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Abstract: Existing studies have shown that satellite syntheiperture radar (SAR)
interferometry has two apparent drawbacks, i.enptgal decorrelation and atmospheric
contamination, in the application of deformation ppiaag. It is however possible to
improve deformation analysis by tracking some rator man-made objects with steady
radar reflectivity, i.e., permanent scatterers (R8)he frame of time series of SAR images
acquired over the same area. For detecting lansidrice in Shanghai, China, this paper
presents an attempt to explore an approach of Rfbwhood networking SAR
interferometry. With use of 26 ERS-1/2 SAR imagegquared 1992 through 2002 over
Shanghai, the analysis of subsiding process in éintespace is performed on the basis of a
strong network which is formed by connecting neminiy PSs according to a distance
threshold. The linear and nonlinear subsidencepspimeric effects as well as topographic
errors can be separated effectively in this waye $hbsidence velocity field in 10 years
over Shanghai is also derived. It was found thatahnual subsidence rates in the study
area range from -2.1 to -0.6 cm/yr, and the averagbsidence rate reaches -1.1 cm/yr.
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1. Introduction

As the largest metropolitan in China, Shanghairsatly close to the sea and Huangpu River. Built
on coastal sand and clay that lie 70 meters bdbewgtound surface, this city has been sufferingnfro
land subsidence for many years due to overuse olingwater and rapid construction of
skyscrapers [1]. The historical record shows thatrhost severe subsidence occurred in the 1960s at
rate of over 10 cm/yr - a rate that would have thetcity below sea level by 1999 if it had not been
slowed down [1-2]. Since then the municipal govegnirhas taken some management actions such as
pumping water back into ground to mitigate theaitan. However, the uneven subsidence at a rate of
1 cml/yr in recent years has still affected or detated facilities such as subway tunnels, building
roads, and water and sewage systems, thus resultimgye economic loss [2].

Monitoring of land subsidence in Shanghai is appifyecrucial for predicting potential geological
hazards and designing compensation strategies. tDggpast decades, the subsidence data has been
collected on a regular basis by the conventiondahous such as precise leveling and GPS [1-2] which
are time consuming, point-based and lack fine etk recent years, we have focused on exploring a
new technique called differential interferometrymthetic aperture radar (DINSAR) to provide another
choice for efficiently detecting subsidence in Sita [3-4]. It is well known that DINSAR is viable
for regional deformation mapping with some prominatvantages such as high sensitivity to motion
and fine spatial resolution. Deformation extractielles on comparison of phase values between SAR
images acquired at different time over the sama Bk However, the full operational capability of
DInSAR in deformation monitoring has not been aghieyet. The major sources of uncertainty in
interferometric deformation measurements are teat@correlation and atmospheric influence [5-7].

To mitigate the aforementioned negative effectsrat et al. developed a very generic technique
referred to as permanent-scatter (PS) technigexttact deformation information from the multiple
interferograms generated with a time series of $ARges [8]. Instead of full-resolution analysisg th
PS technique performs modeling and analyzing otaRf&ts, i.e., hard objects such as buildings,sock
bridges and dykes, which can maintain steady nadictivity even over months to years. On the $asi
of the basic strategy of PS technique proposedebsetiet al. [8-9], this paper aims to improve both
accuracy and reliability for subsidence detectio®hanghai by considering spatial autocorrelatrmh a
parameter adjustment. With the use of multiplerfetegrams, the analysis of subsiding process in
Shanghai is performed on a strong network whicfoismed by connecting neighboring PS points.
Such an approach is thereafter referred to as BR#rieng SAR interferometry. Its algorithm
validation is conducted using 26 C-band SAR imaamguired by the satellites ERS-1 and ERS-2 of
the European Space Agency (ESA) from 1992 to 20@2 Shanghai.

This paper is organized as follows. This part lkWed by a brief description of data preprocessing
and PS-network formation. After this, we presemt thethodologies of data modeling and parameter
estimating. The testing results are then showndsswlissed. Conclusions are given in the final secti
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2. PS detection and PS-network formation

Unlike the conventional DINSAR only dealing wittsimgle interferogram, the PS-networking SAR
interferometry utilizes the multiple interferogram® isolate deformation information from
atmospheric and topographic effects. Figure 1 shithvesmain procedures of PS-networking SAR
interferometry being used for estimating subsidenc&hanghai.

