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Abstract: This paper presents a new algorithm making use uofo&is, which is a
statistical parameter, to distinguish the seisngoa generated by a person's footsteps
from other signals. It is adaptive to any environinand needs no machine study or
training. As persons or other targets moving ongiteeind generate continuous signals in
the form of seismic waves, we can separate diffelmgets based on the seismic waves
they generate. The parameter of kurtosis is sgasit impulsive signals, so it's much
more sensitive to the signal generated by persotstieps than other signals generated by
vehicles, winds, noise, etc. The parameter of lsists usually employed in the financial
analysis, but rarely used in other fields. In tpeper, we make use of kurtosis to
distinguish person from other targets based odiftsrent sensitivity to different signals.
Simulation and application results show that thigoathm is very effective in
distinguishing person from other targets.
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1. Introduction

Persons or other targets moving on the ground ganeontinuous impacts which propagate in the
form of seismic waves that can be measured by gewmshor seismic sensors. The signal generated by
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a person's footsteps can be distinguished fronsitdpeals generated by other targets, based on their
impulsive nature.

Many previous papers have focused on feature exiraand classifier design. These methods are
so complicated and lacking in robustness, tha iinipractical to apply them to common applications.
In [1] a new feature extraction algorithm basedttom mel-cepstrum analysis was investigated, but it
can only be used to some special environments. elnarget classification method by means of a
microaccelerometer has been described [2]. It 39 @articular to some special environments and
complicated. In order to make these methods appéc@ new environments, it is necessary to train
the classifier again and again. In [3] the charasties of people's footsteps signature were exadin
but no effective algorithm to identify persons fratier targets was shown. Paper [4] proposes a new
feature extraction method based on psycho-acouséicameters to recognize people's footsteps, but
it's impossible to apply the algorithm widely aastics signal is easily disturbed.

From above, we can see that there are more oifdefis in the existing methods used in person
recognition. In this paper, we provide an algorithsing the parameter of kurtosis which shows more
simpleness and robustness. The remainder of tperps organized as follows: section 2 describes th
statistical meaning of kurtosis. Section 3 listsl aliscusses the simulation results of the algorithm
using kurtosis which is applied to recognize perfmotsteps. Section 4 gives the conclusion and
predicts future work.

2. The statistical meaning of kurtosis

Karl Pearson [5] defined a distribution’s degred&uwiftosis as:
n= ﬁz -3

where

p=EX A

no

X denotes the sequence of inpytsrepresents the mean value of &,is referred to the variance
X-u

o
which have been raised to the fourth powgy.is often referred to as “Pearson’s kurtosis”, ghd-3
(often symbolized withy, , that isy, = 5, —3) as “kurtosis excess” or “Fisher’s kurtosis”.

An unbiased estimator [6-8] fgr, is

of X and n the length of input sequence X. The etgrevalue of the distribution & =

scores

_ nn+n¥z*  3n-1°
° (n-D(n-2)(n-3) (n-2)(n-3)°

For large sample sizes (n>100@), may be distributed approximately normally, wittstandard
error of approximately/24/n .

Pearson [5introduced kurtosis as a measure of how flat tipeofoa symmetric distribution is when

compared to a normal distribution of the same waea He referred to more flat-topped distributions
(y, <0) as “platykurtic”, less flat-topped distributiorfg,, >0) as “leptokurtic”, and equally flat-
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topped distributions as “mesokurticy{= 0). Kurtosis is actually more influenced by scoregtie

tails of the distribution than scores in the cendéra distribution [9]. Accordingly, it is often
appropriate to describe a leptokurtic distributamn“fat in the tails” and a platykurtic distributias
“thin in the tails”. Platykurtic curves have shartiils’ than the normal curve of error and lepidic
longer ‘tails’.

Moors [10] demonstrated tha, =V (Z*) + .1Accordingly, it may be best to treat kurtosistias
extent to which scores are dispersed away fronstioelders of a distribution, where the shouldees ar
the points wher&? =1, that is,Z = +1. Balanda and MacGillivray [11] wrote “it is best tefine
kurtosis vaguely as the location- and scale-fregament of probability mass from the shoulders of a
distribution into its centre and tails”. If one ggawith a normal distribution and moves scoregiftbe
shoulders into the center and the tails, keepinganee constant, kurtosis will increase. The
distribution will likely appear more peaked in tleenter and fatter in the tails, like a Laplace
distribution (v, =3) .

Let us denote p(x) the probability density funct{puf) of a random process x(t) and E() the mean.
The kurtosis K[x(t)] is:

Cum,(x) _ E(x*) = 3E(x?)? +12E(X)*E(x?) — 4E(X)E(X*) — 6E(X)*

KIXOI="E ) E(x)?

