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Abstract: Existing studies have shown that satellite synthetic aperture radar (SAR) 

interferometry has two apparent drawbacks, i.e., temporal decorrelation and atmospheric 

contamination, in the application of deformation mapping. It is however possible to 

improve deformation analysis by tracking some natural or man-made objects with steady 

radar reflectivity, i.e., permanent scatterers (PS), in the frame of time series of SAR images 

acquired over the same area. For detecting land subsidence in Shanghai, China, this paper 

presents an attempt to explore an approach of PS-neighborhood networking SAR 

interferometry. With use of 26 ERS-1/2 SAR images acquired 1992 through 2002 over 

Shanghai, the analysis of subsiding process in time and space is performed on the basis of a 

strong network which is formed by connecting neighboring PSs according to a distance 

threshold. The linear and nonlinear subsidence, atmospheric effects as well as topographic 

errors can be separated effectively in this way. The subsidence velocity field in 10 years 

over Shanghai is also derived. It was found that the annual subsidence rates in the study 

area range from -2.1 to -0.6 cm/yr, and the averaged subsidence rate reaches -1.1 cm/yr. 
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1. Introduction 

As the largest metropolitan in China, Shanghai is directly close to the sea and Huangpu River. Built 

on coastal sand and clay that lie 70 meters below the ground surface, this city has been suffering from 

land subsidence for many years due to overuse of groundwater and rapid construction of  

skyscrapers [1]. The historical record shows that the most severe subsidence occurred in the 1960s at a 

rate of over 10 cm/yr - a rate that would have put the city below sea level by 1999 if it had not been 

slowed down [1-2]. Since then the municipal government has taken some management actions such as 

pumping water back into ground to mitigate the situation. However, the uneven subsidence at a rate of 

1 cm/yr in recent years has still affected or deteriorated facilities such as subway tunnels, buildings, 

roads, and water and sewage systems, thus resulting in huge economic loss [2]. 

Monitoring of land subsidence in Shanghai is apparently crucial for predicting potential geological 

hazards and designing compensation strategies. Over the past decades, the subsidence data has been 

collected on a regular basis by the conventional methods such as precise leveling and GPS [1-2] which 

are time consuming, point-based and lack fine details. In recent years, we have focused on exploring a 

new technique called differential interferometric synthetic aperture radar (DInSAR) to provide another 

choice for efficiently detecting subsidence in Shanghai [3-4]. It is well known that DInSAR is viable 

for regional deformation mapping with some prominent advantages such as high sensitivity to motion 

and fine spatial resolution. Deformation extraction relies on comparison of phase values between SAR 

images acquired at different time over the same area [5]. However, the full operational capability of 

DInSAR in deformation monitoring has not been achieved yet. The major sources of uncertainty in 

interferometric deformation measurements are temporal decorrelation and atmospheric influence [5-7]. 

To mitigate the aforementioned negative effects, Ferretti et al. developed a very generic technique 

referred to as permanent-scatter (PS) technique to extract deformation information from the multiple 

interferograms generated with a time series of SAR images [8]. Instead of full-resolution analysis, the 

PS technique performs modeling and analyzing on PS targets, i.e., hard objects such as buildings, rocks, 

bridges and dykes, which can maintain steady radar reflectivity even over months to years. On the basis 

of the basic strategy of PS technique proposed by Ferretti et al. [8-9], this paper aims to improve both 

accuracy and reliability for subsidence detection in Shanghai by considering spatial autocorrelation and 

parameter adjustment. With the use of multiple interferograms, the analysis of subsiding process in 

Shanghai is performed on a strong network which is formed by connecting neighboring PS points. 

Such an approach is thereafter referred to as PS-networking SAR interferometry. Its algorithm 

validation is conducted using 26 C-band SAR images acquired by the satellites ERS-1 and ERS-2 of 

the European Space Agency (ESA) from 1992 to 2002 over Shanghai.  

This paper is organized as follows. This part is followed by a brief description of data preprocessing 

and PS-network formation. After this, we present the methodologies of data modeling and parameter 

estimating. The testing results are then shown and discussed. Conclusions are given in the final section. 
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2. PS detection and PS-network formation 

Unlike the conventional DInSAR only dealing with a single interferogram, the PS-networking SAR 

interferometry utilizes the multiple interferograms to isolate deformation information from 

atmospheric and topographic effects. Figure 1 shows the main procedures of PS-networking SAR 

interferometry being used for estimating subsidence in Shanghai. 

Figure 1. Flowchart of PS-networking SAR interferometry. 

