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Abstract: In spectrodirectional Remote Sensing (RS) the Earth’s surface reflectance 

characteristics are studied by means of their angular dimensions. Almost all natural surfaces 

exhibit an individual anisotropic reflectance behaviour due to the contrast between the 

optical properties of surface elements and background and the geometric surface properties 

of the observed scene. The underlying concept, which describes the reflectance characteristic 

of a specific surface area, is called the bidirectional reflectance distribution function 

(BRDF). BRDF knowledge is essential for both correction of directional effects in RS data 

and quantitative retrieval of surface parameters. Ground-based spectrodirectional 

measurements are usually performed with goniometer systems. An accurate retrieval of the 

bidirectional reflectance factors (BRF) from field goniometer measurements requires 

hyperspectral knowledge of the angular distribution of the reflected and the incident 

radiation. However, prior to the study at hand, no operational goniometer system was able to 

fulfill this requirement. This study presents the first dual-view field goniometer system, 

which is able to simultaneously collect both the reflected and the incident radiation at high 

angular and spectral resolution and, thus, providing the necessary spectrodirectional datasets 

to accurately retrieve the surface specific BRF. Furthermore, the angular distribution of the 

incoming diffuse radiation is characterized for various atmospheric conditions and the BRF 

retrieval is performed for an artificial target and compared to laboratory spectrodirectional 

measurement results obtained with the same goniometer system. Suggestions for further 

improving goniometer systems are given and the need for intercalibration of various 

goniometers as well as for standardizing spectrodirectional measurements is expressed. 
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1. Introduction 

 

In the field of optical Remote Sensing ground-based goniometer systems are used to position a 

spectroradiometer into a specific observation position with respect to the target area. The goal is to 

directly measure the reflected radiation from the target from various observation directions distributed 

over the whole hemisphere in order to describe the target specific directional reflectance characteristic. 

This characteristic occurs due to the contrast between optical properties of surface elements and 

background as well as due to the uneven distribution of illuminated and shadowed areas. The concept, 

which describes the reflectance characteristic of a specific target area, is called the bidirectional 

reflectance distribution function (BRDF) [1]. For practical reasons the bidirectional reflectance factor 

(BRF) is used and defined as the BRDF of the target ratioed to the BRDF of an ideal Lambertian 

surface (1/π) [1]. Accurate knowledge of the surface BRF is important for many applications such as 

BRF correction of remote sensing data and quantitative retrieval of vegetation [2-4], snow [5] or soil 

[6] parameters. Furthermore, BRF knowledge supports the determination of the surface albedo, which 

is a crucial parameter in modeling the Earth’s radiation budget. The surface albedo is defined as the 

directional integration of reflectance over all sun-view geometries. Practically, an estimate of the 

albedo is inferred from the measured nadir reflectance since corresponding satellite sensors often 

operate at only one or a few view angles [7-9]. Consequently, the surface BRF often is not considered 

which may lead to large errors in the retrieved albedo [10, 11] and subsequent climate models.  

Early goniometer systems were used to measure reflectances of rock samples, soil powders and 

snow to explain the scattering properties of the surface of the moon [12-14]. The reflectance properties 

of single plant leaves were first studied using small target goniometers [15-18] and later, larger 

goniometers have been developed to investigate the reflectance characteristics of soil surfaces and 

vegetation canopies, e.g. [19-24]. Such ground level spectrodirectional measurements can be 

performed either in the field [25, 26] or in a laboratory environment [27, 28]. However, there are 

obvious technical differences between the two concepts and corresponding measurements are not 

directly comparable [29].  

Laboratory measurements provide a better control of the illumination conditions and the presence of 

diffuse light can be neglected if the experiment is conducted in a darkroom [30]. However, they suffer 

from illumination imperfections since the artificial light source shows a conical rather than directional 

geometry leading to an inhomogeneity of the illuminated area. Therefore, the measured reflectance 

quantity in the laboratory is called biconical reflectance factor (BCRF) corresponding to a conical 

illumination and observation (FOV) geometry. For the laboratory case, an accurate BRF retrieval 

(correction for illumination imperfections) is described by Dangel et al. [29].  

Field goniometry has the advantage that the target is left in its natural environment, including the 

natural illumination by the sun. The major disadvantage is that atmospheric effects and undesired time 

variations of the illumination have to be taken into account. Furthermore, the total illumination 
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involves all directions within the hemisphere (solid angle equals 2π) and consists of a diffuse and a 

direct part. By contrast, observation sensors usually collect the reflected radiation within a certain solid 

angle and of a small finite area. The atmospheric conditions, the presence of gases, clouds, and 

aerosols affect the amount and spectral distribution of the incoming direct and diffuse light and cannot 

assumed to be isotropic and uniform throughout the hemisphere. The measured field reflectance 

quantity is therefore referred to as hemispherical conical reflectance factor (HCRF) based on 

Martonchik et al. [31] and Schaepman-Strub et al. [32]. Consequently, the measured HCRF needs to 

be corrected for the atmospheric influence in order to obtain the target specific BRF. 

