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Abstract: Radar-based surface soil moisture retrieval has been subject of intense research 

during the last decades. However, several difficulties hamper the operational estimation of 

soil moisture based on currently available spaceborne sensors. The main difficulty 

experienced so far results from the strong influence of other surface characteristics, mainly 

roughness, on the backscattering coefficient, which hinders the soil moisture inversion. 

This is especially true for single configuration observations where the solution to the 

surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter 

cereal crops, roughness can be assumed to remain constant along the growing cycle 

allowing the use of simplified approaches that facilitate the estimation of the moisture 

content of soils. However, the field scale spatial variability and temporal variations of 

roughness can introduce errors in the estimation of soil moisture that are difficult to 

evaluate. The objective of this study is to assess the impact of roughness spatial variability 

and roughness temporal variations on the retrieval of soil moisture from radar observations. 

A series of laser profilometer measurements were performed over several fields in an 
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experimental watershed from September 2004 to March 2005. The influence of the 

observed roughness variability and its temporal variations on the retrieval of soil moisture 

is studied using simulations performed with the Integral Equation Model, considering 

different sensor configurations. Results show that both field scale roughness spatial 

variability and its temporal variations are aspects that need to be taken into account, since 

they can introduce large errors on the retrieved soil moisture values. 

 

Keywords: Synthetic Aperture Radar, Soil moisture retrieval, Surface roughness. 

 

 

1. Introduction  

 

Surface soil moisture (SM) is a variable that plays a crucial role in many processes occurring at the 

soil-atmosphere interface. The knowledge of the moisture content of the soil over a field or a 

catchment can be very helpful for hydrological, agronomical and meteorological applications [1-2]. 

Being such an extremely dynamic variable, the possibility of achieving its estimation by means of 

remote sensing observations is very interesting for many applications [2]. At present, active 

microwave (radar) sensors represent the best alternative for a remote SM estimation for hydrologic and 

agronomical applications [1]. The backscattering coefficient (0), obtained from radar sensors, is 

directly related to the dielectric properties of the soil surface being observed, which is mainly 

dependent on its moisture content [3]. Furthermore, the spatial resolution of SAR sensors [4] and their 

ability to observe the surface through clouds are aspects that make them interesting for hydrological 

and agronomical applications.  

Radar-based SM retrieval has been intensively studied in the last decades. Different approaches 

have been developed and used with varied success [1]. Among others, the most rigorous approach 

seems to be the use of electromagnetic scattering models that simulate the surface backscattering 

process [3, 5-11]. Those models can be inverted to retrieve SM. Several models have been proposed 

for bare soils or sparsely vegetated surfaces. At present, the Integral Equation Model (IEM) [5] and the 

Geometrical Optics Model (GOM) [3], both physically-based models, are the most frequently used 

algorithms for soil moisture retrieval [12-14]. The former is applicable on smooth or medium 

roughness conditions and the latter on rough or very rough surfaces. Consequently, both models cover 

the range of roughness conditions that can be expected over most agricultural surfaces. In addition, 

these theoretical models have been validated against observations acquired on experimental plots and 

laboratory settings verifying the adequacy of their predictions as long as their applicability conditions 

are met [5, 15, 16]. 

However, the application of the IEM to natural conditions has been so far problematic [7, 12, 13, 

17-22]. Frequently, the poor results obtained have been related to the influence of soil roughness on 

the backscatter [23]. Furthermore, it has been reported that an accurate field measurement of the 

required roughness parameters (standard deviation of surface heights s and correlation length l), in 

particular l, is extremely difficult to perform [23-27].  

In some circumstances the influence of surface roughness can be simplified. For instance, over 

agricultural areas where winter cereals are grown, the soil surface remains untilled from sowing (end 
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of October) till harvest (end of June). During this period, surface roughness can be assumed constant 

and SM inversion can be simplified assuming that 0 variations are only a consequence of SM 

dynamics. Of course, over those agricultural areas the vegetation cover can influence the SAR 

response and complicate the SM retrieval [28, 29]. However, in the first stages cereal crops develop 

slowly and it takes some months until their influence on the SAR signal is significant [30]. Therefore, 

during the agricultural inactive period (approximately from November till March for the Spanish 

watershed studied) the assumption of constant roughness conditions and the use of simplified SM 

inversion approaches seems a good choice. In addition, most of the precipitation over temperate 

climate regions occurs during those autumn and winter months, making the estimation of soil moisture 

and its dynamics during this period very interesting for hydrological applications. 

In autumn and winter periods, severe storms can cause a smoothening of the soil surface, resulting 

in variations in the surface roughness conditions. The study of the soil surface smoothening caused by 

precipitation is not new. Many investigations have been carried out on this subject, mostly by soil 

erosion scientists willing to characterize the detachment and transport of soil particles by rainfall and 

runoff [31]. Indeed, surface roughness is an important variable on hydrological and erosion processes 

and its knowledge is important for many simulation models in these fields. Most of the studies 

performed to evaluate the soil surface smoothening by precipitation were conducted on laboratory 

conditions or experimental plots using artificial rainfall simulators. Results evidenced a reduction on 

the surface roughness as a result of the disintegration and relocation of soil aggregates caused by 

precipitation. The reduction of the standard deviation of surface heights has been described as an 

exponential function of the accumulated precipitation or the accumulated kinetic energy of 

precipitation [31]. This type of exponential decay functions have been incorporated to widely known 

erosion models such as the EUROpean Soil Erosion Model EUROSEM [32]. 

