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Abstract: Three PEG molecules (PEG-methacrylate, -diacrylate and -dimethacrylate) were 

incorporated into galactose-based polyacrylate hydrogels and their relative abilities to 

reduce non-specific protein adsorption in immunoassays were determined. Highly 

crosslinked hydrogels containing amine-terminated functionalities were formed and used 

to covalently attach antibodies specific for staphylococcal enterotoxin B (SEB). Patterned 

arrays of immobilized antibodies in the PEG-modified hydrogels were created with a 

PDMS template containing micro-channels for use in sandwich immunoassays to detect 

SEB. Different concentrations of the toxin were applied to the hydrogel arrays, followed 

with a Cy3-labeled tracer antibody specific for the two toxins. Fluorescence laser scanning 

confocal microscopy of the tracer molecules provided both qualitative and quantitative 

measurements on the detection sensitivity and the reduction in non-specific binding as a 

result of PEG incorporation. Results showed the PEG-modified hydrogel significantly 

reduced non-specific protein binding with a detection limit for SEB of 1 ng/mL. 

Fluorescence signals showed a 10-fold decrease in the non-specific binding and a 6-fold 

increase in specific binding of SEB.  
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1. Introduction  

 

Hydrogels have demonstrated their potential as a useful platform for the development of 

immunoassays [1–8]. These porous materials can be tailored to possess high surface areas and inter-

penetrating networks that can be readily functionalized with receptor ligands for the immobilization of 

biomolecules. In addition to the increased surface area, hydrogels have been recognized as substrates 

capable of preserving the integrity of a protein secondary structure during most immobilization 

procedures. This is critical in a biomolecule’s ability to bind targeted antigens with high efficiency in 

order to achieve the highest degree of immunoassay sensitivity. So as researchers continue to 

investigate the utility of hydrogels and attempt to understand their intricate internal three-dimensional 

(3-D) porous microstructure, they also recognize its limitless potential for improving biomolecular 

interactions for the development of highly sensitive sensor systems.   

Several platforms have been developed using hydrogels as a research tool. DNA as well as other 

proteins have been successfully incorporated into hydrogel networks [9–11] and have demonstrated 

that these materials can improve hybridization protocols and biosensor detection systems [12]. 

Hydrogels have provided networks for drug delivery and cell transplantation applications [13] and 

served as cryoprotectant scaffolds for cellular arrays [14]. The versatility of these porous materials 

renders them amenable to an array of applications that extend from biomedical to pharmaceutical.  

Although most hydrogels can be tailored to possess large pores, it remains nonetheless a network 

that is heterogeneous where “pockets” and “channels” are of different dimensions. This heterogeneity 

provides a greater opportunity for proteins to non-specifically adsorb to pores walls. Non-specific 

protein interactions as a result of hydrogen bonding, charge interactions, or non-polar interactions [15] 

can prove quite challenging in many assay systems. Although the inherent characteristics and 

hydrophilic nature of the hydrogel is beneficial in minimizing non-specific protein adsorption it rarely 

eliminates the problem. As a result, blocking agents (e.g., bovine serum albumin, casein and 

detergents) have been added to many immunoassay protocols to help reduce non-specific protein 

adsorption [16–18]. Recent evidence also suggests that cranberry juice can be used to prevent non-

specific bacterial adhesion in sensing applications [19]. 

We describe here the incorporation and comparison of (polyethylene) glycol (PEG) residues within 

a transparent, galactose-based polyacrylate hydrogel thin film to reduce non-specific protein binding. 

PEG residues have been reported extensively in the literature as having inherent capabilities to reduce 

non-specific protein binding and hence have become more attractive for biomedical research, 

biosensors, and pharmaceutical applications [20–24]. PEG is a neutral, non-toxic polymer with the 

capability of improving a material’s affinity for water, helping to create a microenvironment conducive 

for protein stabilization and improved biomolecular interactions. Hydrogels were cast as thin-films 

incorporating three PEG compounds (PEG-methacrylate, PEG-diacrylate and PEG-dimethacrylate) 

and used in sandwich immunoassays to detect the toxin, staphylococcal enterotoxin B (SEB). The 

efficiency of the three PEG-functionalized hydrogels to reduce non-specific protein adsorption and 

improve detection sensitivity was measured and compared using confocal laser scanning microscopy.  
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2. Results and Discussion  