The most exact BRF retrieval from field goniometer measurements can be achieved by following 

the procedures proposed by Martonchik and others [33, 34]. However, this implies accurate knowledge 

of the angular distribution of the incoming diffuse radiation at the same time as reflected radiation from 

the target is collected. Most goniometer measurement setups do not account for this. With the Portable 

Apparatus for Rapid Acquisition of Bidirectional Observations of Land and Atmosphere (PARABOLA 

III) such data can be collected to a certain degree, but over a limited spectral range only (multispectral) 

and under the assumption of an extensive homogeneous target area [35]. Another instrument providing 

such capability consists in the Gonio Radiometer Spectrometer System (GRASS), which is currently 

being developed at the National Physical Laboratory (NPL), Teddington, UK [36]. It shows a 

promising and novel dual view design, but has not yet reached an operational status. 

Consequently, and prior to the study at hand, there existed no adequate instrument and operational 

measurement setup, which was capable of observing the reflected and incoming diffuse radiation 

simultaneously at high angular and spectral resolution. Therefore, no systematic field-laboratory 

comparison of retrieved BRF of the same target can be performed and it is not known how field 

measurements can be transferred to laboratory measurements and for which targets a replacement of 

field by laboratory experiments is indeed feasible. 

This study presents the first hyperspectral dual-view field goniometer system (dual-view FIGOS), 

which is able to simultaneously obtain the reflected and the incoming diffuse radiation at high angular 

resolution. A characterization of the angular distribution of the incoming diffuse illumination is 

presented for several atmospheric conditions along with the field BRF retrieval for an artificial target. 

The dual-view FIGOS showed a stable and reliable performance during several extensive measurement 

campaigns and strongly supports future surface BRF generation being used for e.g. model validation 

and inversion purposes as well as for albedo calculations. Additionally, its combined use with 

multiangular spaceborne or airborne data acquisition provides the possibility of improved directional 

calibration instead of using nadir-view surface measurements for verification. 

 
2. Dual-view field goniometer FIGOS 

 

The presented dual-view field goniometer system is based on the well known FIGOS system (FIeld 

GOniometer System), which was originally constructed by W. Sandmeier at Lehner & Co. AG, 

Gränichen, Switzerland, in joint operation with the Remote Sensing Laboratories (RSL) at the 

University of Zurich, Switzerland [22]. It is a transportable system and has extensively been used in 

various campaigns for the acquisition of hyperspectral directional reflectance data of vegetation [3, 26, 
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37, 38], snow [39] and artificial [40] targets. Over the years the capabilities of RSL's goniometer 

system have been extended in order to support the accurate characterization of the reflectance 

properties of specific targets in the laboratory as well as in the field. For a description of the laboratory 

setup please refer to Dangel et al. [29].  

The goniometer itself consists of three major parts: a zenith arc and an azimuth rail, each of 2 m 

radius, and a motorized sled, onto which the two sensors are mounted. All parts are made of black-

coated aluminum in order to minimize adjacency effects. The zenith arc is tightly fixed to four wagons 

which allow a manual 360° rotation on the azimuth rail. A braking motor at a velocity of 2.5°/s drives 

the sled with the two spectroradiometers. Fully adjustable labels on the zenith arc allow for an 

automated positioning of the spectroradiometers at desired steps. The mechanical positioning sensors 

as well as the electrical control unit of the motor were renewed in order to resist humidity and 

guarantee a stable performance. Currently, measurements are taken at azimuth steps of 30° and zenith 

steps of 15° (-75° to 75°). A full dual-view goniometer dataset is completed in about 25 minutes. 

Figure 1 shows the dual-view goniometer FIGOS being used for data collection over an artificial target 

and a close-up of the positioning sensors and the electrical control unit. 

 
Figure 1. Left: Dual-view goniometer system FIGOS. Middle: Mechanical positioning 

sensors. Right: Electrical control unit of the step motor.  