Figure 1. Flowchart of PS-networking SAR interferometry.
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Given N+1 SAR images acquired at different time over thme area, they are first ranked by
imaging date order. One of them is then selecteth@sinique master image, while the remairfihg
SAR images are used as the slave images, and #sidtimg in N interferometric pairs
andN interferograms.
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To guarantee the quality of all the interferograms&e select the optimal master image by
maximizing the joint correlation (JC) of all theagres with [10]

N
P = B BT T ol A ) 1)
k=1
where the functiom is defined as
x|
c(xa)=]" a x=a 2)(
0 X=a

In equation (1),y™ denotes JC value when imagds used as the mastes;s™, T*™ and X" are the
spatial baseline (SB), the temporal baseline (TR) #lne Doppler centroid difference (DCD) between
imagek andm, respectively; index means the coherence. In equation §&Jenotes the critical value
of SB, TB or DCD. We set the maximum SB, TB and D@2l the interferograms as their respective
critical values. Let every image be the master &d JC values can be obtained with a trial
computation by equation (1). The image correspandinthe maximum JC value is chosen as the
optimal master image.

Since the accurate co-registration of SAR image®y key prerequisite for any change detection, all
the SAR images have to be co-registered into theespace with sub-pixel accuracy [H]slave SAR
images are co-registered on sampling grids of éhected master image by maximizing correlation of
amplitude data between SAR acquisitions. As thesegiient PS detection is based on the statistical
calculation of SAR data, we calibrate all the SARp#itude images in a similar way as Lyons &
Sandwell [11]. The unique radiometric calibrati@ctbr of each image is defined and calculated as a
ratio of the amplitude of each image (mean of &dkfs) to the mean amplitude of the entire dataset.
Each SAR amplitude image is divided by this ratiartake the brightness between images consistent
and comparable.

In terms of PS detection, existing study shows thatstatistical properties of phase data at any
time-coherent pixel can be analyzed by the timesef SAR amplitude data [9]. Although our PS
detection basically follows the strategy proposgdrérrettiet al. [9], we identify the PS candidates on
a pixel-by-pixel basis with use of all the co-régried and calibrated SAR amplitude images. First
derived are the overall meah and the standard deviation (SB), of the entire amplitude dataset. At
each pixel the time series of the amplitude valsextracted to calculate the mearand the SDu,.

We label a pixel as a PS candidate if the followting criteria are satisfied simultaneously,

o
=—2<025
° a (3)

a> A+ 20 ,
where D, is called amplitude dispersion index (ADI) [9]. Bye second criteria, the false PSs are more

easily removed as the lower amplitude means lespdeally coherent. We will eventually judge if the
PS candidates are true or false by PS networkingecdbaon phase data as discussed in the
next section.

After selection of all the PSs, we connect the Inleaging PSs to form a network which is similar to
a conventional geodetic network like leveling orSsRetwork. It will be seen that such network can
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provide a framework for modeling and improving paeder estimation and adjustment. Unlike a
triangular irregular network (TIN) as applied byrfpes & Adam [10] and Moret al. [12], we freely
link the neighborhood PSs using a given threshbBuzlidian distance. Any two P$sandp will be
connected only if the following criterion is met,

S(4 . Wi X, ¥p) =4 T2 00X, —%)2 + T2 0y, — )2 < S, @)

where (x, y) are the pixel coordinates within the image spaiceand f, are the scaling factors
(converting pixel dimension into geometric distas)ae range and azimuth direction, respectivéy;
is the distance threshold (e.g. 1 km) used to f@f8-PS connection which is thereafter called an ar

It should be pointed out th&, is generally chosen by mainly considering the apheric gradients
on the space domain. The faster the spatial vaniati atmospheric delay, the shorter the distance
threshold. As an example, Figure 2 shows a netwwkein termed freely-connected network (FCN),
constructed using inequality (4) with several PiBshould be pointed out that such FCN is much
stronger than the TIN in terms of parameter esionads presented in the next section.

