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Abstract: The Integral Equation Model with multiple scattering (IEMM) represents a 
well-established method that provides a theoretical framework for the scattering of 
electromagnetic waves from rough surfaces. A critical aspect is the long computational 
time required to run such a complex model. To deal with this problem, a neural network 
technique is proposed in this work. In particular, we have adopted neural networks to 
reproduce the backscattering coefficients predicted by IEMM at L- and C-bands, thus 
making reference to presently operative satellite radar sensors, i.e., that aboard ERS-2, 
ASAR on board ENVISAT (C-band), and PALSAR aboard ALOS (L-band). The neural 
network-based model has been designed for radar observations of both flat and tilted 
surfaces, in order to make it applicable for hilly terrains too. The assessment of the 
proposed approach has been carried out by comparing neural network-derived 
backscattering coefficients with IEMM-derived ones. Different databases with respect to 
those employed to train the networks have been used for this purpose. The outcomes seem 
to prove the feasibility of relying on a neural network approach to efficiently and reliably 
approximate an electromagnetic model of surface scattering. 
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1. Introduction 

 

Modeling the electromagnetic wave scattering from random rough surfaces is an important issue for 

remotely sensing both land (e.g., soil moisture and roughness) and ocean (speed and direction of the 

wind blowing over the sea surface) geophysical parameters from satellite microwave sensors. As a 

consequence, a number of theoretical models were developed to deal with this problem. These models 

necessarily made some simplifying assumptions because of the great complexity of realistic scattering 

problems [1]. Nevertheless, their implementation generally required performing a large number of 

calculations, so that the computational efficiency became a critical point, especially if the models were 

used within inversion algorithms that usually involve repeated runs of the models themselves [2].  

If a very rough surface is considered, the phenomenon of multiple scattering should be accounted 

for [3]. Analytical models such as the Integral Equation Model (IEM) [4,5] have been set up for this 

purpose. The original formulation [4] had various extensions and updates. Some of these extensions, 

known as IEMM (Integral Equation Model for Multiple Scattering) [6,7] were just carried out to 

improve the prediction of the multiple scattering effect. Such an improvement was achieved by 

removing one of the simplifying assumptions made in [4] (i.e., the use of a simplified expression of the 

Green’s function, see Section 2), so that the complexity of model increased and this increase had 

repercussions on the problem of its computational efficiency.  

An alternative to complex theoretical models is represented by semiempirical techniques. These 

techniques were widely adopted in the literature, for instance to predict the backscattering coefficient 

measured by a microwave radar (e.g., a Synthetic Aperture Radar: SAR) aboard satellites or aircrafts 

(e.g., [8]). They are based on experimental campaigns in which the backscattering radar measurements 

are coupled with data representing the surface characteristics. The database formed by the data 

acquired during the campaigns can be analyzed by means of a regression approach to derive a 

relationship yielding the sensor measurement as a function of the sensor characteristics (frequency, 

observation angle, polarization) and of some quantities representing the soil conditions, usually 

expressed in terms of dielectric (e.g., soil moisture) and roughness (standard deviation of heights and 

correlation length) parameters. The regression analysis permits deriving a simple formula, so that the 

advantage of semiempirical models in terms of simplicity is evident with respect to physically-based 

approaches. A critical point is the representativeness of the experimental database, i.e., its ability to 

encompass a wide set of soil conditions, thus ensuring a large range of applicability of the derived 

relationship [9].  

From the previous discussion, the need to join the simplicity and the efficiency of the semiempirical 

backscattering models to the precision of physical ones clearly emerges. To succeed in combining 

these two key features, a neural network approach can be attempted. Since a multilayer feed-forward 

neural network (NN), having at least one hidden layer, can approximate any nonlinear function relating 

inputs to outputs [10], it can be profitably adopted to emulate a forward electromagnetic model giving 

advantages in terms of computational speed and maintaining a fairly good degree of accuracy. The 

adoption of a NN technique to improve the efficiency of forward models was applied in [11,12] in 

order to approximate sea surface scattering models. 