The above mentioned studies were performed using rainfall simulators that generated very high 

precipitation rates which are far more intense than observed during normal precipitations of temperate 

areas [31]. So, it is interesting to evaluate the variation of roughness under real precipitation 

conditions. Besides, even if the reduction of the parameter s has been frequently evidenced, the 

evolution of the correlation length l has barely been studied (e.g. [24]), and little is known on its 

variations with precipitation. Consequently, it is important to evaluate the variations of surface 

roughness that can occur over those winter cereal growing areas and to assess their influence on the 

estimation of soil moisture from radar data. 

Roughness parameters are also very variable in space [31, 33-35]. Generally, SAR-based SM 

estimations are made at the field or catchment scale. Point or pixel estimates are not realistic due to the 

influence of speckle and roughness spatial variability, therefore aggregation to the field or catchment 

level is preferable. Nevertheless, catchment and field scale SM estimates are still very valuable for 

most applications. Yet, roughness spatial variability can still exert a strong influence on the retrieval of 

SM at those scales. The measurement or estimation of field average roughness parameters can be 

extremely difficult over agricultural and natural surfaces, and the influence of an inaccurate estimation 

on s and l can have consequences on the retrieval of SM. Yet the quantification of this impact has 

never been explicitly evaluated to our knowledge. 

In this study, we present the results of an intensive campaign of roughness ground measurements 

and analyze the field scale variability and temporal dynamics of roughness parameters during a winter 
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cereal season. Next, their implications on the estimation of 0 using the IEM and on the subsequent 

retrieval of SM from radar data are evaluated by means of a synthetic analysis. In the analysis, 

different sensor configurations (polarization, frequency and incidence angle) and soil moisture 

conditions are considered to investigate any possible relation between the conditions of the 

observations and the sensitivity to roughness variations. 

 

2. Materials and Methods 

 

2.1. Test site 

 

The research was carried out over a small agricultural watershed located in the Spanish region of 

Navarre called La Tejería. This watershed is part of the Experimental Agricultural Watershed Network 

of Navarre, created by the local Government of Navarre in 1993 and aimed at studying the impact of 

agriculture on the hydrological resources [36]. 

The geographical coordinates of the watershed outlet are 42º44’10.6’’N and 1º56’57.2’’W. The 

watershed covers approximately 170 ha with homogeneous slopes of about 12%, and an altitude 

ranging from 496 to 649 m. Its climate is humid submediterranean, with a mean annual temperature of 

13ºC. The average annual rainfall is about 700 mm, distributed over approximately 105 days. 

The most common soils are Tipic Xerochrepts, which are less than 1 m deep. Those soils have 

Silty-Clay texture (43% clay, 5% sand, 52% silt) and cover most of the hillslopes. The watershed is 

almost completely cultivated and the hedgerows and streams are the only areas covered by natural 

vegetation. The main crops are winter cereals (wheat, barley and oat) and less frequently rain fed 

vegetables (chickpeas and beans) and sunflower. Normally, the growing cycle starts in September 

when soil preparation and tillage operations are performed. Soil preparation operations consist of a 

deep tillage operation (usually moldboard plowing); a second operation to break the soil clods and 

refine the surface using a spike harrow (this harrowing operation is usually applied twice); finally, the 

cereal is sown (approximately around October) and, in some few fields, the soil surface is compacted 

afterwards using a roller. 

 

2.2. Ground measurements 

 

Surface roughness measurements were performed during the agricultural year 2004-2005. Ten 

control fields were selected over the catchment, with field sizes ranging from 3.0 ha to 7.3 ha. Ground 

measurements were performed on eight dates: 22/09/2004, 08/10/2004, 24/10/2004, 12/11/2004, 

28/11/2004, 17/12/2004 and 01/03/2005. Four profiles were acquired per field on each date (with few 

exceptions, see Table 1), making a total of 264 profiles. On the first three dates different tillage classes 

were measured, from the fourth date onward, the cereal crop was sown and the tillage state was 

classified as ‘Seedbed’ (Table 1). After March, the vegetation cover is, in general, sufficiently 

developed to protect the soil surface from the impact of precipitation, so no further measurements were 

acquired later in the season. In classes where clear tillage rows were observed, profiles were acquired 

in parallel to the rows, in order to reflect the random component of roughness. Measurements 

perpendicular to the rows were not performed, since the periodic pattern introduced by the rows should 
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be removed from the obtained roughness profile, and accounted for separately in the backscatter  

model [3]. 

 

Table 1. Tillage class of the test fields on the different measurement dates. 

