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Abstract: A common approach to improve medical image clas#ibn is to add more
features to the classifiers; however, this incredle time required for preprocessing raw
data and training the classifiers, and the incr@a$eatures is not always beneficial. The
number of commonly used features in the literatfoe training of image feature
classifiers is over 50. Existing algorithms foressing a subset of available features for
image analysis fail to adequately eliminate redabd@atures. This paper presents a new
selection algorithm based on graph analysis ofasteons among features and between
features to classifier decision. A modification @th analysis is done by applying
regression analysis, multiple logistic and postefgayesian inference in order to
eliminate features that provide the same contmmsti A database of 113 mammograms
from the Mammographic Image Analysis Society wasdus the experiments. Tested on
two classifiers — ANN and logistic regression —a@ndetection accuracy (true positive
and false-positive rates) using a 13-feature sétctssl by our algorithm yielded
substantially similar accuracy as using a 26-featiat selected by SFS and results using
all 50-features. However, the 13-feature greatiguced the amount of computation
needed.
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1. Introduction

Breast cancer is among the most frequent formaéars found in women [9]. Diagnosis of breast
cancer typically includes biopsy, ultrasound, andfmaging. Ultrasound can diagnose simple cysts in
the breast with an accuracy of 96-100% [11]; howethee unequivocal differentiation between solid
benign and malignant masses by ultrasound has privée difficult. Despite considerable efforts
toward improving ultrasound, better imaging teclueis| are still necessary. Mammography is now
commonly used in combination with computer-aidealydosis (CAD). CAD is a computer diagnosis
system to assist the radiologists in image inteégpien [15] Since the causes of some types of ¢ance
are still unknown, it can be difficult to decide &ther a tissue is cancerous or not. Currently,
radiologists can refer to an automated system secand opinion to help distinguish malignant from
normal healthy tissues. An automated system caecteind diagnose probable malignancy in
suspicious regions of medical images for furthealeation. Since medical images for CAD (such as
X-ray, CT scan, MRI, and mammogram), include a wmerable number of image features, CAD
improves the detection of suspected malignancies.

Image features are conceptual descriptions of isvdbat are needed in image processing for
analyzing image content or meaning. Features awallysrepresented as data structures of directly
extractable information, such as colors, grays, leigtier derivatives from mathematical computation
of the basic features such as its edges, histogrants Fourier descriptors. Each type of feature
requires a specific algorithm to process it. Thanef only features that carry essential and non-
redundant information about an image should beideresd. Moreover, feature-extraction techniques
should be practical and feasible to compute. Masgarchers have tried to improve the accuracy of
CAD by introducing more features on the assumptinat this will lead to better precision. However,
adding more features necessarily increases theandstomputation time.

The addition of more features does not always iwvgreystem efficiency, which has led to an
investigation of feature pruning techniques [26320, 23, 30]. Foggiat al [20] used a graph based
method with only six features and found the perfamoe was 82.83% true positive (TP) and 0.08%
false positive (FP) per image, EBual [13] used sequential forward search (SFS) andddhat only
25 features are required, with Mean Square Err@@HKMO0.02994 by using General Regression Neural
Networks (GRNN). When a support vector machine (§Was applied, it further reduced this to 11
features, with MSE of 0.0283.

Among the algorithms to discard non-significanttfieas are sequential forward search (SFS),
sequential backward search (SBF), and stepwisessigin. SFS and SBF focus on the reduction of
MSE of the detection process while stepwise regessvolves both the interaction of features and
the MSE value. Using stepwise logistic regressiencostly since this technique is based on
calculations over all possible permutations of gveature in the prediction model. These techniques
use an assumption to select features that hasrhigllagion to the classifier decision output. Hoeev
an optimal set of features must be orthogonal. Wite above techniques, it is possible that
information from two or more candidate features rbayredundant and a feature may be dependent
on another.
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To improve the effectiveness of feature-discardiechniques, we propose a new method using
modified path analysis for feature pruning. A weeghdependency graph of features to the output of
classifier and correlation matrices among featusesonstructed. Statistical quantitative analysis
methods (regressions and posterior Bayes) and lgpist testing are used to determine the
effectiveness of each feature in the classifielisi@t. Experiments are performed using 50 features
found in literature and evaluate feature seleatitbectiveness when applied on to two learning n&del
ANN and logistic regression. The resulting 13-featset is compared with prediction using all 50
original features and a 26-feature set selectethdy6FS method. We found that the quality is nearly
equal; however, the number of feature computatismeduced by one-half and 13/50 when compared
to the 26-feature set and all-feature set, respayti

The paper is organized as follows. Section 2 isnleelical image features problems and survey on
the features in medical image research. Sectioas8ribes the feature extraction domains. Section 4
has details of the statistical collaborative methdsection 5 describes our proposed algorithm and
section 6 is the evaluation the experiments.