 

   
 

2.1. Dual-view combination 

 

The main extension for the field usage consists of a dual-view combination providing the capability 

to simultaneously collect the reflected and incoming radiances at high spectral and high angular 

resolution. Two wirelessly computer controlled ASD FieldSpec-3 spectroradiometers cover the spectral 

range from 350 nm to 2,500 nm and sample data at intervals of 1.4 nm (350 – 1,050 nm) and 2 nm 

(1,000 – 2,500 nm) with a spectral resolution of 3 nm at 700 nm and 10 nm at 1,400/2,100 nm, 

respectively [41]. Both spectroradiometers are mounted onto the zenith arc of the goniometer and 

operated with a 3° FOV foreoptic which is connected to the sensor using a 1.4 m fibre optic. The 

downward looking spectroradiometer observes the target from a constant distance of 2 m for all 

observation directions. The idea of having both instruments being moved while taking directional 
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measurements evolved from various considerations. The design of a U-base plate (see Figure 2) 

supports the attachment of both spectroradiometers as closely as possible to the zenith arc. Therefore, 

and since the zenith arc is eccentrically positioned, no cast shadow is generated on the target area 

(except for the dual optic holder at the hotspot direction), even though a large volume is moved along 

the zenith arc. Additionally, fibre optics of standard length can be used and a sufficient signal to noise 

ratio (SNR) is obtained. In contrast, having only the optics moved (and the spectroradiometers placed 

outside the goniometer) would create the need of having very long fibre optics (> 4m) and 

consequently a lower SNR.  

By using a dual optic holder both optics are exactly aligned while pointing in opposite directions 

and the generated shadow at the hotspot direction is minimized to the optic’s size, which is about 1cm 

in diameter. Consequently spectrodirectional measurements close to the hotspot are possible and may 

provide new insights into the reflectance characteristic of specific targets at this special observation 

direction. The optic rotating disk allows for easy and quick rotation of the dual optic holder, if 

necessary, for e.g. additional reference measurements in the beginning of each zenith arc cycle or 

instrument optimization purposes. Figure 2 shows the U-base plate carrying both spectroradiometers 

and the dual optic holder. 

 
Figure 2. Dual-view combination as mounted onto the zenith arc (left) and corresponding 

technical sketch (right). 

 

  
 

Since the instantaneous FOV is 3° and always pointing to the centre of the hemisphere (downward 

looking optic), the corresponding ground instantaneous field of view (GIFOV) is circular with 10.5 cm 

(diameter) in nadir direction. However, for large off-nadir observation angles the sensor’s footprint 

becomes elliptical with a maximum longitudinal extent of 41cm for an observation angle of 75°. It is 

therefore essential to consider the correct target reference height, especially when measuring a target 

with limited size e.g. under laboratory conditions.  

In order to monitor the pointing accuracy of the downward looking optic, a small laser is integrated 

into the dual optic holder. The geometric precision of the zenith arc is then referenced while moving 

the sled over the zenith arc in the principal and in the orthogonal plane. Maximum deviation of the 

laser spot, representing the centre of the sensor GIFOV, is recorded at a view angle of -75° and consists 
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of about 4cm as shown in Figure 3. A possible cause for this deviation might be a slight deformation of 

the respective part of the zenith arc due to extensive usage (assembly/disassembly) over time. 

However, this is not a limiting factor for field goniometer measurements since the target under 

observation is usually of satisfying spatial extent and assumed to be homogeneous. 

 
Figure 3. Pointing accuracy over the zenith arc. The convention –x/y and +x/y is used for 

the backward scattering and the forward scattering direction, respectively. The coordinate 

system is aligned to the centre of the azimuth arc.  

 

 
 

2.2. Measurement principle 

 

Spectrodirectional measurements with the dual-view FIGOS usually start in the principal plane at a 

forward scattering direction of 75°. Following a predefined sequence the whole hemisphere is scanned 

at zenith steps of 15° and azimuth steps of 30°. Spectralon references are collected in the beginning 

and in the end of each goniometer dataset as well as at every nadir bypass with the downward looking 

sensor. This provides the potential of calculating reflectances, if wished at a later time, and of 

monitoring atmospheric changes or instrument drifts. In total 140 measurements are taken for one dual-

view goniometer dataset (8 reference measurements plus 66 directional measurements of the reflected 

and incoming radiances, respectively).  

Even though shadowing is minimized it might occur anyway when the sun zenith angle equals one 

of the (downward looking) sensor view angle steps (e.g. at 15°, 30°, 45°, 60° or 75°). If this is the case, 

the corresponding measurements are omitted, interpolated, or modelled by fitting to a BRF model. 

Simultaneous sunphotometer measurements are necessary for two reasons: 1) monitoring the state 

of the atmosphere during the whole measurement time and 2) the direct sun irradiance is required as an 

input parameter to the field BRF retrieval algorithm. Test measurements to collect the direct sun 

irradiance using the upward looking sensor revealed saturation problems of the sensor. Although this 

problem might be solved by reducing the integration time of the upward looking spectroradiometer, the 

dual-view FIGOS is currently not yet able to directly measure this quantity. This is mainly due to the 
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fact that using a 3° FOV accurate pointing at the sun disk is challenging and time consuming. The time 

for measuring one goniometer dataset is a critical factor and desired to be as short as possible. 

