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Abstract: Measuring heterogeneity in satellite imagery is an important task to deal with. 

Most measures of spectral diversity have been based on Shannon Information theory. 

However, this approach does not inherently address different scales, ranging from local 

(hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this 

paper is to propose a method for measuring spectral heterogeneity at multiple scales based 

on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values 

(Digital Numbers, DNs) is provided and discussed.  
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1. Introduction 

 

Measuring heterogeneity in satellite imagery is important, since heterogeneity in an image 

represents the degree of diversity of objects reflecting within a landscape. In fact, since the IFOV 

(Instantaneous Field of View) of an image represents a spatially implicit representation of reality, each 

pixel is expected to represent reality at a certain resolution.  

Despite the attribute being considered, the diversity of that attribute has been proven to change as a 

function of scale [1]. Most measures of spectral diversity have been proposed based on the Boltzmann 
index [2-3], commonly referred to as Shannon entropy index [4-6]   )ln( ppH , where p is the 
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relative abundance of each spectral reflectance value (Digital Number, DN). The Shannon index will 

increase if the DN values are equally distributed with no DN value being dominant with respect to the 

others. The Shannon index has been advocated as a powerful algorithm for measuring diversity. 

Nonetheless, it does not explicitly consider how the measure of diversity changes as a function of scale 

if it is applied to an entire image. It may be made to account for the variation of diversity across spatial 

scales if it is repeatedly calculated while increasing the sampling extent within the chosen study area. 

This process may be time expensive. Quoting  Gorelick [3], who made a critique on diversity 

measured by Shannon and Simpson indices, one can never capture all aspects of diversity in a single 

statistic. This is true regardless of the attribute being considered. 

The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales 

simultaneously based on ecological theory.  

 

2. Algorithmic foundation of spectral rarefaction 

 

In ecology, there is a long history of  dealing with species diversity over space or time. In particular, 

given N plots, i.e. sampling units with a certain dimension, three different kinds of species diversity 

may be recognized:  

- alpha or local diversity (α), i.e. the number of species within one plot  

- gamma or total diversity (), i.e. the number of species considering N plots  

- beta or between-plots diversity (β), i.e. the diversity deriving from the complementarity of the 

species composition considering pairs of plots [1]. 

In this view, accumulation curves, showing the number of accumulated species given a certain 

number of sampled plots, have long been used for estimating the expected number of species within a 

study area given a specific sampling effort. Since the order that samples are added to an accumulation 

curve accounts for its shape [7-8], an order-free curve is derived by means of (i) an analytical solution 

or of (ii) permutations of samples [9-10]. This order-free curve is referred to as a rarefaction curve. 

Considering permutation (ii), once N plots have been visited across a study area and the presence of all 

species has been recorded (obtaining a presence/absence matrix Ms of N plots per S species), a 

rarefaction curve is then obtained by repeatedly resampling the pool of N plots at random without 

replacement and plotting the average number of species represented by 1, 2, …, N plots [6,10]. Thus, 

sample-based rarefaction generates the expected number of accumulated species as the number of 

sampled plots increases from 1 to N. 

On the other hand, an analytical solution (i) may be formalized as:  

Let Ms be a presence/absence matrix of N plots per S species, the formal estimate of the expected 

number of species per number of plots turns out to be: 
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where Ni = number of plots where species i is found and n = number of randomly chosen plots [9-

12] 
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Generally, the steeper the curve, the greater the increase in species richness as the sample size 

increases [7-12]. 

From a landscape perspective, rarefaction curves are directly related to the environmental 

heterogeneity of the area sampled. In fact, it is expected that the greater the landscape heterogeneity, 

the greater the species diversity, including both fine-scale and coarse-scale species richness (i.e. - and 

γ-diversity, respectively), and compositional variability, or -diversity [7].  

Computing β-diversity deals with looking at the difference between pairs of plots in terms of 

species composition  [13-15].  Popular indices of -diversity, e.g. the Jaccard index, are based on the 

intersection of the composition in species between pairs of plots with respect to their union, as 
)/(1 jC  [13]. The higher the intersection in species composition the lower the -diversity. As an 

example, given two plots with = 5 species, using jC , -diversity will range from =0 when the 5 

species will be exactly the same, while the maximum -diversity (=1) will occur when all the 5 

species will be different.  

An alternative definition of -diversity has been provided by Whittaker [1] who expressed it as 
 / . This was later modified by Lande [16] being more consistent with the rarefaction theory. 

Using rarefaction curves, diversity may be partitioned by additive partitioning as    [16-17], 

leading to considering in the same unit of measurement (i.e. number of species) of  and 
as   (Fig 1).   

 

Figure 1. Additive partitioning of diversity. -diversity is represented by the sum between 

 and . This leads to consider in the same unit of measurement (i.e. number of species) 

of  and  
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In this paper, different “species” will be replaced by different “DNs” (Digital Numbers, i.e. spectral 

values). 

Consider a satellite image with a radiometric resolution of 8 bit. This means that the reflectance 

values of the pixels, i.e. the Digital Numbers (DNs), may range from 0 to 255.  

Subsampling the image by means of N plots, i.e. spatial windows with a certain dimension, will lead 

to a presence/absence matrix MDN of N plots per S DNs.  

Given the matrix MDN, Eq.(1) previously introduced for species diversity can also provide a formal 

estimate of the number of DNs per number of windows when  Ni = number of plots where the DN 

value i is found.  