In this work, a neural network approach to the problem of reproducing the behavior of the IEMM is 

proposed. We have considered only the backscattering case, because the radar sensors presently 
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operative are monostatic systems, although bistatic experiments have been recently envisaged  

(e.g., [13,14]). We have made reference to two sensors with different characteristics. The first one is a 

SAR operating at C-band (5.3 GHz) with an incidence angle I = 23°, such as ERS-2 and also 

ENVISAT/ASAR in some of its acquisition modes. The second radar configuration, is an L-band  

(1.25 GHz) instrument with i = 34°, similar to ALOS/PALSAR in fine beam modes. We have firstly 

built two training sets and two test databases (one for each frequency band) consisting of matched 

pairs of vectors of input soil parameters (i.e., soil moisture mv, standard deviation of heights s and 

correlation length l) and IEMM outputs (i.e., backscattering coefficients denoted as  0). The incidence 

angles previously mentioned (hereafter denoted also as nominal incidence angles) have been 

considered in this case. Successively, a second exercise has been carried out in which the incidence 

angle has been assumed as additional input parameter in order to make the NN-based model applicable 

for simulating observations of terrains with complex topography. Other four databases (both training 

and test sets for the two frequencies) have been set up for this purpose. The validation of our method 

has been carried out by comparing, for the test databases, the IEMM-derived  0 with the NN-derived 

ones.  

In Section 2, a summary of the IEMM is provided, while Section 3 introduces the algorithm that has 

been selected to train the networks, gives some details about the various databases we have built to 

train and test the behavior of the networks, and describes the design of the NNs architecture. In 

Section 4, the results are discussed by assessing the simulations of the backscattering coefficients 

obtained by running the trained NNs against the IEMM outputs. Section 5 draws the main conclusions. 

 

2. The Integral Equation Model with Multiple Scattering (IEMM) 

 

The IEMM can be considered as an extension of the Integral Equation based surface scattering 

model (IEM). With respect to the latter, the IEMM removes the assumption on the phase factor 

exp(jw|z − z′|), which was neglected in the spectral representations of the Green’s function and of its 

gradient in the development of the original IEM formulation. The quantity denoted by w is the vertical 

component of the propagation vector of the generic plane wave in which the electromagnetic field is 

expanded, j denotes imaginary unit and z and z′ are the random variables representing the heights at 

different locations, defined by (x,y) and (x′,y′), respectively, on the rough surface. This approximation 

was basically thought in order to obtain a simple algebraic form for the scattering model. It was made 

basing on the small impact of this phase factor on the total average scattered power [4]. However, this 

factor was shown to be a key element in considering the multiple scattering phenomenon, so that it 

cannot be ignored [6,7]. In addition, the phase factor in the Green’s function with the absolute value 

sign and an associated time-varying phase of exp(jt), where t denotes time and  is the pulsation, 

indicates that there are two separate cases to consider that correspond to an upward propagation from z′ 

to z (z  z′) and to a downward propagation from z′ to z (z  z′).  
IEMM expresses the total scattered field as the sum of a term derived from the Kirchhoff tangent 

plane approximation [15] (Kirchhoff approach) and of a complementary term. Let us consider a 

Cartesian coordinate system defined by the unit vectors )ˆ,ˆ,ˆ( zyx . The two components of the total 

electromagnetic field are expressed as:  
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where E0 is the incident field amplitude, superscripts k and c indicate Kirchhoff and complementary 

terms, respectively, and subscripts p and q denote the incident and receiving polarizations 

respectively [6]. r and r′ represent the observation vectors associated to (x,y,z) and (x′,y′,z′), 

respectively, and (u,v,w) are the variables that correspond to (x,y,z) in the spectral domain. Moreover:  
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In (3), k0 is the electromagnetic wavenumber and R is the range from the centre of the illuminated area 

to the point of observation. The scattering (ks) and incident (ki) propagation vectors are: 