Within the current measurement setup an MFR-7 shadowband sunphotometer (Yankee 

Environmental Systems, Inc) is used, which directly records the total and diffuse irradiance in 7 bands 

(broadband, 415, 500, 615, 673, 870 and 940 nm). The direct sun irradiance is then calculated as a 

difference of the two, taking the respective sun zenith angle into account. 

 
3. Data processing 

 A number of pre-processing steps have to be performed prior to conducting the actual BRF 

retrieval. These steps are directly related to the current goniometer systems’ characteristics. They 

include the calculation of intercalibration coefficients, a temporal correction and an assessment of the 

different spectral coverage. A detailed description of the main pre-processing steps is given below. 

Figure 4 gives an overview of the dataflow for processing dual-view FIGOS datasets. 

  
Figure 4. Dataflow scheme for processing dual-view FIGOS datasets. 

 

 
 

3.1. Intercalibration 

 

The need for intercalibration coefficients evolves from the fact that currently three 

spectroradiometers are used to obtain the necessary input data to the BRF retrieval algorithm. The 

angularly resolved reflected and incoming diffuse radiation is obtained with two separate instruments, 

although of the same type (ASD FieldSpec 3). The direct irradiance is obtained from sunphotometer 

measurements (MFR-7 shadowband sunphotometer). 

 
A. ASD FieldSpec 3 intercalibration: The two spectroradiometers, which are used to 

simultaneously collect the reflected and incoming diffuse radiation, are usually operated in radiance 

mode. For further processing, the intercalibration coefficients have to be known for the two 
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instruments. The last intercalibration experiment with the two FIGOS spectroradiometers has been 

performed in July 2006 at the intercalibration facility of the German Aerospace Centre (DLR) offering 

an integrating sphere with the corresponding infrastructure for stable conditions [42]. Figure 5 shows a 

comparison of the absolute radiance values as measured with the two ASD FieldSpec3 as well as the 

current intercalibration coefficient. The agreement for the VNIR detector is within 1%, whereas for the 

SWIR1 and SWIR2 detectors it consists of about 2%. Extreme values at both ends of the spectral range 

reach up to 4%. 

 
Figure 5. Comparison of absolute radiance values and intercalibration coefficients for the 

two ASD FieldSpec3 sensors.  

 

 
 

B. ASD FieldSpec 3 – sunphotometer intercalibration: These intercalibration coefficients are 

obtained by comparing the directly measured hemispherical irradiance values from sunphotometer 

measurements Emfr(θi) and the hemispherical irradiance values Easd(θi) retrieved from Spectralon nadir 

measurements performed with the ASD FieldSpec 3 for certain solar zenith angles θi. For deriving 

Easd(θi), the Spectralon panel is either assumed to be Lambertian or, more accurately, a BRF correction 

factor has to be taken into account. Assuming a Lambertian behaviour of the Spectralon panel the 

hemispherical irradiance Easd(θi) can be derived from a single measurement of the reflected radiation Lr 

taking the albedo ρls of the calibration protocol into account and is written as 

 
Easd(θi ) =

L r (θr ,ϕr )∗π
ρls

. (1) 

Provided the knowledge of Emfr(θi) and Easd(θi) the respective intercalibration coefficient can then be 

written as 

 
cmfr (θi ) =

Emfr (θi )

Easd(θi )
. (2) 

The ASD FieldSpec 3 – sunphotometer intercalibration coefficients as shown in Figure 6 for the 

respective sunphotometer bands represent the averaged values for a solar zenith angle range from 24.7° 

to 52.9° along with the respective standard deviations. 
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Figure 6. ASD FieldSpec 3 – sunphotometer intercalibration coefficients and respective 

standard deviation. 

 

 
 

3.2. Assessment of spectral coverage 

 

Both the reflected and the incoming diffuse radiation are measured with an ASD FieldSpec 3 

providing continuous spectral information from 400nm to 2500nm. However, the direct irradiance 

from the sun is obtained from sunphotometer measurements and is available in six spectral bands from 

414nm to 936nm only. Principally, this limits accurate retrieval results to the sunphotometer spectral 

bands. One might try to obtain a continuous spectral coverage by linear interpolation between the 

sunphotometer bands, but due to the highly variable atmospheric absorption features this is only a 

coarse approximation as Figure 7 shows. 