2. Medical Image Feature Survey

Medical image detection from mammograms is limited analysis of gray-scale features.
Distinction between normal and malignant tissuengge density is nearly impossible because of the
minuteness of the differences [20]. Thus, mostuieaiextraction methods are extended from the
derivation of limited gray scale information [1, 7), 27, 30]. Medical image features can be divided
into three domains: spatial, texture, and specBpatial domain refers to the gray-level informatio
an arbitrary window size. It includes gray levebgckground and foreground information, shape
features, and other statistics derived from imafermation intensity. Texture refers to propertiest
represent the surface or structure of an objertfiactive and transmissive images. Texture araligsi
important in many applications of computer imagealgsis for classification, detection or
segmentation of images based on local spatial ti@mi of intensity. Spectral density or spectrum of
signal is a positive real value function of a fregay associated with a stationary stochastic pspces
which has dimensions of power or energy. Howeviruseful features must be represented in a
computable form.

In a previous study [12], we found that most feasuwere extracted on the assumption that more
features would enhance the detection system. Tdmerenany ways to extract new features such as
modifying old features, using more knowledge frgmtactic images [19], and using a knowledge base
[18]. Much research has been devoted to findingbst feature or best combination of features that
gives highest classification rate using approprictssifier. Some perspectives on the situation of
feature extraction and selection are reviewed next.

Fuet al [13] used 61 features to select a best subdettires that produced optimal identification
of microcalcification using sequential forward s#a(SFS) and sequential backward search (SBS)
reduction followed by a General Regression Neurgiwgrk (GRNN) and Support Vector Machine
(SVM). W found inconsistency between the resultsheftwo methodse. a feature which was in the
top-five most significant using the SFS but wasalided by the SBS.
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Zhanget al [21] attempted to develop feature selection basethe neural-genetic algorithm. Each
individual in the population represents a candidaifition to the feature subset selection problem.
With 14 features on their experiment, there 2ifgossible feature subsets. The results showed that a
few feature subsets (5 features) achieved the sigtiassification rate of 85%. In the case of aehug
number of features and mammography, however, verg costly to select features using the neural-
genetic approach.

Table 1. Feature selection and classification method froavipus work.

Researcher Domain Features used (examples) Cassifi
Fuet al Texture Co-occurrence matrix rotation with angte 46°, 9C°, 135: GRNN (SFS,
[13] Difference entropy, entropy, difference variancentcast, SBS)

angular second moment, correlation

Spatial Mean, area, standard deviation, foregrbbadkground ratio,
area, shape moment intensity variance, energyamneei

Spectral  Block activity, Spectral entropy

G. Samuel Spatial Volume, sphericity, mean gray level, gravel standard Rule-based,
et al [9] deviation, gray level threshold, radius of sphemaximum linear
eccentricity, maximum circularity, maximum compasa discriminant
analysis
E. Loriet Spatial, Patient profile, nodule size, shape (measured witlinal Regression
al. [4] Patient  scale) analysis
Profile
Shiraishiet  Multi Patient profile, root-mean-square of power spectrubinear
al. [12] Domain  histograms frequency, full width at half maximum tbfe discriminant

histogram for the outside region of the segmentadlule on analysis
the background—corrected image, degree of irreigyldull

width at half maximum for inside region of segmeht®dule

on the original image

Hening [18] Spatial Average gray level, standardiateon, skew, kurtosis, min-SVM
max of the gray Level, gray level histogram

Zhaoet Spatial Number of pixels, histogram, average giaundary gray, ANN

al.[27] contrast, difference, energy, modified energy, @
standard deviation, modified standard deviatiorgwsiess,
modified skewness

Pinget al Spatial Number of pixels, average, average grayelleaverage ANN and
[21] histogram, energy, modified energy, entropy, medifiStatistical
entropy, standard deviation, modified standard atewn, classifier
skew, modified skew, difference, contrast, averbgaendary
gray level
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Tablel. Cont.

Songyang  Mixed Mean, standard deviation, edge, background, foregto Multi-layer
and Ling, features background ratio, foreground-background differenddeural
[24] difference ratio of intensity, compactness, elommgatShape Network
Moment I-IV, Invariant Moment I-IV, Contrast, areshape,
entropy, angular second moment, inverse differeament,
Correlation, Variance, Sum average

The Information Retrieval in Medical ApplicationtRMA) [3] project used global, local, and
structure features in their studies of lung canthe global features consist of anatomy of the abpge
local feature is based on local pixel segment; simdctural features operate on medical apriori
knowledge on a higher level of semantics. In additio the constraints of the global feature
construction and lack of prior medical semantic Wisalge, this procedure was quite difficult
and costly.