 

In our efforts to optimize a galactose-based hydrogel for use in immunoassays to detect toxins, we 

have investigated the use of PEG residues as potential components that can be added to hydrogel 

matrices to minimize non-specific protein adsorption and improve immunoassay sensitivity. Three 

PEG-modified acrylates were incorporated into hydrogel mixes prior to casting. Each of the three PEG 

candidates (PEG-methacrylate, -diacrylate or -dimethacrylate) (Figure 1) possesses a vinyl 

functionality that enables incorporation of the PEG complex into the backbone of the hydrogel without 

adversely affecting the hydrogel composition and transparency. After casting of hydrogel slabs, 

poly(dimethyl)siloxane (PDMS) patterning templates were used to create patterned arrays of 

immobilized antibodies [25, 26]. Sandwich assays for SEB were used to optimize the system using 

anti-SEB (capture antibody) crosslinked within the hydrogel after the gels were cast. SEB (0 g/mL–

1.0 g/mL) was then applied and allowed to incubate. After successive washes, a solution of tracer 

antibody, Cy3-labeled anti-SEB, was applied and allowed to bind to the captured SEB, resulting in a 

fluorescent immunocomplex in spots where capture antibodies had been patterned.   

 

Figure 1.  Chemical structures of (a) Poly(ethylene glycol) methacrylate, (b) Poly(ethylene 

glycol) diacrylate, and (c) Poly(ethylene glycol) dimethacrylate. 

 

Figure 2 shows representative images of sandwich immunoassays to detect SEB comparing a 

control hydrogel (no PEG-functionalization, Panel A) and a hydrogel incorporating PEG-diacrylate 

(Panel B). Fluorescence from areas patterned with capture antibodies (highlighted in green, target-

specific binding) and areas without immobilized capture species (highlighted in orange, non-specific 

binding) were measured for each gel type.  A significant fluorescence signal was typically observed as 

a result of non-specific protein adsorption in the unmodified hydrogels (Panel A). This non-specific 
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adsorption is presumably due to binding of the SEB target to the gel matrix, rather than the tracer 

antibody itself; this is evident from both the lack of non-specific binding in the negative controls 

where SEB target was not present but tracer antibody was used (right-most column in Panels A and B, 

0 μg/mL SEB), as well as in the dose responsive nature of this non-specific fluorescence. In 

comparison, minimal non-specific fluorescence signal was observed when PEG-diacrylate was 

incorporated into the hydrogel (Panel B). Fluorescence signals due to both specific (closed symbols) 

and non-specific (open symbols) binding were extracted and clearly demonstrate the effectiveness of 

incorporation of the PEG-diacrylate into the hydrogel matrix (Panel C). Fluorescence signals for 

specific binding of SEB increased 6-fold using the PEG-modified hydrogels in comparison to 

unmodified hydrogels, with a concomitant 10-fold decrease in non-specific binding. 

 

Figure 2. Patterned fluorescence array images of sandwich immunoassay for SEB using 

galactose-based hydrogels. (a) Representative image of SEB immunoassay using hydrogel 

containing no PEG. (b) Representative image of SEB immunoassay with PEG-diacrylate-

modified hydrogel. SEB concentrations ranged from 0.03 to 1.0 g/mL. Regions 

highlighted with the orange box indicate areas of non-specific protein adsorption, whereas 

green-highlighted areas indicate immobilized capture antibody and represent target-

specific binding regions. (c) Line plot showing fluorescence signals due to non-specific 

and specific protein binding in SEB immunoassays (n = 6, ± SD). 
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Figure 3 provides quantitative non-specific binding fluorescence data comparing control hydrogels 

(unmodified) and hydrogels modified with PEG-diacrylate, PEG-methacrylate and PEG-

dimethacrylate. As evident from the plot, fluorescence from non-specific protein binding was lower in 

each of the PEG modified substrates in comparison to the control (no PEG) at most concentrations of 

SEB added.  The difference was not statistically significant in many cases (P>0.05), however, due to 

the extremely large errors in the no-PEG controls (note the large error bars).  Although the overall 

patterns of non-specific fluorescence of the three PEG matrices at intermediate SEB concentrations (30 

ng/mL–1.0 μg/mL) varied, PEG-diacrylate resulted in the greatest overall reduction in non-specific 

protein binding at the highest and lowest concentrations of SEB (0 ng/mL, 3.3 μg/mL; P<0.001). 