 
Figure 7. Total (red) and direct (blue) and diffuse (green) irradiance at high spectral 

resolution versus interpolated sunphotometer measurements (black lines). 

 

 
 

A more accurate assessment of the atmospheric absorption features is obtained by weighing the 

interpolated values for each spectral section between the sunphotometer bands. The respective weight 

factors are calculated by rationing the interpolated values to Easd (continuous spectral coverage) for the 

respective solar zenith angles θi. However, in doing so the total irradiance is estimated and not the 

direct irradiance of the sun. Thus, the ratio of direct to total irradiance from respective sunphotometer 

measurements needs to be applied to the estimated irradiance values prior to calculating the weight 
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factors. This method is applied to each set of direct irradiance measurements, which are used for the 

retrieval algorithm (66 measurements per goniometer dataset). 

 

3.3. Temporal correction 

 

One goniometer dataset typically consists of 66 measurements for the upward looking as well as for 

the downward looking sensor. Since the sensors have to be moved between each measurement, these 

66 measurements cannot be performed at the same time; the total time period needed consists of about 

20 to 25 minutes. Within that time span the illumination conditions do change. This is due to the 

movement of the sun and due to the changing atmospheric properties (e.g. clouds), which affect the 

amount and the distribution of the incoming diffuse light. It is tried to account for these effects by 
weighing the measured incoming diffuse radiance 

 
Ldiff

inc . The weight factors fdiff is obtained using the 

continuous diffuse irradiance readings of the sunphotometer, respectively. Thereby, it is assumed that 

changes of the diffuse irradiance Ediff,mfr within the time period T(t1, t2, …, t66) of a goniometer dataset 
affect the 66 single incoming diffuse radiation measurements 

 
Ldiff

inc  to a similar degree. The weight 

factor fdiff(tx) can then be obtained from the ratio Ediff,mfr(tx) / Ediff,mfr(t1) and the incoming diffuse 

radiation is written as 

  Ldiff
inc(tx)=Ldiff

inc(tx)∗fdiff(tx). (3) 

 

3.4. Field BRF retrieval 

 

Typically, field measurements are affected by atmospheric conditions and underlie a direct and a 

diffuse illumination component. The distribution of the latter is not necessarily isotropic. Influencing 

factors are related to the cloud cover, aerosol content and the surrounding area (i.e. forest, hillsides, 

buildings etc.) which all lead to multiple scattering and a varying amount of incoming diffuse light for 

each incident direction. However, the observed (reflected) radiance Lr at the sensor is the result of the 

total incoming radiance Linc (both the direct and the diffuse component) interacting with the target 

specific BRF. In other words, the BRF "tells" the incoming single radiation beams how, meaning how 

much and in which directions, they are reflected. Physically this is expressed in (4) as follows: 

( ) ( ) ( )
1 2

1 inc
r 0 0 0 0

0 0

L , , R , ', ' * L ', , 'd 'd '
π

−−µ µ ϕ − ϕ = π −µ µ ϕ − ϕ µ µ ϕ − ϕ µ µ ϕ∫ ∫  (4) 

where 

- -µ, µ0 = cosines of the view and solar zenith angles, 

- φ-φ0 = is the view azimuth angle with respect to the solar principal plane and 

- R = the BRF of the target. 

The notation –µ and µ is used here for upwelling and downwelling radiation, respectively [34]. In 

order to accurately retrieve the BRF the reflected radiance as well as the single contributors to the 

incoming radiance field (direct and diffuse radiances) have to be known, preferably with high angular 

resolution. This can be achieved either by measurements or by modeling. The BRF retrieval for field 

measurements is performed by following the procedure proposed by Martonchik et al. [34]. It is based 

on the idea of splitting up the radiation into a direct and diffuse part Edir and Ldiff, respectively, and 
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considering their respective reflection processes (the interaction with the surface) separately. The 

reflected radiance Lr is then calculated as 

 
( ) ( ) ( ) ( )1

r 0 0 0 0 dir 0 diff 0 0L , , R , , E L , ,−−µ µ ϕ − ϕ = π −µ µ ϕ − ϕ ∗ µ + −µ µ ϕ − ϕ  (5)

Edir is obtained from sunphotometer measurements and the dual-view FIGOS directly provides 

spectrodirectional measurements of Lr. The upward diffuse radiance Ldiff is also dependant on the 
surface BRDF (π-1R) and is calculated using (6) where the incident diffuse radiance 

 
Ldiff

inc  is directly 

obtained from dual-view FIGOS measurements. 