The researchers’ choices of medical image featdeggend on the objectives of the individual
research. Cosét al [2], Chiou and Hwang [6], and Zoran [30] used @enstatistical features on gray
scale intensity, while Samuet al[5] used volume, sphericity, mean of gray levénsgard deviation
of gray level, gray level threshold, radius of mggkere, maximum eccentricity, maximum circularity,
and maximum compactness in their CAD system. Hefl®j used average gray scale, standard
deviation, skewness, kurtosis, maximum and minimafmrgray scale, and gray level histogram to
identify and detect lung cancer. Shiraishi [12]dstd 150 images from the Japanese Society of
Radiological Technology (JSRT) database by usingpmaage, RMS of power spectrum, background
image, degree of irregularity, full width at hallaximum for inside of segment region. Leti al [4]
studied on personal profile, region of interestpemies, nodule size, and shape. Patgal [21]
extended the new modified features, number of pireROI, average gray level, energy, modified
energy, entropy, modified entropy, standard dewmtimodified standard deviation, skewness,
modified skewness, contrast, average boundary lgesl. A further investigation on using more
features unrelated to medical image analysis, Wind[23] explored fault diagnosis of induction
motors to improve the feature extraction procesproposing a kernel trick. On his study, 76 feagure
were calculated from 10 statistics in the time doma&hese statistics are mean, RMS, shape factor,
skewness, kurtosis, crest factor, entropy errottopy estimation, histogram lower and histogram
upper. We cannot discern their common methodsletseg features; however, we can conclude that
they added more features in order to increasefticgeacy of their methods. Table 1 shows a summary
of the features and classifiers from previous ss.di

Explorations of feature extraction analysis havenb®und that the effects of significant features
can be direct or indirect and some features dorelate to the detection results at all. Therefore,
ineffective and redundant features must be disdarde

3. Feature Domains

This section presents details on feature domaias dhe used for medical image classification.
Generally, the original digital medical image is time form of a gray-scale or multiple spectrum
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bitmap, consisting of integer values correspondingproperties i(e. brightness, color) of the
corresponding pixel of the sampling grid. Imageoinfation in the bitmap is accessible through the
coordinates of a pixel with row and column indicAd.features that can be extracted directly using
mathematical or statistical models are categoriasdlow-level features. High-level features are
summarized from low-level features, usually by miaeHearning models. Much research in medical
image analysis has to deal with low-level featuresrder to identify high-level features. In this
research, we investigate several types of low-léaagiures in order to identify mammograms as benign
or malignant. The low-level features are separmttspatial, textural, and spectral domains.

The spatial domain is composed of features exwlacted summarized directly from grid
information. It implicitly contains spatial relatie among semantically important parts of the image.
Examples of spatial features are shapes, edgesgréamd information, background information,
contrasts and set of intensity statistics, suchmasan, median, standard deviation, coefficient of
variation, variance, skewness, kurtosis, entropg, modified moment. In this research, we also use
radian of mass.

Texture features are relations among pixels in tmdp. Representation of texture features
commonly uses co-occurrence matrices to describe firoperties. The co-occurrence matrix of
texture describes the repeated occurrence of gka}-tonfiguration in an image. For a texture image
Pg.d(a, b) ,denotes the frequency that two pixels with deamelsa, b appear in the window separated
by a distancel in directiong.

The frequencies of co-occurrence as functions gfeaand distance can be defined as:

Po, @ ) =[{I[(k 1), (m ] OD:k-m=0,|In|=d, ik ) =a, f(m, = b}|
Pssd(@, )= { [(k,),(m, )] OD: (k-m=d), I-n =-d v (k-m =-d, I-n=0),

fk, ) =a, f(m, n = b}|

Pooa(@, B = [ { [(k,),(m,N] O D:|k-m|=d, |-n =0, f(k, ) = a, f{(m, ) = b}|
Piasd(@ b)= [ { [(k 1), (m )] OD: (km=d,I-n=d)V (k-m=-d, |-n =-d),

f(k, 1) =a, f(m, n) = b}|

where | {...} | refers to set cardinalifi¢[,)lis a gray value and = (M x N) x (M x N)
In this paper, we take to be 0°, 45°, 90°, and 135°, addl. Examples of features in texture
domain are:
Energy or angular second moment (an image homdgerne'asure):z P4 (a,b)
ab

Entropy: > P,,(a,b)log, P, (a,b)
a,b

Maximum probability:max, ,{ P, ,(a,b)}
Contrast:)_|a=-b[‘P,4(a,b)
ab

. P
Inverse difference momentZ i -
a,b,azb | a-— b |

Correlation (a measure of image linearity, lineaireation structures in directiong
3 [(@b)R,q (8, b)] — 4,4,

a,b,azb o-xo-y

where y,, u,,0,,0,are means and standard deviations.
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Spectral features [3] are used to describe theuémecy characteristics of the input image. The
features are based on transformation from theapaid time domains. Most frequently-used spectral
features are based on discrete cosine transform@ad wavelets. Examples of features based on the
frequency domain are:

Spectral entropy:=- z z X (i, Nh(X(, }))

j

Block activity: A==>">"|X(i, j)|wherei, j are window size an& (i, j) = | X ('IA: i)
]

The above features are frequently found in theditee of medical image analysis; there are many
more features available.