Test field 22/09/2004 08/10/2004 24/10/2004 12/11/2004 28/11/2004 17/12/2004 01/03/2005 

188 
Rough 

Harrowed 

Rough 

Harrowed 

Roller 

Compacted
Seedbed Seedbed Seedbed Seedbed 

189 
Rough 

Harrowed 

Rough 

Harrowed 

Smooth 

Harrowed 
Seedbed Seedbed Seedbed Seedbed 

193 
Rough 

Harrowed 

Rough 

Harrowed 
Seedbed Seedbed Seedbed Seedbed Seedbed 

194 
Harvested 

Crop 

Rough 

Harrowed 

Rough 

Harrowed 
Seedbed Seedbed Seedbed Seedbed 

199 
Mouldboard 

Plough 

Mouldboar

d Plough 

Mouldboar

d Plough 
Seedbed Seedbed Seedbed Seedbed 

201 
Smooth 

Harrowed 

Smooth 

Harrowed 

Roller 

Compacted
Seedbed Seedbed Seedbed Seedbed 

208 
Mouldboard 

Plough 

Mouldboar

d Plough / 

Rough 

Harrowed 

Mouldboar

d Plough / 

Rough 

Harrowed 

Roller 

Seedbed 

Roller 

Seedbed 

Roller 

Seedbed 

Roller 

Seedbed 

235 
Smooth 

Harrowed 

Smooth 

Harrowed 
Seedbed Seedbed Seedbed Seedbed Seedbed 

255 
Smooth 

Harrowed 

Smooth 

Harrowed 
No Data Seedbed Seedbed Seedbed No Data 

258 
Rough 

Harrowed 
No Data No Data Seedbed Seedbed Seedbed No Data 

 

Figure 1. Daily and accumulated precipitation recorded during the studied period. 

Measurement dates are indicated by red arrows. Dates are given in dd/mm/yyyy format. 
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During the research period, the accumulated precipitation was 382 mm, which can be considered 

normal in the region [36]. Precipitations were scarce on the first dates and more frequent during winter 

months (Figure 1). 

Surface roughness measurements were performed using a non-contact profilometer that 

incorporates a laser sensor to measure the distance from a reference beam to the soil surface (Figure 2). 

The main advantages of the instrument comparing to other roughness measuring methods consist of 

the facts that the soil surface remains unchanged after the measurement, the profile data are directly 

downloaded, omitting the need of post-processing, and the very high accuracy of the instrument. 

The laser profilometer consists of an aluminium beam, attached to two tripods at both ends  

(Figure 2). A laser sensor is placed on a small carriage that is moved along the beam driven by a small 

electric motor. The laser sensor has a vertical accuracy of 1 mm and is programmed to acquire and 

store height data every 5 mm. The total length of acquired profiles is 5 m, and the beam can be 

dismantled in two pieces to be more easily handled and transported. Two plastic racks are attached to 

the aluminium beam; the former is used by the motor gear to move the carriage and the latter to 

provide a distance reference to the sensor from which the instrument infers when measurements need 

to be stored. The instrument is connected to a power supply unit that also contains the data logger. 

The processing of the profiles acquired is simple and fast. Once profiles are downloaded from the 

data logger to a PC, the beam deformation is corrected using a parabolic curve fitted to a set of 

reference measurements acquired in the lab. Afterwards, any shape or trend corresponding to the 

surface topography is removed. Finally, roughness parameters (s and l) are calculated. Field average s 

values were obtained as the arithmetic mean of individual s data, whereas average l values were 

derived from the average autocorrelation function (ACF) calculated using the ACFs of individual 

profiles. 

 

Figure 2. Main components of the laser profilometer. 

 
 

2.3. Backscatter model 

 

The IEM was used in order to evaluate the influence of roughness variations in the backscattering 

coefficient of surfaces. In the present research, a simplified version of the IEM was applied which 

considered only the single scattering term of the backscattered wave [5, 17]. This version is applicable 

to surfaces with small to moderate roughness conditions or at low to medium frequencies, having a 

validity range restricted by ks < 3 and m < 0.4; with k being the wave number and m the surface 

roughness slope, which for exponentially autocorrelated surfaces equals s/l. The description of the 

model can be found in the literature (for instance in [5, 13, 17]). 
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It should be remarked that the aim of the study is not to compare the accuracy of IEM estimations 

with observed SAR data. The intent is to evaluate the importance of roughness variations. Therefore, 

no actual SAR data were analysed in this study. A basic assumption of the study is that the IEM 

provides adequate backscatter simulations as long as its applicability conditions are met. 

The IEM calculates the backscattering coefficient from a surface given its roughness parameters (s, 

l) and exponential ACF (valid for different soil tillages [24]), its dielectric constant () and the scene 

acquisition parameters: frequency, incidence angle and polarization. In the present research, was 

calculated through the Dielectric Mixing Model [37] using SM, soil texture and temperature data. 

After inverting the model, the dielectric constant, and hence SM, can be retrieved from 0 

observations given the roughness parameters. In this paper the inversion was performed using a look-

up-table type scheme. In order to prevent the model from predicting physically impossible SM values, 

the inverted SM values were limited to a range between 0.001 cm3cm-3 and 0.600 cm3cm-3. 