 

Figure 3. Fluorescence measured from non-specific binding in sandwich immunoassays 

for SEB. Unmodified hydrogels, PEG-diacrylate, PEG-methacrylate and PEG-

dimethacrylate modified hydrogels were compared (i.e., areas highlighted in orange 

rectangle in Figures 2A and 2B). Images of the fluorescence arrays were analyzed using 

Adobe Photoshop CS3 Extended (from RGB color values). Values reported represent 

replicate of six (± SD).  

 
 

When the target-specific fluorescence and signals from non-specific binding were used together to 

generate net fluorescence signals, the differences between the PEG-derivatized hydrogels became 

more apparent. Figure 4 shows a comparison of the net fluorescence signal response in sandwich 

immunoassays using the three PEG-derivatized hydrogels, as well as control hydrogels. A clear dose-

response curve was observed with the three hydrogels, although signals saturated at SEB 

concentrations of 0.1 g/mL and above in hydrogels modified with PEG-methacrylate. Both PEG-

diacrylate and PEG-methacrylate gave approximately 3-fold higher net signals than the PEG-

dimethacrylate-modified hydrogels at all concentrations of SEB tested.  However, the PEG-

methacrylate also showed significantly higher net signals in negative controls without SEB (i.e., non-

specific binding of tracer antibody in the absence of SEB; P<0.005). PEG-diacrylate-modified 

hydrogels, on the other hand, demonstrate superior performance in terms of both specific and non-
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specific binding (i.e., lower non-specific binding, higher specific binding) and therefore may prove to 

be a more appropriate candidate for further improvement of this and other (see supplemental material) 

array-based assays incorporating hydrogel matrices.  

 

Figure 4. Comparison of net fluorescence signal responses obtained in sandwich 

immunoassays using control (no PEG) and three different PEG-incorporated hydrogels. 

The three PEG candidates ( ), PEG-diacrylate ( ), PEG-methacrylate and ( ) PEG-

dimethacrylate were incorporated into galactose-based polyacrylate hydrogels. Rabbit anti-

SEB (capture antibody) was bound within the hydrogel and fluorescence was obtained with 

Cy3-labeled sheep anti-SEB (tracer molecule). Values reported represent replicates of six 

(± SD). 

 
 

3. Experimental Section  

 

3.1 Antibodies, antigens and reagents 

 

Poly(ethylene glycol) (n) methacrylate n = 526; Poly(ethylene glycol) (n) diacrylate n = 400; 

Poly(ethylene glycol) (n) dimethacrylate n = 400 and N-(3-aminopropyl) methacrylamide were 

purchased from Polysciences, Inc. (Warrington, PA, USA) and are shown in Figure 1. Antibodies and 

antigens were obtained from the following sources: Staphylococcal enterotoxin B (SEB), rabbit and 

sheep anti-SEB polyclonal IgGs from Toxin Technology, Inc. (Sarasota, FL, USA); antibodies specific 

for ricin (two clones; RIC-07-AG1 and RIC-03-AG1) and ricin antigen from Naval Medical Research 

Center (NMRC) (Silver Spring, MD, USA); bis (sulfosuccinimidyl) suberate (BS3) from Pierce 

Chemical Corp. (Rockford, IL, USA); N, N’-methylene bis-acrylamide, sodium persulfate and 

TEMED from BioRad Laboratories (Hercules, CA, USA); and 3-(trimethoxysilyl) propylmethacrylate 

and dichlorodimethylsilane from Sigma-Aldrich-Fluka (Milwaukee, WI, USA). Fluorescence labeling 

of antibodies specific for SEB and ricin with Cy3 dye (Amersham Biosciences, Piscataway, NJ, USA) 
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was performed according to the protocol supplied by the manufacturer, except that 3 mg of protein was 

labeled for each packet of dye rather than 1 mg. Appropriate precautions were taken when using toxins 

and other hazardous reagents. Analyte solutions were treated with a 20% bleach solution before 

disposal. Contaminated disposables were placed in biohazard containers and later incinerated. 