4. M ethodology

We hypothesize that using only one statistical wetfor classification will not be successful
because of the restriction on measurement valuefeatfires and output. As this restriction, we
investigate statistical techniques to fulfill theafure selection process. These statistical teabsiq
consist of four parts: 1) feature classification, path analysis, 3) exploration on relations among
features and outputs, and 4) hypothesis testintherieature classification, we use correlationysis
to transform a number of features into a numbegrotips. In path analysis, the conceptual relations
among different feature classes are constructedn,Titelations among features and between features
and outputs are determined by three methods: logisgression, simple regression, and multiple
regression. Finally, hypotheses of feature relatiqus are tested by a Bayesian technique.

4.1. Feature classification

Since most low-level features are extracted froratiap and texture based, which are highly

correlated, the feature selection strategy is stiltgethis limitation. The correlation coefficieist used
to analyze these features. The correlation coefiicp between random variablesandy is defined as

cov(x, y)

RN ET )

of x andy. p is between -1 and 1, angl= 0 indicates no linear relation betweeandy.

wherecov(x, y) denotes the covariancetndy, V(x)andV (y) are variances

Correlation coefficients of features can be useddesify many highly related features into groups.
4.2. Path analysis

By the previous phase, we can identify groups ahlyirelated features. We find that the
relationships of features within each group anati@hships among groups to final output can be
determined by path analysis.

Path analysis utilizes multiple regression analyBisgression analysis is an analysis of causal
models when single indicators are endogenous \Jasaif the model. In a path model, there are two
types of variables: exogenous and endogenous. Bragevariables may be correlated and may have
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direct effects as well as indirect effects on erahmgyis variables. Causality is a relationship betvese
exogenous variable and endogenous variable(s)pguphical causation refers to the set of all
particular “causal” relations.

Being a regression-based technique, path analy$imited by the requirement that all variables be
continuous. Because our study involves continucausse variables while the endogenous output
variable is dichotomous (discrete), we cannot wh pnalysis directly; however, the analysis i ati
graph-based process. Causal relation analysis eaexplained by dependent variables that are
measured on an interval or ratio scale [17]. Thoispath analysis involving continuous endogenous
variables, the categorical endogenous might haffeeudty both in theoretical terms and prediction
implication. Goodman [9] considered path analydidioary variables by using logistic regression.
Hagenaars [10] made a general discussion of patlysas of recursive causal systems of categorical
variables by using the directed log-linear modgbrapch, which is a combination of Goodman’s
approach and graphical modeling. Example of théeriht models of trait effects on output y is
illustrated in Figure 1. Figure 1A shows a multiplegression model where each trait operates
simultaneously on fitness y. Figure 1B is the patialysis model showing four traits at four
time periods.

Figure 1. An example of a general recursive causal systeim four independent features
and a dependent output. (A) lllustration of possit@lations among features and output.
(B) The result of feature selection by analogy wgthph base.

X1 Py Y Y
Pi; Py P1, Pay
) X
13
Pis o P14
Pay P3; Pay
Pay Pay
] ]
(A) (B)

A path diagram not only shows the nature and doeabf causal relationships but also estimates
the strength of relationships. Comparatively wegltronships can be discarded; thus some features
are eliminated. A path coefficient is the standeedislope of the regression model. This standatdize
coefficient is a Pearson product — moment cor@tatBasically, these relationships are assume@to b
unidirectional and linear. To overcome this limitat we use regressions and Bayesian inference to
construct a graphical model.

4.3. Relations among features and outputs
From the previous details about features and tlie g@alysis, it is necessary to explore the cause

and effect features by regression analysis. Inpogpose, we suggest to use logistic regressiorplsim
regression, and multiple regressions.
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a) Using logistic regression. Logistic regression ieegression model for Bernoulli-distributed
dependent variables. It is a linear model thaizaet the logit as its link function. Logistic
regression has been used extensively in medicakacidl sciences [4, 11]. The logit model

takes the formiog(%) =a+ X+ BX +..t BX;+€;1=12...n,

wherepi=Pr(y=1), 5>0; ] =1, 2 ...k are parameters (weight) of featugeande is a random error
(bias) of feature vector of a sample data.

Logistic regression model can be used to predietrdsponse features to be 0 or 1 (benign or
malignant in the case of mammogram detection). &dttan classifying an observation into one group
or the other, logistic regression predicts the phility p of being in either group. The model predicts
the log odds/(1-p)) that an observation later be transformeg &s value of @r 1 with an optimal
threshold. The general prediction model is pd(p)) = xp+e, wherex is feature vectorp is a
parameter vector; ardis a random error vector.

b) Using simple regression and multiple regressi®mple regression has the same basic
concepts and assumptions as logistic regressiothbudependent variable is continuous and
the model has only a single independent variabie Jimple regression can be modeled as
Y=8+BX,+e ;i=12...n whereY, is the dependent variablg,, 8, are parameters

(weights), anch is the size of training data; is an explained variable of data recoehd
e is a random error. Regression yieldp galue for the estimator gB, that can be used to

decide whethel has a linear relation % . Multiple regression is an extension of simple
regression model to multiple variables.

Simple logistic regression and multiple logistigmession are used to explore the cause features to
effect output.