 

2.4. Synthetic analysis 

 

Synthetic analyses based on backscatter models have been used frequently to circumvent the rare 

availability of extensive SAR observations coincident with high amounts of accurate ground 

measurements. In the SAR-based soil moisture retrieval literature synthetic studies based on the IEM 

have been performed with several objectives: (1) to derive or to validate simplified (semi-empirical) 

models [6, 7, 9, 10, 38]; (2) to develop statistical retrieval methods based on neural networks [12, 39-

41]; Bayesian techniques [28, 42]; or possibilistic algorithms [43] and fuzzy rule-based models [44]; 

(3) to perform sensitivity and error analyses [10, 13, 17, 20, 23, 45-48]; and (4) to analyze the 

influence of roughness measurements’ profile length on the calculated backscattering  

coefficient [49-50]. 

Ideally, synthetic studies should be completed with experimental observations, so the use and 

interpretation of their results must be cautious. Nonetheless, they are useful to reveal trends or to test 

different hypothesis, especially in cases where different parameters interact or vary and the 

interpretation of experimental SAR data becomes difficult.  

The synthetic analysis, discussed in this paper, was focused on seedbed fields where the simplifying 

approaches mentioned in the introduction (constant roughness conditions) could be applied. Several 

sensor configurations were considered in order to assess their influence on the accuracy of the 

retrievals. Selected configurations corresponded to those of available spaceborne SAR sensors (i.e. 

ERS-2, RADARSAT-1/-2, ENVISAT/ASAR and ALOS/PALSAR), thus the results obtained can be 

linked to different sensors. Regarding polarization, HH and VV configurations were considered since 

they are more adequate for soil moisture retrieval than cross-polarized configurations [3]. Three 

incidence angle conditions were used: 15º, 30º and 45º, which correspond to steep, medium and large 

incidence angles selectable in most sensors. Finally, two frequencies were selected, C-band (5.3 GHz) 

and L-band (1.27 GHz).  

Three different soil moisture conditions were tested: 0.05 cm3cm-3 (dry), 0.20 cm3cm-3 (medium) 

and 0.35 cm3cm-3 (wet), in an attempt to evaluate whether the influence of roughness was related to the 

moisture of soils being observed. Finally, the following soil characteristics (necessary to transform SM 



Sensors 2009, 9                            

 

 

470

values to dielectric constant) were considered: sand fraction = 10 %, clay fraction = 35 %, bulk density 

= 1.4 g cm-3 and soil temperature = 10 ºC. 

First, IEM simulations were carried out to evaluate the influence of the field scale variability of the 

roughness parameters on 0 and on the retrieved SM. Therefore, field average 0 values were 

calculated using average roughness parameters which were then compared to the 0 values calculated 

from s and l of the individual profiles. The differences were quantified calculating the root mean 

square error (rmse) in dB. In the inverse simulations, SM was retrieved using field average s and l 

values and 0 obtained from individual profile data. The deviations from the initially set SM values 

(0.05, 0.20 or 0.35) were calculated, those can be an indicator of the influence of field scale roughness 

variability on the retrieved SM values. 

Next, the IEM was used to convert the temporal variations of roughness to variations on the 0 and 

on the retrieved SM. In this case, for each field the 0 calculated for the first seedbed date was 

compared to those calculated on the subsequent dates. The variations on 0 calculated this way, were 

only caused by the temporal variations of roughness since all the other parameters (SM, sensor 

configuration, etc.) were kept constant. In the inverse mode, SM was retrieved using s and l 

measurements of the first seedbed date and 0 values obtained using field average s and l values 

measured on the subsequent dates. The differences between the retrieved SM values and the ones 

initially set are a consequence of the temporal variations of roughness. 

 

3. Results 

 

3.1. Influence of the spatial variability of roughness 

 

3.1.1. Roughness measurements 

 

Roughness parameters behaved differently depending on the tillage class. Figure 3 represents the 

boxplots of ground measured s and l values.  

 

Figure 3. Boxplots of the ground measured roughness parameters. a) Standard deviation of 

surface heights s and b) Correlation length l. 

a                                                b 
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It can be observed that s took larger values as the tillage class became rougher. Generally, fields of 

different classes had different s values, although the variability of s was large in some classes 

(particularly the rough ones). The behaviour of l was different, demonstrating for most of the classes a 

very large variability and a similar variation range. For this study, rough classes had a lower variability 

range than smooth classes.  

In Table 2, field scale average values are presented. Focusing on the field scale spatial variability of 

the parameters, it can be observed that the average coefficients of variation ranged from 16% to 25% 

for parameter s and from 38% to 94% for parameter l. 

 

Table 2. Field scale average roughness parameters. For each tillage class the number of 

fields (N) is given and for each parameter the average of field average values, the average 

of field standard deviations () and the average of field coefficients of variation (CV)  

are shown. 

  s l 
Tillage class N s  (cm) s (cm) sCV (%) l  (cm) l (cm) lCV (%) 
Harvested crop 1 1.62 0.41 25.4 20.57 11.56 56.2 
Mouldboard plough 4 4.33 1.11 25.0 11.59 4.87 37.9 
Harrowed rough 9 2.90 0.52 18.0 13.13 12.52 73.2 
Harrowed smooth 7 2.33 0.39 16.5 17.59 14.71 77.7 
Rolled 2 1.63 0.26 15.9 23.67 20.62 94.5 
Seedbed 36 1.79 0.33 18.4 28.62 19.24 75.3 
Rolled seedbed 4 1.47 0.27 18.3 31.10 11.16 41.9 

 

Figure 4 depicts the autocorrelation functions (ACF) obtained for fields belonging to the different 

tillage classes studied. For each field the mean ACF  was computed averaging the individual ACFs. 