 

3.2 Preparation of PEG –modified polyacrylate hydrogel films 

 

Hydrogel thin-films were prepared as previously reported [27]. Briefly, hydrogels were covalently 

attached to glass microscope slides through an acrylic group (3-(trimethoxysilyl) propyl methacrylate 

(MTPTS) that was previously applied to the glass surface. A solution of the galactose monomer, 6-

acryloyl--O-methyl galactopyranoside [28], was prepared in 18M Milli-Q water to a final 

concentration of 10% (w/v). The monomer solution was then added to N-(3-aminopropyl) 

methacrylamide at 25% (w/w) of the galactose monomer concentration. N, N-methylene bis-

acrylamide (Bis) cross-linker at 3% (w/w) of the monomer concentration was dissolved in 100 L of 

18M Milli-Q H2O and subsequently added to the galactose monomer-amine mixture. Formation of 

the hydrogel was accomplished through a free radical polymerization process using the initiator 

sodium persulfate (0.55 mg, 1.8 mol). Poly(ethylene glycol) methacrylate, poly(ethylene glycol) 

diacrylate or poly(ethylene glycol) dimethacrylate was added to the monomer solution at a final 

concentration of 10% (v/v) and vortexed briefly. TEMED (1.5 L, 8.2 nmol), which served as the 

catalyst, was added to the mixture followed by a brief nitrogen purge. A droplet of the hydrogel 

solution (110 L) was placed on the methacrylate-treated slide and covered with the dichlorodimethyl 

(DCDM) silane-treated slide, clamped on both ends and allowed to polymerize overnight in an inert 

atmosphere (nitrogen). After gel polymerization, the DCDM-treated slide was removed, revealing a 

highly crosslinked PEG-modified polyacrylate hydrogel containing an amine-terminated moiety for 

antibody attachment. The resulting polymer has wt ratio of galactose-6-acrylate: 3-APM: Bis: PEG of 

about 10:2.5:0.3:10. Slides were briefly immersed in Milli-Q water (1.0 min), air-dried at room 

temperature, then stored semi-hydrated at 4 °C until further use. 

 

3.3 Immobilization of antibodies 

 

Antibodies specific for SEB and ricin were immobilized and patterned in stripes onto PEG-

modified hydrogel films using a PDMS patterning template containing six channels, each measuring 

22 mm (l)1.5 mm (w)2.5 mm (h) [25, 26]. The crosslinker, bis (sulfosuccinimidyl) suberate (BS3) 

(2.5 mM) in 10 mM Na-phosphate buffer, pH 6.0, was injected into each channel and allowed to 

incubate for 30 min at RT. Covalent attachment of the crosslinker to the polymerized 3D hydrogel was 

achieved through the NHS-ester moiety of the crosslinker to the amine-terminated methacrylate group 

contained within the internal network of hydrogel. Each channel was rinsed with phosphate buffered 

saline, pH 7.4 (PBS, 0.6 mL), followed by the injection of rabbit anti-SEB in PBS (or mouse anti-ricin 

for ricin immunoassays) into the respective lanes. An incubation period of 1h at RT was performed 

followed with subsequent PBS rinse cycles. At each cycle the antibody was withdrawn carefully and 

used again for repeated treatments. This 30-min crosslinking and 60-min antibody cycle was 

performed six times in each micro-channel with the final cycle of antibody treatment allowed to 
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incubate overnight at 4C. At the conclusion of the final cycle, the antibody solution was withdrawn 

from the channels, the channels rinsed with PBS (0.6 mL), treated with PBS (0.6 mL) and 

subsequently blocked with 2% bovine serum albumin (BSA) in PBS (0.6 mL) for 1h at RT. 