)cosˆsinsinˆcossinˆ(ˆ
00 sssssss zyxkkk  k   (4)  
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where  and  are the zenith and azimuth angles, subscripts i and s indicate incidence and scattering 

directions, respectively, sk̂  and ik̂  are the unit vectors in the direction of scattering and incidence, 

respectively. The Kirchhoff and complementary field coefficients, fqp and qpF
~

 respectively, are 

dimensionless, complicated expressions that depend on spatial variables:  
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where k
pn )ˆ( E  and k

pn )ˆ( H  are the tangential components of the Kirchhoff field at p polarization, 

while c
pn )ˆ( E  and k

pn )ˆ( H  are the tangential components of the complementary field  

(p polarization). n̂  is the unit vector normal to the surface, q̂  is the observed polarization versor 

(either horizontal, or vertical) and  is the intrinsic impedance in air. The incident electric field is 

written as i
ijk

i EpeEp ˆˆ 0

0   rk
E , where p̂  is the incident polarization versor. From (1) and (2), the 

backscattering coefficient can be determined, being defined as: 
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where Eqp is the sum of (1) and (2),  denotes ensemble average and A is the illuminated area. 

Several approximations were accomplished to make fqp and qpF
~

 independent of spatial variables. 

The expression of fqp is in general very complicated and depends on local surface slopes and local 

Fresnel reflection coefficients [4,5]. In IEM, a good approximate expression was derived for fqp and 

was also used in the IEMM. The complementary field coefficients Fqp that appear in the right term of 

Equation (2) were obtained from the qpF
~

 after the Green’s function and its gradient were replaced by 
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the spectral representation that takes into account the inclusion of the phase factor, exp(jw|z−z′|), and 

after the phase factor of the Green’s function and u, v, x′, y′ integrations were factored out. The 

introduction of this phase factor allowed splitting the coefficients into two parts, namely the upward 

complementary field coefficients Fqp,up and the downward complementary field coefficients Fqp,down. 

The resultant expressions are reported in [6].  

In [6], the backscattering coefficient from a perfectly conducting Gaussian correlated surface was 

simulated through the IEMM model both considering and not considering the multiple terms. The 

results showed that the multiple scattering effect is very different for the co-polarized horizontal and 

vertical polarizations. Indeed, it is highly sensitive to the wave polarization states. The frequency 

backscattering coefficients behavior was also analyzed. At lower frequencies and smaller incident 

angles, the multiple scattering has little contributions; results of the IEMM are closely together and 

agree with the single scattering. As frequency increases, multiple scattering increases its contributions 

to backscattering coefficient.  

We can conclude this brief summary by pointing out that the IEMM model leads to a more accurate 

calculation of the multiple scattering contribution with respect to IEM [6]. The latter had several 

improvements in the last fifteen years to better evaluate the scattering from natural surfaces for the 

various measurement configurations and types of roughness. The last version, known as Advanced 

Integral Equation Model [16], introduced further modifications on the expression of the scattering 

complementary field. However, only the single scattering terms were derived again, whereas the 

multiple-scattering terms were not changed with respect to the formulation developed in the  

IEMM version.  

 

3. The Neural Network Emulators 

 

An artificial NN is a nonlinear parameterized mapping from an input vector x to an output vector  

y = NN(x;w,M), where w is the weight vector (including the biases as well) and M is the architectural 

model of the network. The multilayer perceptron (MLP) architecture considered here is a mapping 

model that is composed of several layers of parallel processors (known as neurons). It was 

demonstrated that one-hidden layer MLP network can approximate any continuous function [17], 

while a two-hidden-layer MLP can represent any function to any degree of nonlinearity, taking also 

into account discontinuities [18].  

In the architecture of a NN, all nodes are interconnected to each other, and this interconnection is 

characterized by weights and biases. The hidden and output nodes are characterized by an activation 

function, which is generally assumed to be differentiable and nonlinear. Here, we have chosen the  

tan-sigmoid function, which is characterized by the node gain and the node bias. 