Next, the root mean square error (rmse) of the field average ACF  was calculated. This rmse value 

illustrates the spatial variability of the ACFs. The field average ACF  was fitted to the exponential and 

Gaussian functions and the rmse of their fit was computed. The plots show that the variability of the 

ACFs can be large, especially at higher lags. To avoid the impact of the larger variability at higher lags 

the calculation of the rmse values was restricted to a lag up to 50 cm. 

The plots illustrated in Figure 4 show that the spatial variability of ACFs can be high in both 

smooth and rough surfaces. In smooth surfaces, the ACF tends to fall quickly at small lags due to high 

frequency roughness components. But the slope of the function decreases soon leading in some cases 

to very large l values. For rough surfaces, the decay is generally more homogeneous with a gradual 

reduction of the slope. This type of ACF represents surfaces that are rough in both high and low 

frequency domains. In all cases, the field average ACF  fits better the exponential function than the 

Gaussian. The fit to the exponential function is particularly good for rough surfaces. For smooth 

surfaces, exponential and Gaussian functions do not provide an adequate description of the initial 

decay and the sudden reduction of the slope of the ACFs. 

For each tillage class the average of the field ACF  rmse was calculated and the values obtained are 

represented in Table 3. It can be observed that the variability of the ACFs was similar in the different 

classes, with values ranging from 0.085 (‘Rolled seedbed’) to 0.130 (‘Seedbed’). In fact, rough and 
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smooth classes yielded similar rmse values, indicating a substantial variability of the ACFs in all cases. 

Table 3 also gathers the rmse values of the ACF  fit to the exponential and Gaussian functions. It can 

be observed that the fit to the exponential function is better (lower rmse) in all cases. Generally, rough 

classes fit better the exponential function than the smooth ones, except for the class ‘Rolled seedbed’.  

 

Figure 4. Autocorrelation functions (ACF) calculated for fields of different tillage classes. 

For each field the individual and average ACF  are plotted (in red) and the root mean 

square error (rmse) of ACF  is given. The obtained ACF  are fitted to exponential and 

Gaussian functions and the rmse of their fit is also indicated. 
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Figure 4. Cont.  

 
 

The discrepancies between the experimental and the exponential ACFs illustrated here show that 

assuming an exponential ACF in the retrieval of SM could be a significant source of errors. However, 

the quantification of these errors in terms of the modelled 0 or the retrieved SM has never been done 

before, as far as the authors know. In any case, this quantification is out of the scope of this paper, so 

the results described in the next section assume an exponential ACF and do not represent the influence 

of the discrepancies between the experimental ACF and the exponential function. 

In summary, the average standard deviation of s and l on seedbed fields was 0.33 cm and 19.24 cm 

respectively. In the following sections, the influence that this variability exerts on the simulated 

backscattering coefficient values and on the retrieved SM estimates, is assessed using IEM simulations. 

Figure 5 represents the field average s and l values measured and the IEM validity range for both C- 

and L-bands. It can be observed that most seedbed fields are within the C-band range, whereas most of 

the fields of rougher classes are not. At L-band the validity range is much wider and covers most of the 
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measured fields. However, for some fields the s/l < 0.4 condition does not hold, causing their 

exclusion from further analysis. 

 

Table 3. Field scale average root mean square error (rmse) of the autocorrelation function 

( ACF ). For each tillage class the average rmse of the ACF  is given, as well as the average 

rmse of the fit to the exponential and Gaussian functions. 

  rmse 
Tillage class rmse ACF  Exponential Gaussian 
Harvested crop 0.087 0.113 0.217 
Mouldboard plough 0.113 0.043 0.092 
Harrowed rough 0.128 0.096 0.153 
Harrowed smooth 0.124 0.127 0.193 
Rolled 0.104 0.157 0.236 
Seedbed 0.130 0.122 0.211 
Rolled seedbed 0.085 0.095 0.177 

 

Figure 5. IEM validity range at both C- and L-bands and field average roughness 

parameters measured for the different tillage classes. 

 
 

3.1.2. Influence on 0 estimations 

 

To evaluate the influence of the field scale roughness variability on 0, the IEM was run using field 

average roughness parameters first and then the parameters measured on each profile individually were 

applied. This resulted in field average and individual backscatter values, called 0  and 0
i respectively.  

The comparison between 0
i and 0  (Figures 6 and 7) illustrates the influence of roughness spatial 

variability on 0. It should be remarked that the considered sensor configuration and soil 

characteristics were exactly the same for every field. This means that 0  (abscissa in Figures 6 and 7) 

varied only due to the differences in the field average s and l values from field to field. This field 
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average 0  showed a variation range between 5 and 10 dB. This result indicates that assuming tillage 

class average or reference roughness values could imply high inaccuracies in the modelling of 0. 