4.4. Hypothesis testing

Although the statistical techniques in previoust®accan be used to identify causal features, they
cannot classify those features as direct or intik&@ use hypothesis testing for this.

An appropriate way to test the hypothesis aboutdihection of causal relationships is easier to
illustrate an abstract concept by analogy with Bayeinference. Bayesian inference uses the stgenti
method, which involves collecting evidence that maynay not be relevant to a given phenomenon.
The more evidence is accumulated, the degree oéfbel a hypothesis changes. With enough
evidence, the degree of belief will often become/\egh or very low. It can be used to discriminate
conflicting hypotheses. Bayesian inference usuatllies on degrees of belief, or subjective
probabilities. Bayes's theorem adjusts probabditie based on new evidence

asp(H, |E) = P(E ||':(0E))P(H o, whereH, represents the hypothesi(H,) is the prior probability of

Ho; P(E|Ho) is the conditional probability of availability¢hevidencde given that the hypothesk4, is
true; andP(E) is the marginal probability d&, which is the probability of witnessing the newdance
E under all mutually exclusive hypothes®E|H,) is the posterior probability ¢, givenE.

Using hypothesis testing on the regression, weusarpath analysis for the discrete output.
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5. Proposed Algorithm

To solve this solution, simple regression, logistgression, and Bayesian inference take into
account of causality extraction problem. The aldponiis described as following steps.

Step 1. Partition the original feature sets;,(X2 ... X,) into subsets using coefficients of the
correlation matrix. Let the feature subsets e (X1, X2 ... X;i), i=1, 2 ... kwith p; being the
correlation coefficient between andx; .

This step is to partition all features into featsubsetss, whereS and§ (i #) are lowly dependent
based on the correlations.

Step 2: Perform simple logistic regression of emalependent featurg; € S, j=1, 2 ... R and
dependent outpyt and then select the possible solution which sassdithreshold value

The result from this step is a subset (i, Xpi ... Xi) of features fron§ is where each element of
A is a direct causal feature of output y.

Step 3: Perform multiple logistic regression byngsall features in set;,9=1, 2 ... k in the model
and selecting the signified features 8 (xi, Xii ... Xz) from the model, whereBs a set of direct
features and indirect cause features.

Step 4: Let D= A © Bj; where© is our testing hypothesis operator for explorihg tausal
relations using the Bayesian inference conceptaatéwork.

This step is performed using Bayesian inferenda #se following example for two features:

If featurex,, is the cause of = P(y| xni) >C (2)
If featurex;; is related (highly correlated) iq; = P(Xni, X) > C (2)
If featurex;; is not significant toy = P(y| xi) <C 3)
If featuresx, and x;; are significant ty = P(Y| Xni, Xi) > C (4)

whereC is a given threshold.

This step iteratively refines the search for thairigct cause feature with the highest correlatiah w
the direct causgy,.

Through the above predicates (1) to (4), we cae@dbhehypothesighatx, and the combination
of X, andx;; causey. Figure 2 illustrates the relations amoag X, andy.

Figure 2. The connected graph on two cause features anct gff&@here is no direct effect
of feature x on y in (A) but, as shows in (B), there is an atdion effect of featuregxin
addition with x; on .

Xni X
F\{]Xni Py|)(i
Pxixt Pxri xti
Pypxi.xi
Xiti Xti
(A) (B)

Step 5: Repeat from Step 2 whilg k. This step produces sddg wherei=1, 2 ... k Note that some
of D; may be null sets.
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Step6: Construct graph G by merging subgraphsi=1, 2 ... k
G(V,E|Y)=0%aD,;;V =(v));E=(e);Y is the effect or dependent vertex.

6. Experiment and Results
6.1. Experiment

Our experiment is based on a training set of 113sRfdm the Mammographic Image Analysis
Society (MIAS) mammogram images that are segmednyeddiologists. After image segmentation, 50
features from the spatial, texture, and spectralalos are extracted. The feature set consists 6§ ma
radian, mean, maximum, median, standard devias&aywness, kurtosis of gray level from spatial
domain, energy, entropy, modified-entropy, conirasterse different moment, correlation, maximum,
SDx (standard deviation) an8iD, from the co-occurrence matrix of gray scale uBgd(a,b) with
distanced =1 and anglep = 0°, 45°, 90°, 135° from texture domain and blackivity, spectral entropy
from the spectral domairstepl of the experiment is to classify homogeneous featimto 12 feature
sets, using the bivariate correlation coefficidrable 2 shows list of features in each set.

Table 2. Partition of the 50 original features into 12 featsets.