 
 

Given N+1 SAR images acquired at different time over the same area, they are first ranked by 

imaging date order. One of them is then selected as the unique master image, while the remaining N 
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To guarantee the quality of all the interferograms, we select the optimal master image by 

maximizing the joint correlation (JC) of all the images with [10] 
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In equation (1), mγ  denotes JC value when image m is used as the master; mkB ,
⊥ , mkT ,  and k,m

DCf  are the 

spatial baseline (SB), the temporal baseline (TB) and the Doppler centroid difference (DCD) between 

image k and m, respectively; index c means the coherence. In equation (2), a denotes the critical value 

of SB, TB or DCD. We set the maximum SB, TB and DCD of all the interferograms as their respective 

critical values. Let every image be the master and N+1 JC values can be obtained with a trial 

computation by equation (1). The image corresponding to the maximum JC value is chosen as the 

optimal master image.  

Since the accurate co-registration of SAR imagery is a key prerequisite for any change detection, all 

the SAR images have to be co-registered into the same space with sub-pixel accuracy [5]. N slave SAR 

images are co-registered on sampling grids of the selected master image by maximizing correlation of 

amplitude data between SAR acquisitions. As the subsequent PS detection is based on the statistical 

calculation of SAR data, we calibrate all the SAR amplitude images in a similar way as Lyons & 

Sandwell [11]. The unique radiometric calibration factor of each image is defined and calculated as a 

ratio of the amplitude of each image (mean of all pixels) to the mean amplitude of the entire dataset. 

Each SAR amplitude image is divided by this ratio to make the brightness between images consistent 

and comparable. 

In terms of PS detection, existing study shows that the statistical properties of phase data at any 

time-coherent pixel can be analyzed by the time series of SAR amplitude data [9]. Although our PS 

detection basically follows the strategy proposed by Ferretti et al. [9], we identify the PS candidates on 

a pixel-by-pixel basis with use of all the co-registered and calibrated SAR amplitude images. First 

derived are the overall mean A  and the standard deviation (SD) Aσ  of the entire amplitude dataset. At 

each pixel the time series of the amplitude values is extracted to calculate the mean a  and the SD aσ . 

We label a pixel as a PS candidate if the following two criteria are satisfied simultaneously,  
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where aD  is called amplitude dispersion index (ADI) [9]. By the second criteria, the false PSs are more 

easily removed as the lower amplitude means less temporally coherent. We will eventually judge if the 

PS candidates are true or false by PS networking based on phase data as discussed in the  

next section.  

After selection of all the PSs, we connect the neighboring PSs to form a network which is similar to 

a conventional geodetic network like leveling or GPS network. It will be seen that such network can 
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provide a framework for modeling and improving parameter estimation and adjustment. Unlike a 

triangular irregular network (TIN) as applied by Kampes & Adam [10] and Mora et al. [12], we freely 

link the neighborhood PSs using a given threshold of Euclidian distance. Any two PSs l and p will be 

connected only if the following criterion is met, 

0
2222 )()(), ;,( SyyfxxfyxyxS lpalprppll ≤−⋅+−⋅=                                  (4) 

where (x , y ) are the pixel coordinates within the image space; rf  and af  are the scaling factors 

(converting pixel dimension into geometric distances) in range and azimuth direction, respectively; 0S  

is the distance threshold (e.g. 1 km) used to form a PS-PS connection which is thereafter called an arc. 

It should be pointed out that 0S  is generally chosen by mainly considering the atmospheric gradients 

on the space domain. The faster the spatial variation of atmospheric delay, the shorter the distance 

threshold. As an example, Figure 2 shows a network, herein termed freely-connected network (FCN), 

constructed using inequality (4) with several PSs. It should be pointed out that such FCN is much 

stronger than the TIN in terms of parameter estimation as presented in the next section. 

Figure 2. An example of PS network. 
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3. Spatio-temporal modeling and estimating 

3.1. Derivation and modeling of differential interferometric phase 

Prior to modeling and estimating on the FCN, several procedures must be followed for data 

reduction. These include computation of the initial interferograms and the differential interferograms. 

Each initial interferogram can be derived by a pixel-wise conjugate multiplication (equivalent to phase 

differencing) between the master SAR image and the co-registered slave SAR image. N initial 

interferograms can be obtained in this way. In theory, a direct phase difference at each pixel is due to 

several contributions, i.e., flat-earth trend, topography, ground motion, atmospheric delay and 

decorrelation noise [5]. To highlight land subsidence, both the precise orbital data and the external 

digital elevation model (DEM) can be utilized to remove the flat-earth trend and the topographic 

effects from each initial interferogram, thus resulting in N differential interferograms. It should be 

emphasized here that no spectral or phase filtering is performed during differential processing in order 

to avoid deteriorating phase data at PS pixels.  