( ) ( ) ( )
1 2

1 inc
diff 0 0 diff 0 0

0 0

L , , R , ', ' * L ', , ' 'd 'd '
π

−−µ µ ϕ − ϕ = π −µ µ ϕ − ϕ µ µ ϕ − ϕ µ µ ϕ∫ ∫  (6)

The bidirectional reflectance factor R can then be iteratively solved using (5) and the (n-1)th 

iteration of (6), and is formulated as 

( ) ( ) ( )
( )
(n 1)

r 0 0 diff 0 0(n)
0 0 1

dir 0

L , , L , ,
R , ,

E

−

−

−µ µ ϕ − ϕ − −µ µ ϕ − ϕ
−µ µ ϕ − ϕ =

π µ
 (7) 

As an initial estimate of the BRF, R(0) is used where 
 
Ldiff

inc  is neglected and atmosphere-surface 

reflections are ignored ( R
(0) = L r / (π−1 ∗ Edir ) ). For each iteration, the reflected radiance Lr is calculated 

using the current iteration estimate of R. The iteration is ended when the difference between the 
calculated and measured reflected radiances, 

 
L r

calculated and 
 
L r

measured, respectively, becomes smaller than 

a previously defined threshold. 

 
4. Test study 

 

In order to test the field BRF retrieval based on dual-view FIGOS datasets and quantify the diffuse 

influence, spectrodirectional field and laboratory measurements have been performed using an artificial 

target for both cases. The reasons are to minimize differences other than such related to the 

illumination conditions and to maximize the reflectance anisotropy by choosing an appropriate target.  

 

4.1 Target 

 

The artificial target has first been described by Govaerts et al. [43] who evaluated a 3D radiative 

transfer (RT) model against goniometer measurements. The same artificial target has also been tested 

for its usefulness with FIGOS/LAGOS measurements in earlier studies [40]. The target itself is made 

of sanded duralumin and consists of a regular matrix of cubes with known geometrical characteristics. 

It is well qualified for BRF investigations, since it exhibits a high angular anisotropy and is inert over 

time. However, for FIGOS/LAGOS measurements it was found to be too small since the sensor 

GIFOV for large observation angles outreached the spatial extent of the target area. Consequently a 

larger artificial target with similar characteristics has been constructed with the help of the Physics 

Workshop of the University of Zurich, Switzerland. Its suitability has subsequently been tested in 

various extensive field and laboratory measurement campaigns [44]. Figure 8 shows the artificial target 

and its reflectance anisotropy. The size of the cuboids is 3.3 x 3.3 x 3mm with a regular spacing of 

2mm between the single cubes. 
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Figure 8. Left: Artificial target, which is being for the BRF retrieval and field – laboratory 

comparison. Right: Reflectance anisotropy at a wavelength of 496nm as measured in the 

laboratory (30° illumination direction from the right side).  

 

  
 

4.2 Dataset 

 

The final data being used for the field BRF retrieval consists of 6 dual-view goniometer datasets 

(FA1, FA2, FA8, FA9, FA10 and FA11) which were obtained at solar zenith angles θi ranging from 

from 24.7° to 52.9°. The data collection took place at three different days (DOY 171, 172 and 175) in 

June 2006 close to the airport of Oberpfaffenhofen, Germany. The measurement location consisted of a 

wide, flat area and was carefully selected in order to minimize potential adjacency effects. For 

comparison purposes corresponding spectrodirectional measurements (same illumination angles) were 

also performed in the laboratory with the laboratory goniometer system LAGOS.  

 
Figure 9. Top and bottom left: Total, direct and diffuse irradiance during the DOYs and the 

respective goniometer measurement periods. Bottom right: Box plot of the diffuse fraction 

of the total irradiance for investigated FA datasets. All data are shown for a wavelength of 

496nm. 
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Figure 9. Cont.  

   
 

Permanent atmospheric monitoring was assured by using an MFR-7 shadowband sunphotometer. 

Figure 9 depicts the total, direct and diffuse irradiance components for the respective measurement 

days as well as a box plot of the diffuse fraction of the total irradiance (Ediff / Etot) for the 6 goniometer 

datasets. The size of the boxes represents the interquartile variability (25% - 75% of the values) of the 

diffuse irradiance during the FIGOS measurement period. The horizontal black lines indicate the 

median values and the whiskers show the total extent of the dataset. The diffuse fraction significantly 

varies within the individual datasets. High diffuse variability as seen in datasets FA1 and FA8 is 

predominantly attributed to passing clouds, whereas the diffuse variability in other datasets is related to 

the respective sun zenith angle. 