Featureset Number of features List of Features
#1 4 Entropy rotations from 0°, 45°, 90°, 135°
#2 4 Energy rotations from 0°, 45°, 90°, 135°
#3 4 Inverse difference Moment rotations from &, #0°, 135°
#4 4 Mean Co-occurrence rotations from 0°, 45°, 205
#5 4 Max Co-occurrence rotations from 0°, 45°, 935
#6 4 Contrast rotations from 0°, 45°, 90°, 135°
#7 4 Homogeneity rotations from 0°, 45°, 90°, 135°
#8 4 Standard deviations on X rotation from 0°, 48", 135°
#9 4 Standard deviations on Y rotation from 0°, 88, 135°
#10 4 Modified entropy rotations from 0°, 45°, 9035°
#11 7 mean, maximum, median, standard deviation),(8@efficient
of variation (CV), skewness, kurtosis (intensitygody level)
#12 3 block activity, spectral entropy, mass radian

After Step 1, the simple and multiple logistic reggion analysis in each feature set are performed.
Tables 3 and 4 illustrate example results from QtepStep 4 by using features in feature set #1.



Sensorg008, 8 4769

Table 3. The effects among features in feature set #1.

Effects of dependent features

Relationsin Feature set #1 . . . :
(using simplelinear regression)

Entropy 0° to Entropy 45° 0.000
Entropy 0° to Entropy 90° 0.004
Entropy 0° to Entropy 135° 0.000
Entropy 45° to Entropy 90° 0.000
Entropy 45° to Entropy 135° 0.022
Entropy 90° to Entropy 135° 0.000

" denotes significant with 5% threshold andenotes highly significant with 1% threshold.

Table 3 shows the effects among features in setVidlues in Table 3 are used to test null
hypotheses that two testing features are not ateel If any effects that hayevalue less than 0.05,
those pairs of features are accepted as correlated.

Tables 3 and 4 show that:

« From Table 3: Entropy 0° and Entropy 45° are higligificantly related.

« From the second column of Table 4: based on thelsitogistic model, only Entropy 0°
causey (Entropy 0° is significant tg).

« From the third column of Table 4: on the multipbgiktic regression model, Entropy 0° and
Entropy 45° causg.

« Finally, with Bayes inference, the direct effectBatropy 0° and the indirect effect is the
interaction of Entropy 0° and Entropy 45° cayse

Table 4 shows the result of StépD; = A; O B; wherei =1. Afterk iterations of the algorithm, the
experiment results in the number of features besagiced from the original 50 t@® features. Those
features are Entropy 0°, Entropy 45°, Max Co-oamge 45°, Max Co-occurrence 135°, Mean Co-
occurrence 0°, Mean Co-occurrence 90°, EnergyH&mogeneity 0°, Homogeneity 45°, Homogeneity
90°, Homogeneity 135°, Standard deviation and Sks&rof intensity value. The constructive cause
and effect graph(V,Ely), is shown as Figure 3.

Table 4. The effects of features in feature set #1 on dutpu

Effects on output

Featureset #1 — .y : : : - :
Using simplelogisticregression  Using multiple logistic regression

Entropy 0° 0.034 0.026

Entropy 45° 0.433 0.031

Entropy 90° 0.363 0.241

Entropy 135° 0.159 0.169

" denotes significant with 5% threshold andenotes highly significant with 1% threshold
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Figure 3. Complete graph on the experiment with direct arttirect effect from retaining
process. (Dotted lines show indirect effects).

| Homogeneity 0° | | Homogeneity 45° |
| Homogeneity 135°
Entropy 0°
I Homogeneity 90° |
Entropy 45° | Skewness intensity |
| Max Co-occurrence 45° | - -
Std intensity
| Max Co-occurrence 135° I Energy 45°

Output Yes or No

| Mean Co-occurrence 0° I | Mean Co-occurrence 90° |

6.2. Verification

The effectiveness of our selected 13-feature set18) is compared to the results of the all-featur
set (all-50) and 26-feature set from SFS (SFS-26)two learning systems: ANN and logistic
regression. True positive (TP), false positive (&) and minimum squared error (MSE) are metrics
in the comparison. Tables 5 and 6 show the refute ANN and logistic regression, respectively.
Both tables show that the effectiveness of ourslBetter than of SFS-26 and it is much closerlto al
50. This shows that our method can detect compathblsame results while the feature computation
is reduced by half compared to SFS and 13/50 caedparusing all features.

Table 5. Performance of logistic regression using all-98S&6 and our-13 feature sets.

L ogistic regression TP (%) FP (%) MSE
Using original 50 features (all-50) 82.94 1451 520

Using selected 26 features (SFS-26) 77.41 18.72 020.1
Using selected 13 features (our-13) 81.64 15.06 84.0

Table 6. Performance of ANN using all-50, SFS-26, and ddifelature sets.

ANN TP (%) FP(%) MSE
Using original 50 features (all-50) 83.32 1442 330
Using selected 26 features (SFS-26) 78.59 16.02 830.0
Using selected 13 features (our-13) 82.35 15.02 69.0

6.3. Analysis of results

Graph-based analysis was examined using statidecainiques to identify the crucial direct or
indirect features for breast cancer detection idioa images. Our algorithm requires time complexit
O(n®). We can accept the hypothesis that there is gmifiance between 50 features and 13 features
for ANN and logistic regression with threshold 5%.comparison of the performance between the
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different configurations of architectures over twet of features (50 and 13 features) with two
classifiers (ANN and logistic regression) indicatiest the selected 13 features provide the besttses
in terms of precision with respect to computatiamet Using our approach, the detection step
improves the temporal ratio of computation by numiifefeatures by 50:13. Moreover, the proposed
method demonstrates satisfactory performance astccompared to SFS.