Let us assume that the available DEM has errors and the land subsidence is of linear and nonlinear 

accumulation in time. The differential interferometric phase at an arbitrary pixel with coordinates (x, y) 

from the ith interferogram can be modeled as,     
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where ⊥
iB  and iT  are spatial and temporal baseline of the interferometric pair, respectively; λ , R  and 

θ  are radar wavelength (5.66 cm for ERS), sensor-target distance, and radar incident angle, 

respectively; ),( yxε , ),( yxv  and );,( i
res
i Tyxφ  are elevation error, subsidence velocity, and residual 

phase, respectively. It should be noted that );,( ii TyxΦ  is a wrapped phase value within the principal 

interval of ) ,[ ππ− . Moreover, the residual phase );,( i
res
i Tyxφ  can be viewed as the sum of several 

components, including nonlinear subsidence nlsub
iφ , atmospheric delay atm

iφ , and  

decorrelation noise noi
iφ . 

3.2. PS-network modeling and linear subsidence estimation 

In reality, any regionalized variable follows a fundamental geographic principal; that is the samples 

that are spatially closer together tend to be more alike than those that are farther apart. The idea of 

neighborhood differencing is therefore often employed to compensate some spatially correlated errors 

or offsets. For example, the differential global positioning system (DGPS) may reduce some systematic 

errors caused by atmospheric delay and orbital uncertainty so that the baseline components (coordinate 

increments) between two adjacent stations can be determined more accurately. Likewise, the 

differencing operation along each arc in PS network as shown in Figure 2 is helpful for improving 

deformation analysis. For the ith interferogram, the differential interferometric phase increment along 

an arc can be derived on the basis of equation (5), such that 
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where 
⊥
iB , R  and θ  with the obvious symbol meaning are the averaged quantities of two PSs l and p, 
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errors and the increment of linear displacement velocities, respectively. res
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where nlsub
iφ∆ , atm

iφ∆  and noi
iφ∆  are the increment of nonlinear-subsidence phases, atmospheric phases, 

and decorrelation noises, respectively.  

It should be pointed out that the atmospheric effect and the nonlinear subsidence can most likely be 

cancelled out by neighborhood differencing embodied in equation (6). It is now readily understandable 

that we use a short distance thresholding when linking two PSs for networking. The modeling along arcs 

facilitates the estimation of the two linear increments, i.e., ε∆  and v∆ , which are constant over time. 
The theoretical investigation by Ferretti et al. indicated that if res

iφ∆  is small enough, say 

πφ <∆ res
i , both ε∆  and v∆  can be indeed derived directly from the N wrapped interferograms [8]. In 

fact, the solution of ε∆  and v∆  can be obtained by maximizing the following objective function [8-9]: 
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where γ  is called the arc’s model coherence (MC); 1−=j ; and res
iφ∆  denotes the difference 

between the measurement and the fitted value, such that  
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Although the objective function is highly nonlinear and the phase datasets are measured in a 

wrapped version, the two unknownsε∆  and v∆  of each arc can be determined by searching a pre-
defined solution space (constraint) to maximize the MC value. In the case of perfect phase datasets γ  

reaches the best value of 1, while in the case of total decorrelation γ  reaches the worst value of 0. It 

should be noted that the phase unwrapping can be avoided through the process of function optimization, 

which is really a challenging task in data processing of the conventional DInSAR. 

With equation (8) and (9) we can compute the increments of elevation errors and linear subsidence 

velocities along all the arcs in the network. By trials with simulated data, we have found that the arcs 
have an accurate solution for ε∆  and v∆  if γ  is not smaller than 0.45. The network is  

therefore “cleaned up” by deleting some bad arcs and some isolated (false) PS candidates with such 

MC thresholding. The reduced network can then be treated in a similar way as a leveling or GPS 

network [13]. The least squares (LS) adjustment procedure is applied to eliminate the geometric 
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inconsistency in the network due primarily to uncertainty in phase data, and thus obtaining the most 

probable values of the linear subsidence rates and elevation errors at PSs.  