Assume the mean E() is zero , and k[p(x)] can hdemras:

Cum,(x) _ E(x%) _
E(XZ)Z - E(XZ)Z

KIx(®] =

Clearly, the kurtosis sign ks(x) is equal to thartb-order cumulant sign. Some properties can be
easily derived.

1) Cum,(ax + b) = a*Cum,(x), so ks(x) is invariant by any linear transformaties(ax+b)=ks(x)

2) Let p(x) = p.(X) + p,(x), where p,(x )is even andp,(x )s odd. It is easy to prove that ks(x)
only depends omp,(x &nd thatp,(x )can be considered as a pdf.

Therefore, in the following, the study may be res#d to a zero-mean process X(t) whose the pdf
p(x) is even and has a variang@ =1

It is well known that the kurtosis of a Gaussiastribution is equal to zero. Intuitively, the sigh
the kurtosis seems related to the comparison betwée and Gaussian distribution, by considering
the asymptotic properties of the distribution amel fiollowing definition:

A pdf p(x) is said over-Gaussian (respectively &dussian), ifx = x,, p(x) > g(x )(respectively,
p(x)<g(x)), where g(x) is the normalized Gaussiai. pn many examples, it seems that ks(x) is

positive for over-Gaussian signals and negativefit-Gaussian signals.
Let us consider that for x>0, the equation p(x)3gfrly has one sulotiow >0, it is known that

the fourth-order cumulant of a Gaussian distributezero. As a consequence, we can write:

fwx“g(x)dx:BJ'_mng(x)dx =3. In addition, we just may study the sign yof—%K[X(t)] , and we
can prove that

y =], x(p0) - g(x)dx+ [ x*(p(x) ~ g ()l
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Let us consider that the pdf p(x) is an over-Garssignal. Then, the sign of p(x)-g(x) remains
constant on each intervdD, p] and [p,»~]. Using the second mean value theorgmzan be

rewritten as:
y =2 (P0) = g0k~ &*["(9(x) = P(x)dx
Where0< é < p< A . Using the fact that p(x) and g(x) are both ped,can deduce that
J (PO =g = [ (PC) ~ g()dx+ [ (p(X) - g())ex = 0.
Taking into account that p(x) is over-Gaussian deduce
[ (P =gk = [ (9() - peO)dx >0
Using the above two equation, we remark that:
y=(" =& (p(x) - g(x)dx>0

Finally, if p(x) is an over-Gaussian pdf , then kigrtosis is positive. Using the same reason and
under the same condition, we can claim that a saliss&an pdf has a negative kurtosis.

There are some basic results about kurtosis giyeRi¢hard [12-14]. These results are helpful for
understanding the statistical meaning of kurtddexe are some of these results.

For standard scoreg, = u , the kurtosis of X is:
o
1) (X=-1) 1o X-
e T = x

Assume the two points of the distribution are an@ 1, with p being the frequency at 1. Then

p=p, o=ypq

-4 g _|p
Zl_—_—_ —_
o Pq q
ZO:—O_’U:—_p =- E
o Jpa Vg
1 q* , p’
= Yzt =(pr gy =L+ P
Nz P q
As p+g=1
So we have
1 g p*_ 1
k=322 =(pz; +0az5) ==~ +-——-=—-3
3 a " pq

For a three-point distribution in which the densgty, then

COED 0+ (P g

o’ g’
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0* = () 4 pO7 + (P =1-p

So
=L
1-p

Starting again with a normal distribution, movingoses from the tails and the center to the
shoulders will decrease kurtosis. A uniform digitibn certainly has a flat top, wit, =-1.2, but J,
can reach a minimum value eR when two score values are equally probably ahathker score
values have probability zero (a rectangular U iigtron, that is, a binomial distribution with n /3 =
0.5). One might object that the rectangular U distron has all of its scores in the tails, butseo
inspection will reveal that it has no tails, anattlall of its scores are in its shoulders, exaotig
standard deviation from its mean.

Kurtosis is usually of interest only when dealingthwapproximately symmetric distributions.
Skewed distributions are always leptokufti&]. Among the several alternative measures ofdsis
that have been proposed (none of which has oftean mployed), is one which adjusts the
measurement of kurtosis to remove the effect ofveless [16].

There is much confusion about how kurtosis is eelab the shape of distributions. Many people
have asserted that kurtosis is a measure of theegeass of distributions, which is not strictlyeru

It is easy to confuse low kurtosis with high vadganbut distributions with identical kurtosis can
differ in variance, and distributions with identieariances can also differ in kurtosis. Here ayme
simple distributions that may explain what kurtasisin part, a measure of tail heaviness relattees
the total variance in the distribution.