In our experiment, the 50 features were partitioinéal 12 feature sets with; being the largest set.
With this set, the search space for direct causgufes A;) is (‘C,) while indirect causeR))
exploration wag'Ci) i=2, 3 ... 7. We also found that there were 11 featfnem the texture domain
and two features from the spatial domain that vetirainated from the selection process. The mass
radian was not a significant feature because somss@s on benign images were larger than on
malignant images. Instead of using mass radian réoadcification), the distribution of micro-
calcification is more advantageous.

On the theoretical aspect of finding a best contmnafeature set, the only way to guarantee the
selection of an optimal feature set is an exhaesearch of all possible subsets of features. Herwev
the search space could be very lardefa? a set ofN features. Our algorithm provides a divide and
conquer strategy; withl features (assume that there aigroups withk features each), the number of
possible subsets for examining the feature seledsin“C;; i=1, 2 ... k.

7. Conclusions

In this research, a method to reduce a numberatfifies for medical image detection is proposed.
We use mammograms from the Mammographic Image Aisalgociety (MIAS) as test data and
applied the proposed algorithm to reduce the nurobé&atures from a frequently-used 50 features to
13 features, while the accuracies using two legrmiedels are substantially the same. Our method can
reduce the computation cost of mammogram image/sieand can be applied to other image analysis
applications. The algorithm uses simple statistieahniques (path analysis, simple logistic regoess
multiple logistic regressions, and hypothesis mggtiin collaboration to develop a novel feature
selection technique for medical image analysis. \iddae of this technique is that it not only tackle
the measurement problem by path analysis but algeides a visualization of the relation among
features. In addition to ease of use, this appreéffelctively addresses the feature redundancy enobl
The method proposed has been proven that it iereasd it requires less computing time than using
SFS, SBF and genetic algorithms. For further retear deeper analysis of the texture domain and the
dispersion of microcalcification may provide a mefécient breast CAD system, with cost reduction
and higher precision.

Acknowledgements

This research is partially supported by the Kasetdaiversity Research and Development Institute.
Authors would like to thank Nutakarn Somsanit, Mid,Rajburi Hospital for her advice about the
training data. Lastly, authors also would like twarik Dr. James Brucker of the Department of
Computer Engineering, Kasetsart University fordaexments on writing.



Sensorg008, 8 4772

References:

10.

11.

12.

13.

14.

15.

16.

Hiroyuki, A.; Herber, M.; Juniji, S.; Qing, L.; Rogé.; Kunio, D. Computer — Aided Diagnosis in
Chest Radiography: Results of Large —Scale Obsdrgsts at the 1886-2001 RSNA Scientific
AssembliesRadiographic2003, 23, 255-265.

Cosit, D.; Loncaric, S.L. Ruled Based Labeling of Gead ImageProc. 6th Conference on
Atrtificial Intelligence in Medicine, Europe 199@p. 453-456.

Gliman, D.M.; Sizzanme, L. State of the Art FDG Retaging of Lung CancerSemin.
Roentgenol2005, 40, 143-153.

Dodd, L.E.; Wagner, R.F.; Armato, S.G.; McNitt-Gray.F.; Beiden, S.; Chan, H.P.; Gur, D.;
McLennan, G.; Metz, C.E.; Petrick, N.; Sahiner, Bayre, J. Assessment Methodologies and
Statistical Issues for Computer-Aided DiagnosisLahg Nodules in Computed Tomography.
Acad. Radiol2004, 11, 462-474.

Almato, G.S.; Roy, A.S.; MacMahon, H.; Li, F.; D#,; Sone, S.; Altman, M.B. Evaluation of
Automated Lung Nodule Detection on Low dose Comghufemography Scan From a Lung
Cancer Screening Program. AURcad. Radiol2005, 12, 337-346.

Chiou, G.1.; Hwang, J.-N. A Neural Network Based@iastic Active Nodule (NNS-SNAKE) for
Contour Finding of Distinct Featurdsiage Process. IEEE Trank995, 4, 1407-1416.

Goodman L.A. Exploratory latent structure analysssng both identifiable and unidentifiable
models.Biometrical971, 61, 215-231.

Hagenarrs, J.A. Categorical causal modeling lattags analysis and discrete log-linear models
with latent variablesSociol. Methods Re$998, 26, 436-486.

Lung Cancer Home Pagghttp://www.lungcancer.org/patients/fs_pc_Ic_1@hh accessed
December 25, 2007)

Guler, I.; Ubeyli, E.D. Expert systems for time-yiag biomedical signals using eigen vector
methodsExpert Syst. AppR007, 32, 1045-1058.