Figure 2. An example of PS network.
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3. Spatio-temporal modeling and estimating
3.1. Derivation and modeling of differential interferometric phase

Prior to modeling and estimating on the FCN, sdvepracedures must be followed for data
reduction. These include computation of the initrdérferograms and the differential interferograms
Each initial interferogram can be derived by a pixise conjugate multiplication (equivalent to pbas
differencing) between the master SAR image and dbeegistered slave SAR imaghl initial
interferograms can be obtained in this way. In thea direct phase difference at each pixel is tdue
several contributions, i.e., flat-earth trend, tpm@phy, ground motion, atmospheric delay and
decorrelation noise [5]. To highlight land subsidenboth the precise orbital data and the external
digital elevation model (DEM) can be utilized tomeve the flat-earth trend and the topographic
effects from each initial interferogram, thus réisgl in N differential interferograms. It should be
emphasized here that no spectral or phase filtesipgrformed during differential processing inard
to avoid deteriorating phase data at PS pixels.

Let us assume that the available DEM has errorglathnd subsidence is of linear and nonlinear
accumulation in time. The differential interferomefphase at an arbitrary pixel with coordinatesy)
from theith interferogram can be modeled as,

®,(x, y;T) = ﬁ B£(X,Y) +‘;—” Tv(x y)cosg+g=(x, y:T,) 5)

where B” andT, are spatial and temporal baseline ofititerferometric pair, respectivelyt, R and
@ are radar wavelength (5.66 cm for ERS), sensgetadistance, and radar incident angle,
respectively;s(x,y), v(x,y) and g*(x,y;T,) are elevation error, subsidence velocity, anddesi
phase, respectively. It should be noted trafx, y;T, is & wrapped phase value within the principal
interval of[-7, 7). Moreover, the residual phagf*(x,y;T.) can be viewed as the sum of several
components, including nonlinear subsidencg™® , atmospheric delay ¢™ , and

decorrelation noises™ .
3.2. PS-network modeling and linear subsidence estimation

In reality, any regionalized variable follows a flamental geographic principal; that is the samples
that are spatially closer together tend to be nadikee than those that are farther apart. The idea o
neighborhood differencing is therefore often emptbyo compensate some spatially correlated errors
or offsets. For example, the differential globaspioning system (DGPS) may reduce some systematic
errors caused by atmospheric delay and orbitalrtaingy so that the baseline components (coordinate
increments) between two adjacent stations can Herrdmed more accurately. Likewise, the
differencing operation along each arc in PS netwaskshown in Figure 2 is helpful for improving
deformation analysis. For thth interferogram, the differential interferometpbase increment along
an arc can be derived on the basis of equatiors(s} that
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WhereEiD, R and @ with the obvious symbol meaning are the averageohiities of two PSkandp,
ie., Bi =(B",+B")/2, R=(R,+R)/2, 8=6,+6,. e and Av are the increment of elevation
errors and the increment of linear displacemenboités, respectivelyAg® is the increment of
residual phases, which can be extended as

AG=04Y3 %00 Yo T) =BG (%, %15 %5, V3 T,)
+AGT (XY X Yo T HAG (X, Y15 %,, Y, Th)

where Ag"™", Ag"™ and Ag™® are the increment of nonlinear-subsidence phasemspheric phases,

(7)

and decorrelation noises, respectively.

It should be pointed out that the atmospheric eéfi@cl the nonlinear subsidence can most likely be
cancelled out by neighborhood differencing embodedquation (6)It is now readily understandable
that we use a short distance thresholding whennigniwwo PSs for networking. The modeling along arcs
facilitates the estimation of the two linear incents, i.e..4s and 4v, which are constant over time.

The theoretical investigation by Ferretf al. indicated that ifAg® is small enough, say

‘Aqﬁ“ <, bothA¢ andAv can be indeed derived directly from thevrapped interferograms [8]. In

fact, the solution ode and 4v can be obtained by maximizing the following objeetfunction [8-9]:

N

y= %Z(COSAW*‘ + j BiNA¢®)| = maximum (8)

i=1
where y is called the arc’s model coherence (MG):+/-1; and Ag® denotes the difference
between the measurement and the fitted value, thath

M B e~ 1 avicosd ©)
A[REEING A

Although the objective function is highly nonlineand the phase datasets are measured in a

wrapped version, the two unknowhs and Av of each arc can be determined by searching a pre-
defined solution space (constraint) to maximize M@ value. In the case of perfect phase datagets

reaches the best value of 1, while in the casetaf tlecorrelatiory reaches the worst value of 0. It

Ag® =AD

should be noted that the phase unwrapping candidexd/through the process of function optimization,
which is really a challenging task in data proaegsif the conventional DINSAR.