 

3.1. The training algorithm 

 

The network is trained by a supervised learning using a training database D = {x(i),t(i)}, consisting 

of available inputs x(i) and desired targets t(i), being i = 1:Nr and Nr the number of the records of the 

training set. During training the weights and biases are iteratively adjusted in order to minimize the 
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network performance or objective function (error correction learning). The latter is generally assumed 

equal to the sum of squared errors ED:  





rN

i

T
D iiiiE

1

)]()([)]()([)( ytytw     (10) 

where y(i) is the neural network response to the i-th input pattern and the superscript T indicates  

matrix transpose.  

The minimization with respect to w is based on repeated evaluation of the gradient of the 

performance function using the back-propagation algorithm, which involves performing computations 

backwards through the network [19]. Although the back-propagation learning rule is often 

implemented by using a steepest-gradient descent algorithm, we have chosen for our design the 

Levenberg-Marquardt (LM) algorithm, which turned out to be highly efficient, as proved in [20]. 

It is worth considering that, when attempting to emulate rough surface scattering models, the NN 

training set can hardly encompass all the possible model inputs, because of the high variability of 

surface characteristics (e.g., roughness and soil moisture in our case). The capability of a neural 

network to properly respond to unexpected inputs is called generalization. The procedure to improve 

generalization, called regularization, usually adds an additional term to the error objective function. 

Such a modified function, denoted as ER, is expressed by: 

)()()( www WWDDR EEE       (11)  

where EW is the sum of squares of the network weights w (i.e., iw
Tw), while D and W are the 

regularization parameters. If D >> W the training algorithm will minimize the NN error term ED, 

while if D << W the algorithm will emphasize weight size reduction, at the expense of larger 

network errors, producing a smoother, but more robust, network response.  

A critical issue of the regularization procedure is the evaluation the optimal values for the 

regularization parameters D and W. To tackle this problem in an automatic way, it is possible to rely 

on the Bayesian theory, as done in [21], in which the weights and biases of the network were supposed 

to be random variables with specified distributions, while the regularization parameters were related to 

the unknown variances associated with the distributions. These parameters can be estimated by using 

statistical techniques. The estimation procedure is fairly complex and its description is beyond the 

scopes of this work. More details on the use of Bayesian regularization, in combination with 

Levenberg-Marquardt training, can be found in [22]. Such a combined use has been accomplished to 

train the NNs we have developed. 

 

3.2. The training sets 

 

For each of the two frequency bands considered here, two cases have been considered, so that four 

NNs have been designed. All the training and test databases have been built by means of the IEMM, 

whose runs have been performed by adopting an exponential autocorrelation function (ACF). In the 

first case, for which the incidence angle has been maintained constant (C-band: 23°; L-band: 34°), a 

training set consisting of Nr = 500 input/output pairs has been produced for each frequency. For this 

generation, the following input parameters have been used: soil moisture content mv, standard 
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deviation of heights s and correlation length l. These inputs have been randomly generated, by 

assuming a uniform distribution [9] within the following intervals: 0.05 ≤ mv ≤ 0.4; 6 cm ≤ l ≤20 cm; 

0.1 ≤ k0s ≤ 3. Note that the limits of those intervals have been chosen to fulfill the validity of the 

IEMM and that the choice of k0s ≤ 3 justifies the use of the exponential ACF that is generally 

recognized as the appropriate one if s is not very large (in comparison with the wavelength , being  

k0 = 2/) [23-25]. As for the outputs, the co-polarized backscattering coefficients at both vertical 

( 0
vv ) and horizontal ( 0

hh ) polarizations have been considered.  