Song, J.H.; Venkatesh, S.S.; Conant, E.A.; Argad.;PSehgal, C.M. Comparative Analysis of
Logistic Regression and Artificial Neural NetworkrfComputer-Aided Diagnosis of Breast
MassesAcad. Radiol2005, 12, 487-495.

Shiraishi, J.; Abe, H.; Li, F.; Engelmann, R.; Maaihbn, H.; Doi, K. Computer-aided Diagnosis
for the Detection and Classification of Lung Casoen Chest Radiographs. Science DirAcd.
Radiol.2006, 13, 995-1003.

Fu, J.C.; Lee, S.K.; Wong, S.T.C.; Yeh, J.Y.; WaAd.; Wu, H.K. Image segmentation feature
selection and pattern classification for mammogi@phicrocalcifications Comput. Med. Image
2005, 29, 419-429.

Joreskog, K.G.; Sorbom, RISRL 7 User’'s Reference Gujd&PSS Inc.: Chicago, 1989.

Doi, K.; MacMahon, H.; Katsuragawa, S.; NishikawkaM.; Jiang, Y. Computer-aided diagnosis
in radiology: Potential and pitfalEur. J.Radiol.1999, 31, 97-1009.

Zhao, L.; Boroczky, L.; Lee, K.P. False positiveluetion for lung nodule CAD using support
vector machines and genetic algorith@emput. Assist. Radiol. Surgp05, 1281, 1109-1114.



Sensorg008, 8 4773

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Lehmann, T.M.; Guld, M.O.; Thres, C.; Fischer, 8pitzer, K. Content-Based Access to Medical
Images; available online: http://phobos.imib.rwHelaen.de/irma/ps-pdf/MI12006
Resubmission2.pdf.

Miller, H.; Marquis, S.; Cohen, G.; Poletti, P.Agvis, C.; Geissbuhler, AAutomatic: Abnormal
Region detection in Lung CT images for Visual Re#i University and Hospital of Geneva,
Service of Medical Informatics, Department de Rbjee et Informatique Medicale Home Page.
http://www.simhcuge.ch/medgift (accessed Septerb2007)

Pietikainen, M.; Ojala, T.; Xu, ZRotation Invariant Texture Classification Using Fee
Distributions available online: www.mediateam.oulu.fi/publicats/pdf/7.

Foggia, P.; Guerriero, M.; Percannella, G.; Sans@gTufano, F.; Vento, M. A Graph-Based
Method for Detecting and Classifying Clusters innviaographic Imaged.ect. Notes Comput.
Sci.,Struct. Syntact. Stat. Patt. Rec@§06, 4109,484-493.

Zhang, P.; Verma, B.; Kumar, K. Neural Vs Statati€lassifier in Conjunction with Genetic
Algorithm Feature Selection in Digital Mammographg. Proc. 20041EEE Int. Joint Conf.
Neural Network004, 3 (25-29), 2303 — 2308.

Jiang, W.; Li, M.; Zhang, H.; Gu, J. Online Feati8election Based on Generalized Feature
Contrast Model. INREEE Int. Conf. Multimedia Expo (CME2004.

Widodo, A.; Yang, B.-S. Application of nonlinearateire extraction and support vector Machines
for fault diagnosis of induction motorExpert Syst. AppR007, 33, 241-250.

Songyang, Y.; Ling, G. A CAD System for the AutomatDetection of Clustered
Microcalcifications in Digitized Mammogram FilmkEE T. Med. Imagin@000, 19, 115-126.
Yang, B.S.; Han, T.; Hwang, W. Application of medtass support vector rotating machinety.
Mech. Sci. Tect2005, 19, 845-858.

Chiou, Y.; Lure, Y. Ligomenides. Neural network igesanalysis and Classification in hybrid lung
nodule detection (HLND) system. Froc. IEEE-SP Workshop Neural Networks Signal Pssce
1993 pp. 517-526.

Zhao, W.; Yu, X.; Li, F. Microcalcification PattesnRecognition Based Combination of Auto
association and Classifiekect. Notes Comput. Sci., Comput. Intell. Se2005, 3801, 1045-
1050.

Zheng, B.; Qian, W.; Clarke, L.P. Digital mammodrgp mixed feature neural network with
spectral entropy decision for detection of microdelations. IEEE T. Med. Imagind996, 15,
589-97.

Liang, Z.; Jaszczak, R.J.; Coleman, R.E. ParantetBmation of Finite Mixtures Using the EM
Algorithm and Information Criteria with Applicatiolo Medical Image ProcessingEE T. Nucl.
Sci.1992, 39, 1126 - 1133.

Majcenic, Z.; Loncaric, S.CT Image Labeling Using Simulated Annealing Alduonit
(http://citeseerx.ist.psu.edu; accessed July 127R0

© 2008 by the authors; licensee Molecular Diversttgservation International, Basel, Switzerland.
This article is an open-access article distributedier the terms and conditions of the Creative
Commons Attribution license (http://creativecommong/licenses/by/3.0/).



