification factors. Then, fractal decoding-based 
downscaling is done by iterating on an arbitrary initial image (e.g., a blank image), with the PIFS code 
and a magnification factor greater than one, until the destination SR image is stable and unchanged. 
The convergence is guaranteed by the contractive mapping fixed-point theorem. In practice, the 
Euclidian distance is measured between adjacent iteration results. For example, a distance less than  
1 × 10-6 could be acceptable as little difference between two images when the gray level lies  
in [0,255]. 

2.3. Parameter Estimation 

In the real world, different natural scenes/phenomena have different upscaling information transfer 
rules and formulisms. Even though some real scenes follow the rule of Gaussian upscaling information 
transfer model between scales, they may have different Gaussian function distribution intensities. The 
Gaussian upscaling function’s form, then, would affect the reconstruction result directly. In the 
absence of a priori knowledge of the image, we resort to blind estimation for the real Gaussian 
upscaling form. If Ĩ is the noise-free image and I is the observed image with AWGN noise e with mean 
0 and variance δ2

e , then I = Ĩ + e. There are two unknown parameters in the expression, viz.: the 
variance δ2

e of AWGN noise and the variance δ2
g of the Gaussian upscaling function. Estimating the two 

parameters is a precondition for enhancing the resolution of the image. It is well known that in the real 
world there are many small regions with uniform pixel values, and thus diminutive variation in these 
regions are mainly caused by noise [26]. Based on this assumption, the variance δ2

e can be estimated 
from the local statistics of block pools that consist of all possible small regions in the image. The 
variance δ2

g is estimated with a search method based on the assumption that the error image e (e = I - Ĩ ) 
is a random field of white Gaussian noise (WGN) with mean 0 and variance δ2

e (Figure 4). First, the 
range of δ2

g  is estimated for the search process. For a selected variance, we reconstructed the 
corresponding denoised image  Ĩ ' with the proposed fractal coding method. Then, an error image e'  
(e' = I - Ĩ ') is generated and checked to see whether it followed the WGN distribution with mean 0 and 
variance δ2

e . The most appropriate value could be selected to estimate the Gaussian ITF variance. 
Especially, in the absence of noise in I, the goal of the search process is to minimize the difference 
between  Ĩ ' and I as expected. 

Figure 4. Work process to estimate the ITF parameter. 
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3. Empirical Study 

Shuttle Radar Topography Mission (SRTM) is a joint project between NASA, NGA, and the 
German and Italian Space Agencies to obtain a global digital topographic dataset [32]. In the United 
States, there are two kinds of SRTM elevation datasets, namely, 1 arc-second (approximately 30 m) 
and 3 arc-second (approximately 90 m) of latitude and longitude. We reconstructed a SR image from a 
3 arc-second SRTM elevation dataset, and compared it with the original high-resolution (HR)  
(1 arc-second) image (Figure 5). The LR image size is 180 pixels by 180 pixels. The research region is 
located at 35.48N-35.63N, 99.68W-99.53W. 

Figure 5. SRTM elevation dataset. 

   
 (a) LR image    (b) Original HR image 

3.1. Multifractal Characteristic 

The singularity spectrum α - f(α) quantitatively elucidates the relationship of the singularity strength 
α and Hausdorff dimension with the multifractal measure. To calculate the singularity spectrum and 
generalized dimension, the image was partitioned into boxes of size l, where l = 2, 4, 8, 16, 32, 64 and 
90 pixels. The range of the moment order q was from -2 to 5 with steps of 0.125, which was fine 
enough to show the multifractal characteristic of the image. R2 of all linear fits were equal to or greater 
than 0.99. Some characteristics of the spectrum were used to estimate a measure’s multifractality 
(Figure 6a). The multifractal spectrum was obtained by the method developed by Chhabra et al. [23]. 
A typical multifractal spectrum is a single-hump, convex curve reaching its maximum at α0 (q = 0, q is 
the moment order). The f(α) spectrum at the left and right of the maximum corresponds to q > 0 and  
q < 0, respectively. Large values of |q| correspond to large distortions of the measure magnifying its 
large (q > 0) or small (q < 0) concentrations. The maximum was reached at q = 0, and then the 
magnitude decreased significantly around when q > 0 and q < 0 (Figure 6b), which showed that the 
SRTM image was heterogeneous and had a multifractal characteristic. This was validated by the width 
of the singularity spectrum, which indicates the range of the Lipschitz-Holder exponent α in the image. 
For a mono-fractal image, the f(α) spectrum surrounds the maximum value f(α0), and the spectrum 
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width is small and tends toward 0. An image with a convex and wide singularity spectrum can be 
considered multifractal rather than mono-fractal. 

The range of the singularity strength ∆α is a difference of the maximum and minimum α when 
f(α) > 0, Δα = αmax - αmin, which represents the extent of a possible Lipschitz-Holder exponent [33]. 
αmin and αmax are calculated by fitting the spectrum curve and taking the point of intersection with the 
α-axis. ∆α makes a quantitative measurement of the degree of multifractality. The broader the 
spectrum ∆α, the stronger the multifractality, and the richer and more complex the image pixel 
intensity distribution is. ∆α of the SRTM image is about 0.53, which indicates the presence of a strong 
degree of multifractality in the image.  