In the second case, the incidence angle has been assumed as an additional parameter to allow the 

NN-based model to be suitable for terrains with complex topography too. While the soil parameters 

have been randomly generated with the same limits as those listed above (so that an exponential ACF 

has been chosen again to run the IEMM), for i we have supposed a displacement in the order of 15° 

from the nominal value, so that uniform distributions have been considered within the following 

intervals: 10°–40° (C-band) and 20°–50° (L-band). Such an hypothesis has been formulated in 

agreement with the results we found in [26] for the standard deviation of the local incidence angle on 

tilted surfaces. For each frequency, a training set of Nr = 2,000 input/output pairs has been built. 

For the soil permittivity, a model proposed in the literature that relates it to soil moisture, 

temperature and composition has been selected [27]. For the latter quantities, fairly standard values 

have been considered (soil temperature: 23°; percentages of sand and clay: 48.5% and 12.5%, 

respectively). Note that a value of 23° for the soil temperature has been chosen in agreement with the 

measurements of dielectric constant reported in [28], in which it is also claimed that both the real and 

the imaginary parts of the soil dielectric constant are weakly dependent on temperature as well as on 

the soil type. 

The same procedure followed to produce the training databases has been employed to build the test 

sets. 500 input/output pairs have been generated (both at C- and L-bands and independently of those 

produced for the training database) considering the nominal i, while 4,000 records have been 

generated to assess the behavior of NNs designed for the case in which i is an additional  

input parameter. 

 

3.3. The architectures  

 

The architectures of the NNs designed to reproduce the  0 predicted by the IEMM model at C- and 

L-bands consist of three (corresponding to mv, s and l) or four (mv, s, l and i) input neurons (Ni) and 

two output neurons (No), corresponding to the co-polarized backscattering coefficients at vertical and 

horizontal polarizations. As for the hidden layer, that in this case basically accounts for the interaction 

between the electromagnetic radiation irradiated by the radar antenna and the terrain, we have firstly 

considered one layer of Nh neurons. To determine Nh, we have monitored both the number of epochs 

ensuring the convergence of the learning algorithm and the value of the objective function at the final 

epoch. L-band, for which the emulators yield worse performances with respect to the C-band (see 

Section 4), has been considered for this purpose. Note that the convergence of the algorithm has been 

assumed corresponding to the stabilization of the values of the objective function. Table 1 reports the 

results we have obtained considering the nominal incidence angle.  
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From Table 1, it can be observed that ER rapidly decreases with the increase of Nh from 5 to 15, 

while it tends to become more stable for Nh ≥ 15. Moreover, if Nh increases from 15 to 25, NE almost 

doubles and we have verified on the test set that such an increase of Nh does not imply a substantial 

improvement of the capability of the NN to approximate the behavior of the IEMM.  

Table 1. Number of epochs (NE) ensuring the convergence of the training algorithm  

(Nr = 500) and values of the objective function (ER) at the final epoch for different numbers 

of hidden neurons (Nh). The NN designed for L-band, i = 34° (i.e., Ni = 3), with one 

hidden layer is considered. 

Nh NE ER 
5 79 10.5 
10 134 5.4 
15 286 3.1 
20 343 2.9 
25 545 2.5 

 

Considering that a two-hidden-layer MLP network can approximate any function to any degree of 

nonlinearity (see Section 3) and taking into account the high degree of nonlinearity of a very complex 

scattering model such as the IEMM, we have also designed an architecture consisting of two hidden 

layers of Nh1 and Nh2 neurons, respectively. The results are reported on Table 2, which suggests that 

the addition of a second hidden layer leads to a substantial improvement of the NN performances in 

terms of ER, although NE considerably increases. The best compromise between the complexity of the 

architecture and the need to achieve small values of ER seems to be Nh1 = 15 and Nh2 = 10.  

Table 2. Same as Table 1, but for two hidden layers of Nh1 and Nh2 neurons, respectively. 

Nh1 Nh2 NE ER 
8 7 380 0.56 
12 7 420 0.29 
12 10 440 0.17 
15 7 645 0.10 
15 10 920 0.04 
17 12 1,350 0.03 

Table 3. Same as Table 2, but for Ni = 4 (i.e., i as an additional input parameter).  