With equation (8) and (9) we can compute the inenets of elevation errors and linear subsidence
velocities along all the arcs in the network. Byl with simulated data, we have found that thes ar
have an accurate solution fake and Av if y is not smaller than 0.45. The network is
therefore “cleaned up” by deleting some bad arak some isolated (false) PS candidates with such
MC thresholding. The reduced network can then bat&d in a similar way as a leveling or GPS
network [13]. The least squares (LS) adjustmentgulare is applied to eliminate the geometric
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inconsistency in the network due primarily to unaty in phase data, and thus obtaining the most
probable values of the linear subsidence ratesbawation errors at PSs.

Taking the adjustment of a linear-subsidence nétwsran example, we present some mathematical
expressions as follows. A prototype observatioraéiqu for an arc is expressed as

V, -V =Av, +ry,  p#l,0Opl=12..,K (10)
whereV, andV, denote the linear subsidence rate atpgP&ndl, respectively;r, is the correction
(residual) ofAv,, . K is the total number of all the true PSs. SupposehaveQ arcs in the network.

The matrix form of observation equations can héeeritten as
BIX=L+R (12)

QxK KxL Q< QxL

where the coefficient matriB is highly sparse and has the nonzero elementhafrel or -1;L andR
are the vectors for the observations (incrememid)the residuals, respectively, of all the aiss the
vector for the unknown linear subsidence velocitiebe estimated at all the true PSs, i.e.,

X =[0,V, -,V ] (12)
Furthermore, let the weighting matrix be
2 0 0 0]
|0 ¥y 0 0
il E R ®)
O 0 O yé

whose diagonal element is the square of MC valaeipusly estimated for each arc. Therefore, the LS
solution of the unknownX can be expressed as

X =(B"PB)'B"PL (14)

The above procedures can also be applied in asimdy onto the elevation-inconsistency network
to estimate the elevation errors at all the trus. H8e Kriging interpolator can be used to geneagate
data with the results available at sparse PSs [Ad]a remark, we underline that a reference point
without motion or elevation error should be seldcéecording toa priori information to obtain a
unique solution with LS adjustment, and thus malalighe estimates be related to the benchmark.
Moreover, it should be emphasized that the FCN tged is much stronger in terms of reliability than
the TIN. Our simulation study shows that the Lusoh derived with the FCN is more accurate than
that derived with the TIN even though a small mortof measurements\é, Av) are set as outliers
intentionally. This is because the redundancy numibethe FCN is significantly larger than that
in the TIN.

3.3. Extraction of atmospheric effect and nonlinear subsidence

The further analysis focuses on isolating the maar subsidence from the atmospheric delay. For
each interferometric pair, the residual phase merg (gradient) at each arc can be first calculated
equation (9). The integration of gradients (i.&.age unwrapping) of all the arcs in the networthen
performed by a weighted least squares method o] thus obtaining the residual phases at all $e P
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pixels for each pair. As seen in equation (5), tesidual phase is due to nonlinear subsidence,
atmospheric delay and decorrelation noise.

It is possible to separate the nonlinear subsidéooe the undesired atmospheric delay because the
two terms have different spectral structure in spaed time domain [8][12]. In terms of atmospheric
perturbation, a high correlation exists in spaag,asignificantly low correlation presents in tinie
terms of nonlinear subsidence, a strong correlaiasts in space and a high correlation occursme.t
It is however not easy to discriminate the spedbaaids between the nonlinear subsidence and the
atmospheric effect if na priori information is available. This implies that an eixaeparation of the
two terms is a challenging task. We basically folla method by Ferrettt al. to isolate nonlinear
subsidence from atmospheric delay [8].