 
Figure 6. Comparison between field average ( 0 ) and individual (0

i) backscattering 

coefficient values calculated with the IEM considering C-band frequency and different inc 

and SM conditions. The differences are due to the intra-field variability of roughness 

parameters, the root mean square error (rmse) is given. 
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Figure 7. Comparison between field average ( 0 ) and individual (0
i) backscattering 

coefficient values calculated with the IEM considering L-band frequency and different inc 

and SM conditions. The differences are due to the intra-field variability of roughness 

parameters, the root mean square error (rmse) is given. 
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The intra-field spatial variability of roughness caused 0
i values to be very different from their 

corresponding field average 0 values in some cases. The root mean square error (rmse) values 

obtained ranged from 1.36 to 2.29 dB. Highest errors were observed at 45º incidence angle in both C- 

and L-bands and at 15º in C-band. 

The same rmse values were obtained for different SM conditions, so the influence of roughness 

spatial variability seems not to be affected by the moisture conditions of soils. Very similar errors were 

observed also for both VV and HH polarizations. The rmse was slightly higher on VV for 45º 

incidence angles but this difference did not reach 0.5 dB. In the other cases, both polarizations yielded 

very similar rmse values. 

The incidence angle showed a significant influence on the obtained rmse values. For C-band 

simulations (Figure 6), rmse was minimum at 30º and increased at both 15º and 45º. In the case of L-

band (Figure 7), rmse increased with the incidence angle, and highest errors were observed at 45º. 

In order to analyse the influence of the incidence angle in more detail, an additional simulation was 

conducted varying inc from 10º to 55º with a 5º step and considering average moisture conditions 

(SM=0.20 cm3cm-3) for HH and VV polarization and both C- and L-bands. Figure 8 represents the 

rmse values obtained as a function of inc for the different configurations. The trend was similar in all 

cases, at low inc values errors were high, as the inc increased rmse first decreased to a minimum and 

then increased. 

 

Figure 8. Root mean square errors (rmse) obtained between individual (0
i) and field 

average ( 0 ) backscatter values considering different incidence angles. 

 

 

Minimum rmse values were observed at 15º-20º in L-band and 25º-30º in C-band. At low inc 

values errors were significantly higher in C-band, but at medium inc the opposite was evidenced, this 

is in agreement with previous studies [19], which evidenced higher roughness sensitivity at L-band 

than at C-band on SIR-C/X SAR observations with 26.4º incidence angle. In our study, large inc 

values gave rmse values higher than 2.0 dB in all cases, which were slightly higher in VV polarization 

than in HH. 
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3.1.3. Influence on the retrieved SM 

 

A similar analysis was performed running the inverse IEM algorithm. This time, field average 0  

values were used as input along with the roughness parameters of the individual profiles. The inverted 

SM values should be equal to the initially assumed conditions (0.05, 0.20 or 0.35 cm3cm-3), so the 

discrepancies observed (evaluated as rmse values) were considered a consequence of the field scale 

roughness variability. 

Figure 9 shows the rmse values obtained as a function of inc for both bands and different SM 

conditions. It can be observed that independent from the incidence angle trend (which is similar to the 

one observed in the forward simulations), rmse values were different depending on the SM conditions. 

For wet soils, rmse values were higher, especially on L-band and on C-band with large inc. In fact, for 

wet conditions, retrieved SM values were sometimes even higher than the fixed upper limit (0.60 

cm3cm-3). 

 

Figure 9. Root mean square errors (rmse) obtained in the SM inversion as a function of the 

incidence angle inc. 

 

Figure 10. Root mean square errors (rmse) obtained in the SM inversion as a function of 

the considered SM conditions. 
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If we look more closely to the rmse as a function of SM (Figure 10) we can observe a clear 

relationship, especially in L-band. Errors were close to 0.05 cm3cm-3 in the driest case and they 

increased with moisture, sometimes reaching values around 0.15 cm3cm-3. This phenomenon could be 

a result of the reduced sensitivity of 0 to soil moisture for higher SM-values. A given error in 0 

produces a certain error on the retrieved SM on dry conditions but this error could increase 

substantially over wet conditions. Similar results have been reported in the literature [13, 17, 33]. This 

behaviour seems to be more pronounced at L-band, resulting in higher SM retrieval errors on wet 

conditions than at C-band.  

In summary, the results of this synthetic analysis indicate that the intra-field spatial variability of 

roughness could severely affect the inversion of SM from SAR data. Unless roughness parameters are 

very accurately measured, retrieval errors could easily reach 0.10 cm3cm-3, and even more on wet 

conditions. Consequently, the measurement or characterization of the roughness parameters for each 

field needs to be carried out with high detail in order to retrieve useful SM estimates.  