Nr = 2,000. 

Nh1 Nh2 NE ER 
15 10 780 2.81 
20 15 962 0.77 
25 20 1,202 0.32 
30 25 1,580 0.06 
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The same exercise has been accomplished for the case in which i is included in the inputs of the 

NN-based model (i.e., Ni = 4). As expected, with one hidden layer the values of ER have turned out to 

be fairly large (e.g., 15.8 with Nh = 25). Even with two hidden layers, we have succeeded in achieving 

values of ER in the order of those reported on Table 2 only by considerably increasing both Nh1 and 

Nh2. By looking at Table 3, that is the same as Table 2, but for Ni = 4, it can be noted that ER < 0.1 has 

been obtained for Nh1 = 30, Nh2 = 25. An architecture defined by: Ni = 3, Nh1 = 15, Nh2 = 10 and No = 2 

has been selected for the two networks (L- and C-bands) designed for the nominal i. For variable i, 

we have set up two networks characterized by Ni = 4, Nh1 = 30, Nh2 = 25 and No = 2. Both kinds of 

architecture are shown in Figure 1.  

Figure 1. The Neural Network architectures. Upper panel: NN topology for the nominal 

incidence angle (Ni = 3, Nh1 = 15, Nh2 = 10, No = 2); lower panel: NN topology for incidence 

angle assumed as an additional input parameter (Ni = 4, Nh1 = 30, Nh2 = 25, No = 2). 
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where wji and bj represent weights and biases of the j-th neuron of the first hidden layer, whj and bh 

denote weights and biases of the h-th neuron of second hidden layer, and wkh and bk indicate weights 

and biases of the k-th neuron of the output layer (k = 1 corresponds to vv; k = 2 corresponds to hh) and 

the generic input variable is indicated by xi. Equations (12) can be easily implemented by using the 

values of weights and biases resulting at the end of the training phase (not reported for the sake of 

conciseness, but available by contacting the authors). Note that the NNs have been trained after having 

carried out a normalization aiming at obtaining inputs and targets falling approximately in the  

range [−1,1].  

Before ending this section, it is worth underlining that the generation of the backscattering 

coefficients by means of the IEMM has taken about 24 hours per 1,000 records (by employing a 

personal computer with a 3.2 GHz Pentium 4 processor and 2 GB of RAM). The two networks whose 

architecture is shown in the upper panel of Figure 1 have been trained (with the same computer)  

in 146 sec (L-band) and in 128 sec (C-band), while the training of the other two NNs (lower panel of 

Figure 1) has required much more time (L-band: 140 min; C-band: 85 min). Finally, the generation, by 

means of the trained networks, of the backscattering coefficients used to test the performance of the 

emulator (see Section 4) has turned out to be almost immediate. 

 

4. Results 

 

To assess the proposed approach, we have compared the backscattering coefficients produced by 

the IEMM model and belonging to the test sets with those generated by the NNs for the same inputs. 

Note that, as pointed out at the end of Section 3, the trained NNs generate outputs in the interval 

[−1,1], so that an inverse normalization has been accomplished to restore the nominal range for the 

backscattering coefficients.  

Figure 2 shows the comparison between IEMM- and NN-derived backscattering coefficients for a 

fixed i equal to the nominal incidence angle. The backscattering coefficients are represented in dB to 

be consistent with most of the literature works on surface scattering measurements (e.g., [6-8]). The 

agreement is good at both vertical and horizontal polarizations, especially at C-band, thus assessing the 

reliability of the proposed approach.  

Figure 2. Comparison between IEMM- and NN-derived 0 (test sets of 500 records). Left 

panels: vertical polarization; right panels: horizontal polarization. Upper panels: L-band; 

lower panels: C-band. Dotted lines represent perfect agreement. 

 



Sensors 2009, 9              
 

8119

Figure 2. Cont. 