The atmospheric phagg™ of the master image (common to all the interferbimepairs) can be

estimated by

ar ={%§¢F’} (15)

LP_ Space

which means a low-pass (LP) filtering applied otite mean of the sequence of residual phases. The
atmospheric phas@"i‘i of theith slave image can then be derived by

¢§tTi = {{(d eS}HP_ﬁme}Lp_Space (16)

which means that a high-pass (HP) filtering istfagplied onto the time series of residual phasesaa
LP filtering in space is then applied. The atmosjchehaseg™" of theith differential interferogram is

thus obtained as the sum @fi" and ¢&™ . The nonlinear subsidenc®"*” contained in theth
interferometric pair is finally calculated by

nisub _ A es _ Atm
s =g -a) an

It should be noted that the decorrelation noiselmneduced by the operation of low-pass filtelimg
space as shown in equation (15) and (16).

4. Dataset and subsidence result in Shanghai

To detect subsidence evolution in Shanghai metiamo{China) by the procedures presented above,
we utilize 26 single look complex (SLC) SAR imagdsich are available at hand. They were acquired
from 1992 to 2002 by two C-band (wavelengthl 5.6cm) radar sensors onboard the satellites ERS-1
and ERS-2, respectively (both operated by Eurof@mace Agency). All the images were collected by
a nominal radar look angle of about 23° along #scdnding orbits. With a pixel size of 7.9 m imsla
range by 4.0 m in azimuth, each image covers theesarea of about 16000 knf whose central
location is 121°2&, 31°10N. To optimize the interferometric combination, determined the unique
master image by maximizing radar coherence of tiieeedataset by equation (1). Eventually the SAR
image taken by ERS-2 on May 5, 1998 is chosen asofitimal master image. The remaining 25
images are used as the slave images, thus forrbimg&ferometric pairs. Table 1 lists the paramsete
of all the images, including spatial and temporakdline with respect to the master image. For
detection of PSs, all the 26 amplitude images walibrated by the procedures as briefed in se@ion
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To generate interferograms, all the slave image® we-registered onto the sampling grids of the
master image.

Table 1. The parameters of 26 ERS-1/2 SAR images usdusrstudy.

Platform Imaging B" T Platform Imaging o T
No. -orbit Date (m) (day) No. -orbit Date B (m) (day)
1 E1-04657 1992.06.06 504 -2159| 14  E2-14887 1998.02.24 -1239  -70
2 E1-06160 1992.09.19 146 -2054| 15 E2-15388 1998.03.31 -487 -35
3 E1-09166 1993.04.17 -36 -1844| 16 E2-15889 1998.05.05 O 0
4 E1-10669 1993.07.31 274 -1739| 17 E2-20899 1999.04.20 247 350
5 E1-12172 1993.11.13 -639 -1634| 18 E2-23905 1999.11.16 -348 560
6 E1-19530 1995.04.10 -207 -1121| 19 E2-24406 1999.12.21 -141 595
7 E1-22035 1995.10.02 178 -946 | 20 E2-26410 2000.05.09 303 735
8 E1-24039 1996.02.19 505 -806 | 21 E2-26911 2000.06.13 -158 770
9 E1-24540 1996.03.25 -1144 -771 | 22 E2-28414 2000.09.26 290 875
10 E2-04867 1996.03.26 -1000 -770 | 23  E2-34426 2001.11.20 -198 1295
11  E1-25542 1996.06.03 -1253 -701 | 24 E2-37432 2002.06.18 1048 1505
12 E2-05869 1996.06.04 -1104 -700 | 25 E2-37933 2002.07.23 144 1540
13 E2-13384 1997.11.11 -762 -175 | 26 E2-38434 2002.08.27 -1021 1575

Note: the B™ andT are the normal baseline and the temporal basetspectively.

Existing studies indicate that the most seriousisldnce in Shanghai has been taking place around
the downtown area, and reached a remarkable v&lRe&6® m accumulated from 1921 to 1965 [1-2].
The further data reduction is therefore focusethenrmain downtown area of 7 km by 12 km. Figure 3
displays the study area of interest (AOI) markedlox onto the master amplitude image, where the
inset shows the enlarged multi-image reflectivigmuerived by averaging all the image patchesef th
AOI. Its radiometric quality has been dramaticathproved due to the reduction of speckle noises by
averaging. It is clearly visible that Huangpu Riweriggles over the study area. The 25 differential
interferograms were generated by the “two-pass’howt[4-5]. To remove both flat-earth and
topographic phases, we use the precise orbit gt&ters (about 4-cm accuracy in the radial diregtio
provided by Delft Institute for Earth-Oriented SpdResearch in Netherlands [8-10] and a DEM (about
5-m accuracy) which were generated using 1:500@ftatlimaps provided by State Bureau of
Surveying and Mapping, the national mapping agefdcyhina.