 

4.3 Results 

 

4.3.1. Angular distribution of the incoming diffuse radiation 

 
The angular diffuse fractions   Ldiff

inc Etot of the total irradiance were calculated for each measured 

observation direction. For a clear sky situation the angular diffuse fractions are mainly determined by 

the solar zenith angle. A major amount of diffuse light is observed close to the sun view direction and 

minimum values are observed for opposite viewing directions (with the sun in the back). Typically, the 

angular diffuse fractions also tend to increase for large observation angles since the respective incident 

light paths are longer and more multiple scattering takes place. For a clear sky situation the angular 

diffuse fractions reach 15% to 40% depending on the solar zenith angle. A cloudy day situation looks 

even more complicated. Although a maximum value of the angular diffuse fraction is still observed 

close to the sun view direction, the distribution of the diffuse light is very much dominated by 

atmospheric disturbances such as moving clouds. Consequently, the angular diffuse fractions can 

substantially vary over time and for small changes of the observation direction, and the total angular 

variability can reach up to about 70%.  

With regard to the BRF retrieval and associated atmospheric correction this highlights the 

importance of assessing the incoming diffuse radiance at angular resolution even for clear day 

situations. Figure 10 represents the angular diffuse fractions of the total irradiance for two different 

illumination atmospheric conditions but a similar solar zenith angle. 
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Figure 10. Angular diffuse fraction for different atmospheric situations (clear, cloudy) 

from dual-view FIGOS measurements (datasets FA9 and FA1). The position of the sun is 

marked by the sun symbol. 

 
 

4.3.2. Retrieval results 

 

The regular geometrical structure of the artificial target leads to a high angular reflectance 

anisotropy, which strongly correlates with the distribution of the illuminated and shadowed areas for 

the respective illumination and observation directions. Additionally, due to the optical properties of the 

sanded duralumin, the artificial target exhibits a strong specular reflectance characteristic. The 

observed reflectance peak is directly related to the zenith angle of the direct irradiance and is, 

consequently, moving towards larger observation angles for larger illumination zenith angles. For this 

particular target largest directional effects are expected in the principal plane. Figure 11 shows the 

corresponding principal plane reflectance values for observation angles ranging from -75° (backward 

scattering) to 75° (forward scattering) for the field case, the laboratory case and the BRF retrieval case. 

The maximum extent of the specular reflectance peak is obtained at the largest illumination zenith 

angle (52.9°) and consists of over 300% reflectance for the laboratory case of dataset FA11. It can be 

seen for all datasets that the directional reflectance characteristic for the laboratory case is more distinct 

than for the field case. This is due to the fact that the diffuse irradiance incident on the target is 

illuminating the shadowed areas and mitigating dominant reflectance structures. For vegetation targets 

Lyapustin et al. [33] found that the backward scattering is rather dominated by the direct irradiance 

whereas changes in the forward scattering are related to the diffuse irradiance. This leads to a lower 

backward scattering and a greater forward scattering of the field reflectance compared to the BRF. For 

the artificial target a similar behaviour can partly be identified, which, however, might be 

superimposed by the strong specular reflectance, which depends on the direct irradiance component. 

With regard to the retrieved BRF, it can be observed that in general a reasonable approximation to the 

laboratory reflectance is achieved and for most datasets the specular peak is reproduced well. Best 
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results were obtained for dataset FA10. The largest overall deviations occur for the two datasets, which 

were obtained at highly variable atmospheric conditions (FA1 and FA8). Remaining differences might 

be related to the needed time period and to the sampling (oversampling, undersampling) of the 

incoming diffuse radiances, especially for large observation angles. In laboratory measurements, the 

specular reflectance might additionally be attenuated by the inhomogeneity of the illuminated area 

within the GIFOV for corresponding observation zenith angles. 

 
Figure 11. Comparison of BRF retrieval results and spectrodirectional field and laboratory 

measurements in the principal plane (-75° backward scattering to 75° forward scattering). 

The illumination is from the left. 

   
 

   
 

5. Conclusions 
 

The dual-view field goniometer system FIGOS is currently the only instrument which is capable of 

measuring the reflected and the incoming diffuse radiation at the same high angular and at high spectral 

resolution from 400 nm to 2,500 nm. It showed a stable and reliable performance in extensive field 

campaigns. In its present configuration, in conjunction with a sunphotometer, it proved its ability to 

provide the necessary dataset for a field BRF retrieval of selected targets. Therefore, and due to its 

well-known characteristics the dual-view FIGOS has the potential to being used as a reference 

instrument for various spectrodirectional experiments in future field campaigns.  