 

3.4 Sandwich immunoassay for SEB 

 

SEB (in PBS containing 0.5% Tween® 20 and 1.0 mg/mL BSA, PBSTB) was applied to the 

hydrogel slabs at concentrations 0 g/mL to 1.0 g/mL using a 6-channel PDMS template with its 

channels oriented perpendicular to the stripes of immobilized antibodies. The toxin solution was 

incubated (static) for 1h at RT to allow binding to the immobilized antibody. Each channel was then 

evacuated of toxin, rinsed with PBSTB (1.0 mL) and incubated for 30 min with Cy3-sheep anti-SEB 

(10 g/mL in PBSTB). Following the tracer incubation, the channel was evacuated and received a final 

rinse with PBSTB (1.0 mL). Fluorescence signals of bound Cy3-labeled antibody were then measured 

using laser confocal microscopy and correlated to toxin concentration. Detection limits were defined 

as the lowest tested toxin concentration whose net signal was at least 3 standard deviations above both 

the negative control (no toxin) and the background (no capture antibody). 

 

4. Conclusions  

 

The integration of polyethylene glycol (PEG) into the internal network of a galactose-based 

polyacrylate hydrogel proved beneficial in the reduction of non-specific protein binding. The selection 

of antibodies specific for SEB as a model system was based on previous experience in the 

development and optimization of assays for toxins of 2D surfaces [25, 26, 29] and previous work with 

hydrogels conducted within our group [6]. The anti-SEB provides excellent specificity for the SEB 

toxin with little to no crossreactivity towards other related toxins (i.e., cholera toxin) [31]. Patterned 

fluorescence arrays were produced using a PDMS template and protocol [25]. Using this format non-

specific protein binding can result from the adsorption of both the SEB antigen and the Cy3-labeled 

anti-SEB tracer molecule to the hydrogel.  By incorporating PEG molecules into hydrogels, we have 

produced a mechanically robust, reproducible immunoassay platform that provides a high fluorescence 

signal over background with a dramatic decrease in non-specific binding.  Although the standard 

deviation in all the immunoassays were higher than expected (18%–23%; replicates of six for each 

SEB concentration) the results were reproducible (n = 3; ±SD). Of the three PEG complexes 

investigated (PEG-diacrylate, -methacrylate and -dimethacrylate) PEG-diacrylate was chosen as the 

optimum candidate for subsequent immunoassays based on the following factors: 1) significantly 

lower non-specific background signal by the tracer molecule measured at the control concentration 

where no SEB (0 μg/mL) is applied, 2) clearer and more discrete patterned fluorescence arrays on the 

hydrogel and 3) higher overall fluorescence signal response in the SEB sandwich immunoassays. 

Results clearly showed that the addition of PEG-diacrylate reduced the non-specific binding by a 

factor of 10. In addition to the reduction in non-specific binding from the antigen and/or Cy3-labeled 

anti-SEB, a 6-fold increase in the fluorescence signal for specific binding of the SEB antigen to the 

immobilized antibody was observed with a detection level of 1 ng/mL, which is comparable to most 

antibody-based immunoassay systems. In all, PEG-modified hydrogels provide a conducive, 
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hydrophilic micro-environment for the antibody that can dramatically reduce non-specific protein 

binding, enhance antibody–antigen interactions, and improve immunoassay sensitivity. Further 

optimization of the PEG monomer and antibody concentrations will hopefully provide a means of 

achieving even lower detection limits. 

 

Acknowledgements 

 

This research was supported by the Office of Naval Research (NRL 6.2 WU# 69-6008). The views 

expressed herein are those of the authors and do not represent those of the US Navy, the US 

Department of Defense, or the US government. 

 

References and Notes 

 

1. Rubina, A.Y.; Dementieva, E.I.; Stomakhin, A.A.; Darii, E.L.; Pan'kov, S.V.; Barsky, W.E.; 

Ivanov, S.M.; Konovalova, E.V.; Mirzabekov, A.D. Hydrogel-based protein microchips: 

manufacturing, properties, and applications. Biotechniques 2003, 34, 1008–1022. 