Therefore, the same concepts introduced for species diversity may thus be applied to satellite 

imagery diversity. Applying rarefaction theory to DNs rather than species leads to consider three 

different components of pixels diversity:  

- alpha or local diversity (αDN), i.e. the number of different DNs within one plot  

- gamma or total diversity (DN), i.e. the number of different DNs considering N plots  
- beta or between-plots diversity (βDN), i.e. the diversity deriving from DNDNDN    [16-17]. 

 

3. Worked example  

 

Eq.(1) only works with one-dimensional systems. In fact the dimension Dim(MDN) of the presence 

absence matrix MDN of N plots per S DN values equals Dim(MDN)=(N,S), implying that: 

- the plots are rows 

- the DN values are columns 

- the cells composing the matrix are presence/absence values, i.e. they are dummy coded as 1s 

and 0s. 

For instance, Fig. 2 shows the presence/absence matrix MDN of N plots per S DN values derived 

from an 8-bit image sampled by 6 plots, where Dim(MDN)=(N,S)=(6,256), with DN values in one 

dimension ranging from 0 to 255. 

 

Figure 2. The presence/absence matrix MDN of N plots per S DN values. Notice that only 

one band can be considered at once, with DN values in one dimension ranging from 0 to 

255. 
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Thus, before building rarefaction curves one should choose a single band to work with. Following 

biological theory, an infrared waveband should be used when working with vegetation based on its 

intrinsic capability of discriminating different vegetation types [18]. Another option may be based on 

performing data reduction with a method such as PCA and further using the first principal component 

explaining most of the variance.   

Once the rarefaction algorithm (Eq.(1)) has been applied to the presence absence matrix MDN, 

different study areas sampled by the same number of plots containing the same number of inner pixels 

(e.g. 1000 pixels per spatial window) will possibly show very different curves. Fig. 3 shows two areas 

with different levels of heterogeneity, each sampled by six spatial windows (plots).  

 

Figure 3. A worked example of spectral rarefaction.. Once differently heterogeneous areas 

are sampled by the same number of plots (windows) containing the same number of inner 

pixels, the rarefaction curves computed by Eq.(1) provide an estimate of the number of 

different DNs at various spatial scales. Obviously only one band or the first PC can be used 

at once. See the main text for major explanations. 

 

 
 

Considering the ecologically heterogeneous area (upper curve of Fig. 3) with respect to the more 

homogeneous one (lower curve of Fig. 3), DN equals 55 and 24 respectively, i.e. there are on average 

55 and 24 distinct reflectance values for each plot (spatial window).  

Meanwhile  turns out to be 253 and 50, for heterogeneous vs. homogeneous area, respectively.  

This means that the spectral value diversity DN as calculated by DN-DN is 198 and 26, 

respectively. 
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Notice that in this worked example, the rarefaction algorithm (Eq.(1)) allowed us to: (i) represent 

the variation in diversity by means of a single algorithm applied to a matrix, i.e. the spatial variation of 

diversity components, (ii) represent β-diversity by means of only one statistic without considering pair-

wise distances among spatial windows (as in the case of e.g. the Jaccard index), and (iii) represent -

diversity in the same units as - and - diversity (i.e. number of different DN values). 

 

4. Remarks and summary 

 

Rarefaction and additive partitioning of diversity, which are often used in ecology with reference to  

species diversity [6-12,16-17], could be applied to reflectance values for estimating and graphically 

representing local (), global () and turnover in () environmental variability. In fact, once rarefaction 

curves are graphed, it becomes apparent that ,  and represent the minimum, the maximum and the 

turnover (i.e. maximum - minimum) of the curve (Fig. 1). Generally speaking, it is expected that the 

higher the minimum value the higher the local variability within a plot, while, given the same local 

variability, the higher the slope of the curve the higher the variability across the different plots within 

the area [7,10,19]. On the contrary if the slope is low, i.e. when the curve rapidly reaches the 

asymptote, the accumulated spectral values are simply a replicate of the sampled spectral values, thus 

indicating global homogeneity of the area. 

In summary, for each plot (spatial window), containing a number n of pixels (e.g. 1000 pixels per 

window), the number of different DNs should theoretically range from 1 (homogeneous environment 

such as water) to 256 (heterogeneous environment composed of different land cover classes, with a 8-

bit image). Notice that a lower maximum number of DNs per plot (window) is expected on the 

strength of the spatial autocorrelation of spectral values. Once spectral rarefaction curves are built, the 

number of DN values per window is directly estimated () and rises until theoretically reaching the 

maximum value of 256 (in case of commonly used 8-bit images) as new plots are added to the curve. 

Obviously the theoretical maximum of 256 different values is reached only when the considered area is 

so heterogeneous that it comprises all the 256 values. 

The approach proposed for measuring spectral heterogeneity is robust but straightforward and 

consists of three main tasks: (i) selecting within the image adjacent or random windows containing a 

given number of pixels; (ii) choosing one band (Eq.(1) only works with one-dimensional systems, see 

section “2. Worked example”), (iii) performing rarefaction curves by Eq.(1) and estimating -,  and 

- diversity components. 

Of course, other techniques rather than spectral rarefaction could account for the spatial variability 

of DN values as well, e.g. semivariograms [14,20]. However, spectral rarefaction coupled with 

additive partitioning exhibits mathematical and statistical properties which may be directly related to 

spectral and species -, - and - diversity. This is an enormous advantage to using spectral rarefaction 

as a straightforward method for (i) robustly estimating local to global diversity of an area directly 

relating sensor-based and field-based heterogeneity and (ii) quantitatively comparing different areas 

with different degrees of heterogeneity at multiple scales. 
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