 

3.2. Influence of the temporal dynamics of roughness 

 

3.2.1. Roughness measurements 

 

The temporal variations of s and l were only evaluated for seedbed fields. Measurements 

corresponding to five dates were analysed (from 24/10/2004 to 01/03/2005). In Figure 11, the temporal 

variations of both roughness parameters are illustrated. Variations were computed for each field in 

reference to the measurements of the first seedbed date, so negative values represent a reduction on the 

parameter and positive values an increment. 

 

Figure 11. Temporal variations of roughness parameters for seedbed fields. 

 

 

The temporal evolution of the ACF variability (rmse of the field ACF ) was also analyzed. Figure 12 

depicts the rmse values calculated for each seedbed field ACF  on the different dates. It can be 

observed that the variability of the ACFs was similar in the different dates. For some fields the rmse 

value decreased whereas for others it increased. Therefore, even if surfaces roughness appeared to 

smoothen with time the variability of the ACFs did not change significantly.  
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On the other hand, the fit to the exponential function improved with time. Figure 13 plots the rmse 

of the fit to the exponential function for the different fields as a function of time. It can be observed 

that the rmse values obtained decreased in most of the fields. This means that the smoothening caused 

by precipitation resulted in more exponential-like surfaces, probably due to the reduction of the high 

frequency roughness components of the surface that caused the steep fall at the beginning of the ACFs 

illustrated in Figure 4 for smooth classes. 

 

Figure 12. Temporal variations of ACF variability for seedbed fields, measured in terms of 

the root mean square error (rmse) of the field average autocorrelation function ( ACF ). 

Numbers 188 to 235 label the different fields measured. 

 
 

Figure 13. Temporal variations of the goodness of fit to the exponential ACF for seedbed 

fields, measured in terms of the root mean square error (rmse) between the field average 

ACF ( ACF ) and the exponential function. Numbers 188 to 235 label the different fields 

measured. 
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3.2.2. Influence on 0 estimations 

 

The recorded temporal variations of s and l could cause a certain variation on 0. To assess this 

variation, the backscatter values calculated considering constant, or initial, roughness parameters (0
0), 

were compared to those calculated using s and l values of each date (0
i). The differences were 

computed as 0=0
0 - 0

i. The objective was thus to assess whether the roughness dynamics caused 

significant variations on 0. 

Figure 14 shows the 0 values computed for both bands at 30º incidence angle, VV polarization 

and 0.20 cm3cm-3 as a function of time. Variations were similar to those of the roughness parameters 

themselves; on the first dates 0 increments and reductions were observed with no clear trend. But the 

roughness variations on the last date caused a clear reduction in 0, especially in L-band. In these 

conditions both s reductions and l increments made 0 decrease, so even if roughness temporal 

variations seemed minor, their impact on 0 could be important.  

 

Figure 14. Backscattering coefficient variations (0) in C- and L-bands caused by the 

temporal variations of roughness parameters on seedbed fields. 
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The backscatter variations were calculated for all different configurations considered but they are 

not plotted for the sake of conciseness. Instead, the total variations between the first and last dates 

were calculated for the different fields and their average, minimum and maximum values for the 

different conditions are represented in table 4. As the same 0 values were obtained at different SM 

conditions (as in section 3.1.2), the numbers in table 4 are not restricted to any SM content. 

 

Table 4. Average 0, minimum (0
min) and maximum (0

max) backscatter variations 

due to temporal roughness dynamics along the research period for the different 

configurations considered. 

 Incidence angle and polarization 

 15º 30º 45º 

VV HH VV HH VV HH 

C-band 0  1.09 1.08 -1.21 -1.36 -2.18 -2.67 

              0
min  -0.78 -0.97 -2.79 -2.82 -6.93 -7.62 

              0
max  5.55 5.52 -0.11 0.06 -0.31 0.16 

L-band 0  -1.36 -1.31 -2.41 -2.34 -2.77 -2.77 

              0
min  -2.43 -2.41 -6.82 -6.32 -8.50 -7.95 

              0
max  0.16 0.22 -0.05 0.13 -0.11 0.20 

 

It can be observed that reductions were more significant at large incidence angles, whereas at 15º 

increments were observed especially for C-band. This could be a consequence of the smoothening of 

the surface, that caused a specular-like type scattering behaviour producing higher 0 values for steep 

incidence angles and lower 0 values for large angles. This effect is further illustrated in figure 15 and 

it is particularly evident at C-band in fields with strong s reductions and l increments (fields 193 and 

208). The backscatter variations are minimum at 25º-30º in C-band and 15º-20º in L-band. 

 

Figure 15. Backscattering coefficient variations (0) for increasing incidence angles and 

different test fields. 
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3.2.3. Influence on the retrieved SM 

 

In order to evaluate the influence of temporal variations of roughness on the inverted SM, the IEM 

was run assuming constant roughness parameters (s and l values corresponding to the first date) and 

using 0 values obtained for each date. The differences (SM) between the inverted SM values and the 

initially considered conditions (0.05, 0.20 and 0.35 cm3cm-3) for the different dates were computed. 