Figure 6. Multifractal spectrum of SRTM. 
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Asymmetry of the α–f(α) spectrum shape is also an important index of multifractality. It indicates 

the degree of fluctuation in different fractal exponents [34]. A left-skewed spectrum denotes high 
fractal exponents and large fluctuations dominate the measure, while a right-skewed spectrum implies 
low fractal exponents and low fluctuations are dominant. To estimate the skewness quantitatively, the 
degree of asymmetry was calculated with the formula A = (α0 - αmin)/(αmax - α0) [34,35], where A = 1 if 
the spectrum is symmetric and A > 1 or A < 1 when the spectrum is left-skewed or right-skewed. The 
spectrum shape of the SRTM image was right-skewed and the degree of asymmetry was about 0.89, 
which indicates that both large and small fluctuations are present and small fractal exponents dominate 
rather than high ones.  

3.2. Super-Resolution Images 

To estimate the noise variance of the image, a local statistics method was adopted. A moving 
window with a size of 2 by 2 pixels was selected to collect all possible blocks in the image, which 
moved left-to-right and top-to-bottom, and the displacement was one pixel at a time. Then, a histogram 
of the local variance distribution was generated, which approximately followed a lognormal 
distribution with mean 1.72, variance 1.03 (Figure 7), and the standard error of the estimated mean and 
variance are about 0.011 and 0.008, respectively. The coefficient of determination (R2) of curve fit is 
0.93 (p < 0.01). The most frequent value in the distribution, 1.7, was taken as the noise variance of the 
SRTM image. The variance δ2

g was estimated with a search method based on the assumption of AWGN. 
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The sizes of the range block and domain block were 2 by 2 pixels and 6 by 6 pixels, respectively, and 
the size of the Gaussian template was 3 by 3 pixels. The range estimated for the noise variance δ2

g was 
(0.2, 2) since, for a discrete Gaussian template of 3 by 3 pixels, the density distribution of the template 
whose variance is lower than 0.2 or higher than 2 is almost unchanged. The most appropriate variance 
estimated was about 0.8. 

Figure 7. Probability distribution function of local variance. 
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Figure 8. Super-resolution reconstruction of SRTM image. 

   
(a) SR image    (b) Error image 

   
(c) LR region A     (d) SR region A 
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After estimating the AWGN noise and information transfer function s, the PIFS code of the LR SRTM 
image was generated with the proposed method. Then, we reconstructed a SR version of the image with 
3x-enhanced spatial resolutions (1 arc-second by 1arc-second per pixel) (Figure 8a). The original LR 
image is much coarser than the original high resolution image because of its low spatial resolution. In the 
SR image, many details were added compared to the LR image (Figures 8c, d). The error image was the 
difference between the estimated SR image and the original real high-resolution image (Figure 8b). The 
mean and standard deviation of the error image were 0.09 m and 2.25 m, respectively.  

The SR image is an estimation of the real scenes. It performs quite well in recovering details. At the 
same time, there was also a bit of blur and block in some regions of the SR image (Figure 8d). From 
the relationship  Ĩ  = I − e, the blur is tied in with the estimated noise e. Accurate estimation of e brings 
the real Ĩ, while any bias of the estimated e would generate a distorted version of Ĩ. In the research, the 
noise e was estimated with a local statistics method from just one image. More a priori knowledge and 
data about the image would be helpful to improve the effect.  

4. Discussion and Conclusions 

Remote sensing provides an important approach to investigating the earth, but the spatial resolution 
is usually very low when researching at relatively small spatial scales, such as an intra-urban scale, 
rather than continental or national scales. In this paper, a fractal-based super-resolution reconstruction 
method was introduced. Self-similarity or self-affinity presented between different scales makes it 
possible to reconstruct details at a smaller scale than the original LR image’s scale. We explored self-
similarity and self-affinity characteristics with a multifractal analysis method. Singularity spectrum 
and generalized dimension are efficient indices to measure the self-similarity and self-affinity 
characteristic of the image. Multifractality is common in nature, especially geophysics. Different 
phenomena have different information transfer mechanisms between scales. The ITF determines how 
information is transferred and lost in upscaling. In the absence of a priori knowledge, the ITF is 
estimated with a Gaussian model, which is a generalization of downsampling and averaging methods. 
A search strategy was adopted to estimate the ITF parameter. This method worked well, although it is 
somewhat time consuming. In the presence of AWGN, the relation between a noise-free image and 
noisy image is connected by a PIFS code, which can be used to reconstruct a noise-free SR image. 
Most of the process is completed with fractal coding. Then, a fractal-based denoising and spatial 
resolution enhancement method was developed to reconstruct super-resolution images of the SRTM 
elevation dataset. Analysis results showed that the proposed method is efficient and performed well in 
reconstructing super-resolution images for the dataset. Satellite earth observation is a typical example 
of the application of the general SR reconstruction method. The analysis and operation process of the 
proposed method is also applicable to other images with multifractal characteristic. 

How to estimate the AWGN e and IFS s efficiently are two important issues. A good search strategy 
will reduce processing time. More auxiliary data and a priori knowledge would be helpful to improve 
the effect, which will be studied in future research. Furthermore, besides additive white Gaussian noise 
e [in Equation (1)] which was explored in this paper, there may be other kinds of noise, such as 
nonlinearly added noise. The proposed denoising and SR reconstruction method is not adaptable for 
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this case. How to reconstruct SR images in non-AWGN cases is also an interesting and  
important problem. 
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