The PS candidates were detected on a pixel-by-fasis by the statistical computation of time
series of amplitude values at each pixel. The pxdketermined as a PS candidate based on thaarite
of inequality (3). Figure 4 shows the distributiohall the 1520 PSs obtained in this way, which are
superimposed onto an optical orthoimage creatdu d@ta from IKONOS sensor. In Figure 4, five PSs
marked by pentagram and PS1, PS2, ..., PS5, resplgcinill be used for later analysis of time series
of subsidence (see Figure 7). It can be notedthigahigh density of PSs (about 35Amappears in the
area with dense buildings, while the PSs are raresame farmlands due to serious temporal
decorrelation. We formed a very strong networkeglfy connecting each PS and all the others if thei
distance is less than 1 km, as defined in inequ@it, resulting in 4202 arcs.
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Figure 3. The study area marked by a box onto the mastplitaiche image.

The increments of both linear subsidence velocuiss elevation errors between two adjacent PSs
of each arc were then estimated by maximizing M@ wguation (8). As discussed early, we used a
MC threshold of 0.45 to reject low-quality arcs abdd” PS candidates. 1502 PSs and 4092 arcs thus
remained as the valid input of the subsequent ltfvark adjustment in which PS1 was selected as a
reference point for LS solution [3-4]. The lineabsidence rates and elevation errors at 1502 t8se P
were derived. Figure 5 shows the classed map eétisubsidence rates (in cm/yr) at all the true PSs
The subsidence rates from 1992 to 2002 in the séwdg range from -2.1 to -0.6 cm/yr, and the
averaged subsidence rate reaches -1.1 cm/yr.
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Figure 4. All the detected PSs superimposed onto an ogirthbimage.

o
8
()]
°
2
®
-
121.46 121.48 121.5 121.52 121.54 121.56 121.58
Longitude (Deg
Figure5. The classed map of linear subsidence rates titeaPSs.
o}
g
()
°
2
®
— 31.24 Unit: cm/iyi |
%+ -0.6~-0.9
# 4 -0.9~-1.2
: ¢ -1.2~-15
312 Y - -15-18
' = | = -1.8-2.1

121.46 121.48 1215 121.52 121.54 121.56 I121.58
Longitude (Deg

It should be pointed out that the FCN used in qapreach is more advantageous than TIN used
elsewhere in terms of accuracy and reliability éstimating subsidence rates and elevation errors at
PSs, although the former incurs much heavier coatjout burden than the latter. The reliability with
FCN is significantly enhanced because it has muckernonnections (arcs) between adjacent PSs than
TIN. In other words, the total number of redundabservations in FCN is much larger than that in
TIN. Hence the LS estimator for FCN is less distartby outliers. Our testing results derived with
simulated data indicated that the FCN-based L#&asiton can efficiently resist against a small fmorti
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of outliers in measurementda£, Av). In addition, the FCN tends to remain more P$iggaihan TIN
when deleting some “bad” arcs by MC thresholdinge Weaker links in TIN may cause more isolated
PSs which can not be connected with other PSs,santke true PSs are erroneously rejected. The
stronger links in FCN are therefore useful for ramng the finer details of deformation field.