 
 

The performances can be also evaluated by looking at Table 4 that reports the results of the 

comparison in terms of correlation coefficient , bias error b (i.e., mean error, defining the error as the 

difference between the0 predicted by NNs and those estimated by IEMM) and root mean square 

error rmse.  is close or equal to the unit, while b is almost null for both the frequency bands. At C-

band the rmse is in the order of 0.3 dB, while at L-band it is slightly larger (~0.7 dB).  

Figure 3. Trend of the rmse (error bars) versus k0s. Left panels: vertical polarization; right 

panels: horizontal polarization. Upper panels: L-band; lower panels: C-band.  

 

Other details on the behavior of the NN-emulators designed for the nominal incidence angle can be 

inferred by looking at Figure 3 that has been produced by dividing the range of k0s belonging to the 

test sets (500 records) in intervals of 0.25 rad and by computing, for each interval the rmse. This 

parameter never exceeds 1 dB at C-band, while, at L-band, it is less than 1.5 dB, except for horizontal 



Sensors 2009, 9              
 

8120

polarization and k0s around 0.125 rad (see the first bar in the upper right panel of Figure 3). However, 

we underline that such a smooth kind of soil does not occur very frequently in real situations, so that 

the overall result can be considered satisfactory. At C-band the largest values of rmse have been found 

either for very smooth or very rough soils, while for fairly standard values of k0s, rmse is very small 

(0.1–0.2 dB).  

Table 4. Comparison between IEMM- and NN-derived 0 in terms of correlation 

coefficient , bias error b and root mean square error rmse. 

 Vertical polarization Horizontal polarization 
 L-band C-band L-band C-band 
 0.99 1.00 0.99 1.00 

b [dB] −0.08 −0.01 −0.02 −0.01 
rmse [dB] 0.66 0.31 0.78 0.27 

 

It can be expected that the NNs designed to include the incidence angle in the input parameters 

(Figure 1, lower panel) do not provide the same high accuracy as those envisaged for Ni = 3 in 

reproducing the IEMM behavior. Figure 4, Figure 5 and Table 5 are the same as Figure 2, Figure 3 and 

Table 4, respectively, but for i assumed as an additional input parameter. We remind that in this case 

the number of records forming the test databases is 4,000, considerably larger than the dimension of 

the tests sets considered in the above discussion (500 records). Looking at Figure 4, it can be seen that, 

with respect to the previous case, the points of the scatterplot fluctuate more around the main diagonal 

at L-band. The results reported on Table 5 show that  is still close to the unit, b is still almost null, 

and that rmse exceeds 1 dB at L-band. The results can be however evaluated as encouraging 

considering the complexity of the problem of approximating the IEMM-behavior in this case in which 

its dependence on the incidence angle should be reproduced besides that on the soil parameters. Such a 

complexity is testified by the fairly long time required to train the NNs (see Section 3.3).  

Figure 4. Same as Figure 2, but for i assumed as an additional input parameter (test sets 

of 4,000 records). 
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Figure 4. Cont. 

 

Figure 5. Same as Figure 3, but for i assumed as an additional input parameter. 

 

Table 5. Same as Table 4, but for i assumed as an additional input parameter. 

 Vertical polarization Horizontal polarization 
 L-band C-band L-band C-band 
 0.95 0.99 0.98 1.00 

b [dB] 0.05 −0.03 0.05 0.01 
rmse [dB] 1.21 0.66 1.26 0.52 

 

Comments on Figure 5 are substantially the same as those on Figure 3. The root mean square error 

is generally less than 1 dB (C-band) and 2 dB (L-band). Again, a large rmse has been obtained only for 

L-band, horizontal polarization, for very small k0s. Note that for the same range of k0s we have found 

the largest values of rmse at C-band too. A similar analysis has been accomplished also for the 
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incidence angle in this case. The range of i has been divided in 5°-step intervals and for each interval 

the rmse has been calculated. The result of this analysis (not shown for the sake of conciseness) has 

demonstrated that rmse is not very sensitive to incidence angle, except for a slight increase occurring 

for the largest i considered here (i.e., 40° at C-band and 50° at L-band). We can end this discussion by 

claiming that the NN-based model can be reliably applied to reproduce the behavior of the IEMM 

(especially at C-band) both for flat and for hilly terrains. Caution must be used in considering the NN 

predictions at L-band, horizontal polarization, for the case of very smooth soils, because we have 

found an error in the order of 3 dB. 