2. Revzin, A.; Russell, R.J.; Yadavalli, V.K.; Koh, W.G.; Deister, C.; Hile, D.D.; Mellot, M.B.; 

Pishko, M.V. Fabrication of poly(ethylene glycol) hydrogel microstructure using 

photolithography. Langmuir 2001, 17, 5440–5447. 

3. Barsky, V.E.; Kolchinsky, A.M.; Lysov, Y.P.; Mirzabekov, A.D. Biological microchips with 

hydrogel-immobilized nucleic acids, proteins, and other compounds: Properties and applications 

in genomics. Molec. Biol. 2002, 36, 437–455. 

4. Arenkov, P.; Kukhtin, A.; Gemmell, A.; Voloshchuk, S.; Chupeeva, V.; Mirzabekov, A. Protein 

microchips: use for immunoassay and enzymatic reactions. Anal. Biochem. 2000, 278, 123–131. 

5. Kiyonaka, S.; Sada, K.; Yoshimura, I.; Shinkai, S.; Kato, N.; Hamachi, I. Semi-wet 

peptide/protein array using supramolecular hydrogel. Nature Mat. 2004, 3, 58–64. 

6. Charles, P.T.; Taitt, C.R.; Goldman, E.R.; Rangasammy, J.G.; Stenger, D.A. Immobilization 

strategy and characterization of hydrogel-based thin film for interrogation of ligand binding with 

staphylococcal enterotoxin B (SEB) in a protein microarray format. Langmuir 2004, 20, 270–272. 

7. Angenendt, P.; Glokler, J.; Murphy, D.; Lehrach, H.; Cahill, D.J. Toward optimized microarrays: 

a comparison of current microarray support materials. Anal. Biochem. 2002, 309, 253–260.  

8. Gurevitch, D.; Dong, X.F.; Pircher, T.J.; Matsumoto, S.S.; Roycroft, P.; Tsinberg, P.; Falcovitz, 

Y.H.; Hahn, S. A novel three-dimensional hydrogel-based microarray platform. JALA 2001, 6, 

81–91.  

9. Proudnikov, D.; Timofeev, E.; Mirzabekov, A. Immobilization of DNA in polyacrylamide gel for 

the manufacture of DNA and DNA-oligonucleotide microchips. Anal. Biochem. 1998, 259, 34–41. 

10. Rubina, A.Y.; Pan'kov, S.V.; Dementieva, E.I.; Pen'kov, D.N.; Butygin, A.V.; Vasiliskov, V.A.; 

Chudinov, A.V.; Mikheikin, A.L.; Mikhailovich, V.M.; Mirzabekov, A.D. Hydrogel drop 

microchips with immobilized DNA: properties and methods for large-scale production. Anal. 

Biochem. 2004, 325, 92–106. 



Sensors 2009, 9                

 

 

654

11. Rubina, A.Y.; Dyukova, V.I.; Dementieva, E.I.; Stomakhin, A.A.; Nesmeyanov, V.A.; Grishin, 

E.V.; Zasedatelev, A.S. Quantitative immunoassay of biotoxins on hydrogel-based protein 

microchips. Anal. Biochem. 2005, 340, 317–329.  

12. Yadavalli, V.K.; Koh, W-G.; Lazur, G.J.; Pishko, M.V. Microfabricated protein-containing 

poly(ethylene glycol) hydrogel arrays for biosensing. Sens. Actuat. B: Chem. 2004, 97, 290–297. 

13. Maia, J.; Ferreira, L.; Carvalho, R.; Ramos, M.A.; Gil, M.H. Synthesis and characterization of 

new injectable and degradable dextran-based hydrogels. Polymer 2005, 46, 9604–9614. 

14. Itle, L.J.; Pishko, M.V. Cryopreservation of cell-containing poly(ethylene) glycol hydrogel 

microarrays. Biotechnol. Prog. 2005, 21, 1004–1007.  

15. Ross, P.D; Subhramanian, S. Thermodynamics of protein association reactions: Forces 

contributing to stability. Biochemistry 1981, 20, 3096–3102. 

16. Wedege, E.; Svenneby, G. Effects of the blocking agents bovine serum albumin and Tween 20 in 

different buffers on immunoblotting of brain proteins and marker proteins. J. Immunol. Methods 

1986, 88, 233–237. 