Figure 6. The atmospheric phases in the partial AOI formttaesster image.
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The atmospheric delay and nonlinear subsidendeeirstudy area were finally separated by a time-
space filtering method as discussed in sectionF&i8r to such separation, the residual phaseach e
differential interferogram were extracted by detlieqg both linear subsidence and topographic effect.
The atmospheric phases of the master image (byZ&SMay 5, 1998) were derived by a LP space
filtering applied onto the mean of 25 residual-ghasages (see equation (15)), while the atmospheric
phases of any slave image were estimated by timeespltering according to equation (16). As an
example, Figure 6 shows the atmospheric phasdwipdrtial AOI for the master image, which vary
from -1.2 to 0.4 radians, i.e., range change db-8 mm in radar line of sight. As a remark, wessr
that exactly separating nonlinear subsidence framospheric artifacts is indeed a challenging task.
The further improvement on this point is still regd, particularly by integrating priori information

on atmosphere and subsidence available from sofmer ehonitoring approaches such as GPS
permanent tracking network.
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Figure 7. Time series of subsidence at 5 PSs as markeidume4.
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Figure 8. Perspective view of the subsidence field accutadldetween June 1992 and
August 2002.
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After deriving atmospheric phases, equation (173 wsed to calculate nonlinear subsidence. The
time series of subsidence was eventually obtaiseslsum of linear and nonlinear parts. As examples,
Figure 7 shows the so-obtained temporal evolutiosubsidence at 5 PSs (see Figure 4) in the central
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part of the study area, where about 15-cm landirsinlvas accumulated from 1992 to 2002. It is
obvious that the linear subsidence trend domintitesnonlinear component with a peak-to-trough
variation of about 4 cm in this study area. Fousl&ation, a perspective view of the entire subsa
field is shown in Figure 8, where the remarkabihisig parts can be better appreciated. Maximum and
minimum subsidence values are -18 and -9 cm, résphc

In recent years, both precise leveling and GPSesuinave been carried out to monitor subsidence
in Shanghai by some authorities [1-2]. Both thetfiand second-order leveling are carried out once
per year for benchmarks in the downtown area. Timua subsidence rates (see Figure 5) and the
accumulated quantity (see Figure 8) estimated WEanetworking SAR interferometry are in good
agreement with the leveling subsidence resultsrtegan some open literature [1-2]. This indicates
that our approach presented in this study is effedbr detecting land subsidence in Shanghai. The
current land sinking is highly related to the lasgale urban construction and the overuse of
groundwater. Especially from 1992 to 1995, the skgygers’ constructions are most remarkable [1]. It
should be noted that the estimated vertical digphent may also contain the settlement of skyscsaper
and not purely the natural subsidence of the lamfhse. The annual subsidence rate is however much
smaller than that occurring in the 1980’s. Thigpisnarily attributed to some mitigation strategies
proposed by city managers and planners, which dgecheducing groundwater withdrawal, increasing
river water use, pumping water back into depleteglifars, and utilizing light materials for
construction.

5. Conclusions

To mitigate the negative impacts of both tempoeadadrelation and atmospheric delay on mapping
deformation with conventional DINSAR, this papes lmesented an approach called PS-networking
SAR interferometry for detection of land subsidemc&hanghai, China. With use of 26 ERS-1/2 SAR
images acquired 1992 through 2002 over Shangletijrte series of land subsidence is analyzed with
a very strong network which is formed by freely meating neighboring PSs according to a given
distance threshold. The mathematical models anguating methods are addressed systematically by
considering spatial autocorrelation and LS parameg@mation. The linear and nonlinear subsidence,
atmospheric effect as well as topographic erroreveaparated effectively in this way. The subsidence
velocity field in 10 years over Shanghai was alsowed. It was found that the annual subsidenasrat
in the study area range from -2.1 to -0.6 cm/yd Hre averaged subsidence rate reaches -1.1 cm/yr.
The maximum subsidence accumulated in 10 yearpisou-18 cm. These are generally in good
agreement with the leveling subsidence results rtegoelsewhere. In addition, the testing results
indicated that the FCN proposed in this study isaeredvantageous than the TIN used elsewhere in
terms of reliability for estimating subsidence satnd elevation errors at PSs, although the former
incurs much heavier computation burden than therlat

With further improvement, it is anticipated that-R&working SAR interferometry would become
an operational tool to monitor the slowly-accumedthtirban subsidence, and thus complementing the
conventional geodetic tools such as GPS and laydinChina, there are a number of cities which are
suffering from land subsidence. Besides Shanghaipther typical sinking cities include Tianjin and
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Taiyuan. The reliable and prompt measurementsctéaflg land subsidence evolution are valuable for
assessing and mitigating some geological hazataledeto land sinking.
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