A final test has been accomplished to assess the reliability of the proposed approach. Considering 

separately the test sets built for the nominal incidence angle (L-band: 34°; C-band: 23°), we have 

added to the IEMM-based 0 a random Gaussian noise of zero mean and 1 dB of standard deviation, 

in order to simulate both the model and the instrument errors. Then, we have tried to retrieve the 

corresponding input mv, through an iterative technique aiming at minimizing the following  

cost function: 

20
_

0
_

2

1

)]([)( vNNkmeask
k

v mmd  


    (13) 

In (13), k = 1 corresponds to vv and q = 2 corresponds to hh. With subscript meas, we denote the 

IEMM 0 to which the noise was added thus simulating a radar sensor measurement, while with 

subscript NN we indicate the outputs of the trained network. The minimization of (13) has been 

performed by applying a simulated annealing technique (e.g., [29]). Note that since this is only a 

theoretical exercise aiming at proving the suitability of our methodology for a typical remote sensing 

problem such as soil moisture estimation, the knowledge of the roughness parameters (i.e., s and l) has 

been supposed to generate the NN outputs, while it is well known that in real cases the uncertainty on 

the roughness parameters affects the quality of soil moisture estimates inducing retrieval errors that 

may be quite large [30,31]. 

Table 6 reports the results of the comparison between the estimations achieved by minimizing (13) 

and the mv of the test sets. The retrievals obtained by using the NN emulators of the IEMM are fairly 

accurate (especially at C-band), so that the use of the NN-based forward model, instead of the rigorous 

IEMM, seems to be promising for an application to the problem of retrieving geophysical parameters 

from radar data. It is worth noting that, by using the NNs, the minimization has taken approximately 3 

minutes for all the 500 samples of the test sets. 

Table 6. Results of the comparison between the soil moistures belonging to the test sets 

built for fixed i (500 records) and those estimated by using NNs in the retrieval algorithm 

based on (13). 

 L-band C-band 
 0.88 0.74 

b [m3/m3] 0.01 0.01 
rmse [m3/m3] 0.05 0.07 
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5. Conclusions 

 

A neural network approach to approximate the behavior of the Integral Eqution Model with 

multiple scattering (IEMM) has been proposed to deal with the problem of the IEMM computational 

efficiency. The backscattering coefficients evaluated at C-band, considering an observation angle  

of 23° and at L-band, assuming an observation angle of 34°, have been initially considered to evaluate 

the reliability of the methodology. The approach has been also extended by considering the incidence 

angle as an additional input parameter to make the derived model applicable for terrains with complex 

topography. The use of neural networks has considerably decreased the computational time required 

by the IEMM.  

It has been proved that the neural networks we have designed reproduce the behavior of IEMM 

fairly well both for flat and for tilted surfaces. The correlation between IEMM- and NN-derived 

backscattering coefficients has turned out to be close to the unit and we have also found an almost null 

mean error and a root mean square error not exceeding 1.3 dB at L-band and 0.7 dB at C-band 

(considering a variable incidence angle). A simple theoretical exercise has also indicated that the use 

of the trained networks within an iterative retrieval algorithm can be suitable for a typical problem 

such as retrieving soil moisture from radar data. 

It is worth noting that the proposed approach can also be used to train the network on a database 

merging both model outputs and real measurements, thus providing a way to deal with the 

uncertainties of any theoretical model. 
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