Table 1. Kurtosis for 7 Simple Distributions Also Differirig Variance.

X freqA fregqB freqC freqD freqE fregF freq G
05 20 20 20 10 05 03 01
10 00 10 20 20 20 20 20
15 20 20 20 10 05 03 01
Kurtosis -2.0 -1.75 -1.5 -1.0 0.0 1.33 8.0
Variance 25 20 16.6 12.5 8.3 5.77 2.27

A has the least kurtosis-Z is the smallest possible value of kurtosis) andh& most. In the
maximally platykurtic distribution A, which initig} appears to have all its scores in its tailssoore
is more than one away from the mean, that is, it has no tails'thia leptokurtic distribution G, which
seems only to have a few scores in its tails, onstmemember that those scores (5 and 15) are much
farther away from the mean (303) than are the 5's & 15’s in distribution A. Inctain G nine percent
of the scores are more than thee&om the mean, much more than you would expeet mesokurtic
distribution (like a normal distribution), thus @&k indeed have fat tails.
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Table 2. The kurtosis for a number of common distributions.

Distribution Kurtosis excess
i distributi TRl
Bernoulli distribution 1-p p

6[a® +a? (1 2b) +b? (1+ b) - 2ab(2+ )]

Beta distribution

ab(2+a+hb)(3+a+h)
: e 6p°-6p+1
Binomial distribution np=p)
. o 12
Chi-squared distribution "
. . s 12
Fisher-Tippett distribution 5
C 12
Gamma distribution >y
g 1
Geometric distribution TP,
S . 8(n-3)
Half-normal distribution (7-2)
Laplace distribution 3
Log normal distribution e +26* +3e% -6
o 4(96- 4077+ 377
Maxwell distribution -W
. . e 6-p6-p)
Negative binomial distribution r(- p)
Normal distribution 0
, . 1
Poisson distribution v
. L . 671(4-m1)-16
Rayleigh distribution T -a?
e 6
Student's t-distribution "
. : e 6
Continuous uniform distribution s
. . . _6(n” +1)
Discrete uniform distribution 5(n?-1)

Kurtosis is the degree of peakedness of a distobutlefined as a normalized form of the fourth
central moment of a distribution. The kurtosis rnumber of some common distributions is
shown below.
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The following example makes it quite clear thatighbr kurtosis implies that there are more
extreme observations (or that the extreme obseratare more extreme). It is also evident that a
higher kurtosis also implies that the distributisnmore ‘single-peaked’ (this would be even more
evident if the sum of the frequencies was constant)

Table 3. Kurtosis for Seven Simple Distributions Not Diffgg in Variance.

X Freq.A Freq.B Freq.C Freq.D Freq.E Freq.F Freq.G
-6.6 0 0 0 0 0 0 1
-0.4 0 0 0 0 0 3 0
1.3 0 0 0 0 5 0 0
2.9 0 0 0 10 0 0 0
3.9 0 0 20 0 0 0 0
4.4 0 20 0 0 0 0 0

5 20 0 0 0 0 0 0
10 0 10 20 20 20 20 20
15 20 0 0 0 0 0 0
15.6 0 20 0 0 0 0 0
16.1 0 0 20 0 0 0 0
17.1 0 0 0 10 0 0 0
18.7 0 0 0 0 5 0 0
20.4 0 0 0 0 0 3 0
26.6 0 0 0 0 0 0 1

Kurtosis -2.0 -1.75 -1.5 -1.0 0.0 1.33 8.0
Variance 25 25.1 24.8 25.2 25.2 25.0 25.1

We may define mesokurtic as “havifyy equal to 3", while platykurtic curves hayg <3, and
leptokurtic 8, >3. The important property which follows from this tisat platykurtic curves have

shorter “tails” than the normal curve of error degtokurtic longer “tails”.
From the discussion above, the statistical meanofgkurtosis is given: kurtosis is a kind of
measure of data’s degree of outlier or data’s pahadss.

3. Thenew application of kurtosis

The kurtosis of a random variable X is defined:
_ E(X —E(X))
E(X - E(X))

X+, X, is the samples from random variable X, and théosis of samples is defined:
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S (x - %)*
S 2.06=%)

(s) [Z x _X)z}

Where X :%Zx . X :%Z(xi -x)*, X :%Z(xi -X)? . It can be seen that the kurtosis of random
i=1 i=1 i=1

variable and samples is independent of mean anainca.

The seismic signals of persons, trucks and traektagtre collected at the sample rate of 1Ksps with
the resolution of 16 bits, and the kurtosis ex@dcirom each target signal is calculated every 512
samples. For each 512 samples of the signal, thedksiis calculated by the following formulation:

_ El(x-1)%
©EH{(x- )%
Where E denotes the mean of input sigpalis referred to the mean of x.