Figure 16 shows the SM values obtained in both C- and L-bands considering 30º incidence angle, VV 

polarization and a soil moisture of 0.20 cm3cm-3. On the first dates variations were quite erratic as in 

the case of 0. Nevertheless, on the last date all the fields showed lower SM values than initially 

assumed (SM values below zero), especially in L-band. The same analysis was carried out in the 

different sensor configurations and moisture conditions assumed. Tables 5 and 6 summarize the 

variations (average, minimum and maximum) in the inverted SM between the first and last date on the 

different conditions, for both C- and L-bands.  

 

Figure 16. Inverted SM variations (SM) in C- and L-bands caused by the temporal 

variations of roughness parameters on seedbed fields. 
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Table 5. Average SM , minimum (SMMIN) and maximum (SMMAX) soil moisture 

variations for the different configurations considered in C-band. 

 Incidence angle and polarization 

C-band 15º 30º 45º 

SM VV HH VV HH VV HH 

0.05 cm3cm-3 SM  0.05 0.05 -0.04 -0.04 -0.04 -0.04 

                      
minSM  -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 

                      
maxSM  0.27 0.30 -0.01 -0.01 -0.01 0.01 

0.20 cm3cm-3 SM  -0.06 -0.07 -0.05 -0.08 -0.10 -0.11 

                      
minSM  -0.20 -0.20 -0.11 -0.20 -0.20 -0.20 

                      
maxSM  0.00 0.01 -0.01 0.00 -0.01 0.02 

0.35 cm3cm-3 SM  -0.11 -0.12 -0.10 -0.12 -0.12 -0.20 

                      
minSM  -0.35 -0.35 -0.19 -0.23 -0.29 -0.35 

                      
maxSM  0.01 0.01 -0.01 0.01 -0.03 0.03 

 
Table 6. Average SM , minimum (SMMIN) and maximum (SMMAX) soil moisture 

variations for the different configurations considered in L-band. 

 Incidence angle and polarization 

L-band 15º 30º 45º 

SM VV HH VV HH VV HH 

0.05 cm3cm-3 SM  -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 

                      
minSM  -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 

                      
maxSM  0.00 0.00 0.00 -0.01 0.00 0.01 

0.20 cm3cm-3 SM  -0.06 -0.06 -0.09 -0.09 -0.12 -0.12 

                      
minSM  -0.10 -0.11 -0.20 -0.19 -0.20 -0.20 

                      
maxSM  0.01 0.02 0.00 0.01 -0.01 0.02 

0.35 cm3cm-3 SM  -0.11 -0.11 -0.15 -0.19 -0.17 -0.15 

                      
minSM  -0.19 -0.20 -0.35 -0.35 -0.35 -0.35 

                      
maxSM  0.02 0.03 -0.01 0.02 -0.01 0.04 

 

The results obtained suggest that roughness temporal dynamics could cause the inverted SM to be 

underestimated (negative SM  values) if constant (initial) roughness parameters are considered along 

the growing season. The underestimations seem more severe if the incidence angle is large and the soil 

is wet. In fact at low incidence angles, especially in C-band, variations could be positive, causing soil 

moisture to be overestimated. This effect may be a result of the smoothening of soils that caused the 0 
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(and hence the inverted SM) to increase at steep incidence angles and decrease at large angles as a 

consequence of a more specular-like behaviour of the surface. 

Variations were in the same range in both C- and L-bands, but they were slightly larger in L-band. 

Underestimations could reach values higher than 0.10 cm3cm-3, which is an error value that cannot be 

ignored from an applications’ point of view. 

 

4. Conclusions 

 

The results of this synthetic study suggest that both field scale roughness spatial variability and 

precipitation induced temporal variations are aspects that need to be taken into account when inverting 

backscatter to soil moisture. 

In addition, both effects seem to be strongly influenced by the incidence angle and frequency of the 

observations. The accuracy of the SM retrievals varied also strongly depending on the moisture content 

of soils, with highest errors observed over wet conditions. 

Regarding roughness spatial variability a standard deviation of s and l of respectively 0.30 cm and 

19.0 cm was observed. This variability could cause an error in the calculated 0 of approximately 1-3 

dB, depending on the acquisition parameters. Such an error would cause an rmse in the retrieval of SM 

between 0.05 and 0.20 cm3cm-3, approximately. Lowest errors were observed at intermediate incidence 

angles of around 25º-30º for C-band and 15º-20º for L-band and dry soil conditions.  

Concerning roughness temporal variations, even if the reductions of s and increments of l seem 

minor, both effects appeared to contribute to a more specular like behaviour of the soil surface, that led 

to an increase in the 0 at low incidence angles and a decrease at large angles. As a consequence, 

significant underestimations of SM (even higher than 0.10 cm3cm-3) could be expected if s and l are 

considered constant and incidence angles are medium or large. The opposite seems to occur at steep 

angles where the SM could be overestimated. These results suggest that assuming constant roughness 

conditions along a growing cycle could cause severe inaccuracies in the retrieved SM values. 

In summary, the analysis indicates that both the spatial variability and temporal dynamics of surface 

roughness could cause severe inaccuracies in the retrieval of soil moisture from SAR observations. So 

far, a very precise characterisation of roughness needs to be carried out in order to obtain sufficiently 

accurate moisture estimations from SAR data. The results of this analysis should be completed with 

experimental observations in future studies. 
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