Although measurements in both directions are done simultaneously, the critical time to measure a 

complete goniometer dataset is not increased by having two instruments since both measurements are 

triggered simultaneously. Simultaneous sunphotometer measurements are needed since the direct solar 

irradiance (a necessary input to the retrieval algorithm) can currently not be obtained from the upward 

looking FIGOS sensor. Consequently, a complete retrieval dataset consists of measurements from three 

different instruments (two of them of the same type). This requires the use of instrument 
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intercalibration coefficients. Since the currently used sunphotometer operates using a limited number 

of bands only, further pre-processing is necessary in order to obtain spectrally continuous information 

of the direct irradiance. This is achieved by deriving the atmospheric absorption features between the 

sunphotometer bands from hyperspectral Spectralon reference measurements. However, hyperspectral 

measurements of the direct irradiance would substantially ease data pre-processing and provide a larger 

spectral coverage of the retrieved BRF. A possible solution might be to attach a spectroradiometer to a 

sun-tracking device in order to continuously collect the solar irradiance. Alternatively, direct irradiance 

values might also be obtained from simulations using  

MODTRAN-4 [45]. 

With the addition of an artificial illumination source (currently a 1,000 W quartz tungsten halogen 

lamp) the same goniometer system can also be used in a laboratory configuration as LAGOS (without 

dual-view option). Errors due to inherent system inaccuracies persist but are the same for both 

goniometer configurations. The usage of an inert, artificial target (for both the field and laboratory 

experiment) provides the advantage of reducing target related measurement errors and its high angular 

anisotropy supports FIGOS – LAGOS comparison measurements for e.g. a BRF retrieval. The 

laboratory setup further provides the possibility of direct comparisons to other goniometer systems 

currently in use [21, 24, 36, 46, 47].  

The time period needed to obtain a complete dual-view goniometer dataset is a critical factor since 

illumination conditions can rapidly change either because of atmospheric changes (e.g. over passing 

clouds) or changes in the solar zenith angle (for large solar zenith angles the change ratio is typically 

larger). Short-term atmospheric variability can affect single diffuse radiance measurements differently, 

leading to an over- or underestimation of the incoming diffuse irradiance. Using time resolved 

sunphotometer measurements substantially improved our ability to correcting for illumination changes 

during the measurement period. Therefore, we propose to rely on the combination of dual-view 

goniometer measurements and continuous total and diffuse irradiance data acquisition. If, in an ideal 

case, all directional measurements of the two angular datasets (lower and upper hemisphere) were 

collected at the same time, this correction would not be necessary. Another way to reduce the influence 

of atmospheric changes during the time period needed would consists of shortening the time period by 

changing the measurement sequence or measuring only half of the upper and lower hemisphere 

assuming a symmetric distribution of the target reflectance and the incident diffuse irradiance. 

 
6. Outlook 

 

Although the dual-view FIGOS is well suited for spectrodirectional field data collection and 

provides a reliable performance, there are also limitations, which need to be assessed. The 

measurement setup can be further improved with respect to data collection accuracy and ease of use. 

One possibility consists of assessing the main limitations by reducing the measurement time period, 

accounting for the changing GIFOV and FOV non-uniformity of the spectroradiometer and collecting 

the direct irradiance over a continuous spectral range (400 nm – 2,500 nm). However, other drawbacks 

(e.g. the weight, slight deviations of the zenith arc, pointing accuracy, assembly/disassembly time, etc.) 

are not accounted for. Another possibility for future development of goniometer systems could consist 
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of a robotic positioning system as carrier for the dual-view sensors (fibre optics). Robotic systems are 

widely used in industry (e.g. car industry, industrial automated painting etc.) and provide 

characteristics, which are of great usefulness for goniometers. The spatial positioning of the robotic 

arm is fully automatic, programmable, very fast and highly reproducible. Furthermore, such systems 

are easy to handle in the field or in the laboratory and their free programmability allows for highly 

flexible, target specific angular sampling. 

For validation and calibration purposes of air- and spaceborne directional reflectance measurements, 

as well as for algorithm development and independent RT model validation there is an evolving need 

for ground-based directional measurements of various surface types. Such ground-based directional 

data acquisitions must be performed in a standardized and comprehensible way and results as well as 

metadata need to be well documented and stored in corresponding functional database facilities, e.g. 

SPECCHIO [48]. Current ground-based spectrodirectional measurement procedures are not 

standardized and it is unknown how results obtained from various goniometer systems differ. 

Therefore, it is a further need to perform intercalibration studies with various state of the art 

goniometers following the example of the modeling community (cf. RAMI [49]). Such studies need to 

be performed under controlled laboratory conditions using an artificial target. Additionally, it has to be 

agreed on a common spectrodirectional data format and quality requirements for spectrodirectional 

measurements have to be defined. Once this is achieved, spectrodirectional measurement results from 

various campaigns could easily be transferred to such a data standard in order to ensure data 

comparability between spectrodirectional research groups. 
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