Taking the adjustment of a linear-subsidence network as an example, we present some mathematical 

expressions as follows. A prototype observation equation for an arc is expressed as 

     Klplprvvv plpllp  , ,2 ,1, ,      ,ˆˆ K=∀≠+∆=−                                       (10) 

where lv̂  and pv̂  denote the linear subsidence rate at PS p and l, respectively; plr  is the correction 

(residual) of plv∆ . K is the total number of all the true PSs. Suppose we have Q arcs in the network. 

The matrix form of observation equations can hence be written as  

     
111 ××××

+=⋅
QQKKQ
RLXB                                                                   (11) 

where the coefficient matrix B is highly sparse and has the nonzero elements of either 1 or -1; L and R 

are the vectors for the observations (increments) and the residuals, respectively, of all the arcs; X is the 

vector for the unknown linear subsidence velocities to be estimated at all the true PSs, i.e.,  

]ˆ ,, ˆ ,ˆ[ 21 KvvvX L=                                                                (12) 

Furthermore, let the weighting matrix be 
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whose diagonal element is the square of MC value previously estimated for each arc. Therefore, the LS 

solution of the unknowns X can be expressed as 

PLBPBBX TT 1)( −=                                                                 (14) 

The above procedures can also be applied in a similar way onto the elevation-inconsistency network 

to estimate the elevation errors at all the true PSs. The Kriging interpolator can be used to generate grid 

data with the results available at sparse PSs [14]. As a remark, we underline that a reference point 

without motion or elevation error should be selected according to a priori information to obtain a 

unique solution with LS adjustment, and thus making all the estimates be related to the benchmark. 

Moreover, it should be emphasized that the FCN used here is much stronger in terms of reliability than 

the TIN. Our simulation study shows that the LS solution derived with the FCN is more accurate than 

that derived with the TIN even though a small portion of measurements (ε∆ , v∆ ) are set as outliers 

intentionally. This is because the redundancy number in the FCN is significantly larger than that  

in the TIN. 

3.3. Extraction of atmospheric effect and nonlinear subsidence 

The further analysis focuses on isolating the nonlinear subsidence from the atmospheric delay. For 

each interferometric pair, the residual phase increment (gradient) at each arc can be first calculated by 

equation (9). The integration of gradients (i.e., phase unwrapping) of all the arcs in the network is then 

performed by a weighted least squares method [15], and thus obtaining the residual phases at all the PS 
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pixels for each pair. As seen in equation (5), the residual phase is due to nonlinear subsidence, 

atmospheric delay and decorrelation noise.  

It is possible to separate the nonlinear subsidence from the undesired atmospheric delay because the 

two terms have different spectral structure in space and time domain [8][12]. In terms of atmospheric 

perturbation, a high correlation exists in space, but a significantly low correlation presents in time. In 

terms of nonlinear subsidence, a strong correlation exists in space and a high correlation occurs in time. 

It is however not easy to discriminate the spectral bands between the nonlinear subsidence and the 

atmospheric effect if no a priori information is available. This implies that an exact separation of the 

two terms is a challenging task. We basically follow a method by Ferretti et al. to isolate nonlinear 

subsidence from atmospheric delay [8]. 
The atmospheric phase atm

MIφ  of the master image (common to all the interferometric pairs) can be 

estimated by  

SpaceLP

N

i
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i
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which means a low-pass (LP) filtering applied onto the mean of the sequence of residual phases. The 
atmospheric phase atm

iSI _φ  of the ith slave image can then be derived by 

{ }{ }
SpaceLPTimeHP

resatm
iSI ___ φφ =                                                       (16) 

which means that a high-pass (HP) filtering is first applied onto the time series of residual phases and a 
LP filtering in space is then applied. The atmospheric phase atm

iφ of the ith differential interferogram is 

thus obtained as the sum of atm
MIφ  and atm

iSI _φ . The nonlinear subsidence nlsub
iS  contained in the ith 

interferometric pair is finally calculated by 

( )atm
i

res
i

nlsub
iS φφ

θπ
λ −=
cos4

                                                         (17) 

It should be noted that the decorrelation noise can be reduced by the operation of low-pass filtering in 

space as shown in equation (15) and (16). 