3.1. Smulation results

Why are tailedness and peakedness both componkRtgtosis? It is basically because kurtosis
represents a movement of mass that does not #ffeetariance. Consider the case of positive kustosi
where heavier tails are often accompanied by aehnigkak. Note that if mass is simply moved from
the shoulders of a distribution to its tails, tihe variance will also be larger. To leave the arace
unchanged, one must also move mass from the shieuloléhe center, which gives a compensating
decrease in the variance and a peak. For negainesis, the variance will be unchanged if mass is
moved from the tails and center of the distributionits shoulders, thus resulting in light tails
and flatness [17].

The kurtosis of several typical distributions, untihg normal distribution, rayleigh distributiondan
beta distribution, is given in figure 1.

3.2. Kurtosis for background noise, tracklayer and truck

In this section, we will simulate the results ofrtasis. First, we collect the seismic signal by the
seismic sensors. The raw seismic signal is themelivinto N blocks with 512 samples each. The
parameter of kurtosis is calculated every blockatTis to say, we can get only one value from 512
samples. In order to make the simulation resu#tarelr and easier to understand, we add 511 zeros to
each kurtosis to form the final simulation results.

In figure 2 and figure 3, we list the seismic sigagatracklayer, light truck and background noise
deprived in gravelly clay region and loessal sedion respectively. Also, we plot the parameter of
kurtosis of each target.

From figure 2, we can see that the parameter abgisr of background noise environment is far
below 5 while the value of tracklayer and trucknsibrises but is still below 5 in gravelly clay req.

From figure 3, we can see that the parameter @bgisr of background noise environment is also far
below 5 while the value of tracklayer and truck nsig rises but is still below 5 in loessal
soil region.
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Figure 1. the kurtosis of several distributions, includingrmal distribution, rayleigh
distribution and beta distribution. The left figusethe samples of the distribution, and the
right is the kurtosis respectively. (a). the sammmEnormal distribution and its kurtosis. (b).
the samples of rayleigh distribution and its kugogc). the samples of beta distribution
and its kurtosis.
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Figure 2. The seismic signal, collected in gravelly clayiosg of target(left) and its
kurtosis every 512 samples. The left figure ofigahe seismic signal of tracklayer and the
right figure of (a) is the kurtosis calculated guBfi2 samples. The left figure of (b) is the
seismic signal of truck and the right figure of (B)the kurtosis calculated every 512
samples too. The left of (c) is the seismic sigoiatruck and the right is the kurtosis
calculated every 512 samples too.
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After comparing the results from figure 2 and fig8, we can see that the kurtosis of the non-
impulsive signal is below 5 no matter in which typk geologic features. In another words, the
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algorithm we use needs no machine study or traimihggh is quite useful and convenient when we
apply it in any new atmosphere.

Figure 3. The seismic signal, collected in loessal soil@agof target(left) and its kurtosis
every 512 samples. The left figure of (a) is thesee& signal of tracklayer and the right
figure of (a) is the kurtosis calculated every Sinples. The left figure of (b) is the
seismic signal of truck and the right figure of (B)the kurtosis calculated every 512
samples too. The left of (c) is the seismic sigoiatruck and the right is the kurtosis
calculated every 512 samples too.
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3.3. Kurtosis for person

In figure 4 and figure 5, we give the seismic slgofaperson deprived in gravelly clay region and
loessal soil region respectively. Also, we plot faegameter of kurtosis.

Figure 4. The simulation result of the seismic signal ofseerin gravelly clay region.
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Figure5. The simulation result of the seismic signal ofseerin loessal soil region.
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It can be seen from figure 4 and figure 5 thatghemeter of kurtosis is below 5 when there is no
person and the results are in accordance withethdts in figure 2 and figure 3. Oppositely, théuea
of kurtosis is far beyond 4 when some person pabge#lso, we can see the adaptation of the
algorithm in different region from the comparisagtween figure 3 and figure 4.

From above, we can make the following conclusions:

1) The kurtosis of impulsive signals is far bey@nd

2) The kurtosis of non-impulsive signals is belagw 5

3) The values of kurtosis are independent of thaoggc features and are only dependent on the
feature of signals.
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From the analysis above, it is clear that we catirdjuish person from other targets depending on
the value of kurtosis in any atmosphere and needsathine study and training.

4. Conclusion

From the discussion above, it is clear that walk@n be detected and distinguished from other
targets by comparing the kurtosis of the seisngoali The value of kurtosis depends on the features
of the signals and is independent of the geolczatures.
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