17. Batteiger, B.; Newhall, W.J.; Jones, R.B. The use of Tween 20 as a blocking agent in the 

immunological detection of proteins transferred to nitrocellulose membranes. J. Immunol. 

Methods 1982, 55, 297–307. 

18. Kenna, J.G.; Major, G.N.; Williams, R.S. Methods for reducing non-specific antibody binding in 

enzyme-linked immunosorbent assays. J. Immunol. Methods 1985, 85, 409–419. 

19. Johnson-White, B.; Buquo, L.; Zeinali, M.; Ligler, F.S. Prevention of non-specific bacterial cell 

adhesion in immunoassays by use of cranberry juice. Anal. Chem. 2006, 78, 853–857. 

20. Bures, P.; Huang, Y.; Oral, E.; Peppas, N.A. Surface modifications and molecular imprinting of 

polymers in medical and pharmaceutical applications, J. Control Release 2001, 72, 25–33. 

21. Wisniewski, N.; Reichert, M. Methods for reducing biosensor membrane biofouling. Colloids 

Surf. B: Biointerfaces 2000, 18, 197–219. 

22. Xua, F.J.; Li, H.Z.; Lib, J.; Teod, Y.H.; Zhud, C.X.; Kanga, E.T.; Neoh, K.G. Spatially well-

defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-

fouling surfaces. Biosens. Bioelectron. 2008, doi:10.1016/j.bios.2008.06.055  

23. Koh, W-G; Revzin, A.; Pishko, M.V. Poly(ethylene glycol) hydrogel microstructures 

encapsulating living cells. Langmuir 2002, 18, 2459–2462. 

24. Yu, J.; Liu, Z.; Liu, Q.; Yuen, K.T.; Mak, A.F.; Yang, M.; Leung, P. A polyethylene glycol (PEG) 

microfluidic chip with nanostructures for bacteria rapid patterning and detection, Sens. Actuat. A: 

Phys. 2008, doi:10.1016/j.sna.2008.07.005 

25. Rowe, C.A.; Tender, L.M.; Feldstein, M.J.; Golden, J.P.; Scruggs, S.B.; MacCraith, B.D.; Ligler, 

F.S. Array biosensor for simultaneous identification of bacterial, viral and protein analytes. Anal. 

Chem. 1999, 71, 3846–3852. 

26. Ligler, F.S.; Taitt, C.R.; Shriver-Lake, L.C.; Sapsford, K.E.; Shubin, Y.; Golden, J.P. Array 

biosensor for detection of toxins. Anal. Bioanal. Chem. 2003, 377, 469–477. 

27. Charles, P.T.; Goldman, R.R.; Rangasammy, J.G.; Schauer, C.L.; Chen, M.S.; Taitt, C.R. 

Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody 

functionality for biosensor applications. Biosen. Bioelectron. 2004, 20, 753–764. 



Sensors 2009, 9                

 

 

655

28. Martin, B.D.; Linhardt, R.J.; Dordick, J.S. Highly swelling hydrogels from ordered galactose-

based polyacrylates. Biomaterials 1998, 19, 69–76. 

29. Ligler, F.S.; Sapsford, K.E.; Golden, J.P.; Shriver-Lake, L.C.; Taitt, C.R.; Dyer, M.A.; Barone, S.; 

Myatt, C.J. The Array Biosensor: Portable, Automated Systems. Anal. Sci. 2007, 1, 5–10. 

30. Rowe-Taitt, C.A.; Golden, J.P.; Feldstein, M.J.; Cras, J.J.; Hoffman, K.E.; Ligler, F.S. Array 

biosensor for detection of biohazards. Biosen. Bioelectron. 2000, 14, 785–794. 

31. Charles, P.T.; Velez, F.; Soto, C.M.; Goldman, E.R.; Martin, B.D.; Ray, R.I.; Taitt, C.R. A 

galactose polyacrylate-based hydrogel scaffold for the detection of cholera toxin and 

staphylococcal enterotoxin B in a sandwich immunoassay format. Anal. Chim. Acta 2006, 578, 2–

10 

 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