4. Dataset and subsidence result in Shanghai 

To detect subsidence evolution in Shanghai metropolitan (China) by the procedures presented above, 

we utilize 26 single look complex (SLC) SAR images which are available at hand. They were acquired 

from 1992 to 2002 by two C-band (wavelength 6.5=λ cm) radar sensors onboard the satellites ERS-1 

and ERS-2, respectively (both operated by European Space Agency). All the images were collected by 

a nominal radar look angle of about 23º along the descending orbits. With a pixel size of 7.9 m in slant 

range by 4.0 m in azimuth, each image covers the same area of about 100×100 km2 whose central 

location is 121º28′E, 31º10′N. To optimize the interferometric combination, we determined the unique 

master image by maximizing radar coherence of the entire dataset by equation (1). Eventually the SAR 

image taken by ERS-2 on May 5, 1998 is chosen as the optimal master image. The remaining 25 

images are used as the slave images, thus forming 25 interferometric pairs. Table 1 lists the parameters 

of all the images, including spatial and temporal baseline with respect to the master image. For 

detection of PSs, all the 26 amplitude images were calibrated by the procedures as briefed in section 2. 
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To generate interferograms, all the slave images were co-registered onto the sampling grids of the 

master image.  

Table 1. The parameters of 26 ERS-1/2 SAR images used in this study. 

   Note: the ⊥B  and T are the normal baseline and the temporal baseline, respectively.  

 

Existing studies indicate that the most serious subsidence in Shanghai has been taking place around 

the downtown area, and reached a remarkable value of 2.63 m accumulated from 1921 to 1965 [1-2]. 

The further data reduction is therefore focused on the main downtown area of 7 km by 12 km. Figure 3 

displays the study area of interest (AOI) marked by a box onto the master amplitude image, where the 

inset shows the enlarged multi-image reflectivity map derived by averaging all the image patches of the 

AOI. Its radiometric quality has been dramatically improved due to the reduction of speckle noises by 

averaging. It is clearly visible that Huangpu River wriggles over the study area. The 25 differential 

interferograms were generated by the “two-pass” method [4-5]. To remove both flat-earth and 

topographic phases, we use the precise orbit state vectors (about 4-cm accuracy in the radial direction) 

provided by Delft Institute for Earth-Oriented Space Research in Netherlands [8-10] and a DEM (about 

5-m accuracy) which were generated using 1:50000 digital maps provided by State Bureau of 

Surveying and Mapping, the national mapping agency of China. 

The PS candidates were detected on a pixel-by-pixel basis by the statistical computation of time 

series of amplitude values at each pixel. The pixel is determined as a PS candidate based on the criteria 

of inequality (3). Figure 4 shows the distribution of all the 1520 PSs obtained in this way, which are 

superimposed onto an optical orthoimage created with data from IKONOS sensor. In Figure 4, five PSs 

marked by pentagram and PS1, PS2, …, PS5, respectively, will be used for later analysis of time series 

of subsidence (see Figure 7). It can be noted that the high density of PSs (about 35/km2) appears in the 

area with dense buildings, while the PSs are rare in some farmlands due to serious temporal 

decorrelation. We formed a very strong network by freely connecting each PS and all the others if their 

distance is less than 1 km, as defined in inequality (4), resulting in 4202 arcs. 

 

 

No. 
Platform 

-orbit 
Imaging 

Date 

⊥B  
(m) 

T 
(day) 

No. 
Platform 

-orbit 
Imaging 

Date 
⊥B (m)  

T 
(day) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

E1-04657 
E1-06160 
E1-09166 
E1-10669 
E1-12172 
E1-19530 
E1-22035 
E1-24039 
E1-24540 
E2-04867 
E1-25542 
E2-05869 
E2-13384 

1992.06.06 
1992.09.19 
1993.04.17 
1993.07.31 
1993.11.13 
1995.04.10 
1995.10.02 
1996.02.19 
1996.03.25 
1996.03.26 
1996.06.03 
1996.06.04 
1997.11.11 

504 
146 
-36 
274 
-639 
-207 
178 
505 

-1144 
-1000 
-1253 
-1104 
-762 

-2159 
-2054 
-1844 
-1739 
-1634 
-1121 
-946 
-806 
-771 
-770 
-701 
-700 
-175 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

E2-14887 
E2-15388 
E2-15889 
E2-20899 
E2-23905 
E2-24406 
E2-26410 
E2-26911 
E2-28414 
E2-34426 
E2-37432 
E2-37933 
E2-38434 

1998.02.24 
1998.03.31 
1998.05.05 
1999.04.20 
1999.11.16 
1999.12.21 
2000.05.09 
2000.06.13 
2000.09.26 
2001.11.20 
2002.06.18 
2002.07.23 
2002.08.27 

-1239 
-487 

0 
247 
-348 
-141 
303 
-158 
290 
-198 
1048 
144 

-1021 

-70 
-35 
0 

350 
560 
595 
735 
770 
875 
1295 
1505 
1540 
1575 



Sensors 2008, 8                            

 

 

4735

Figure 3. The study area marked by a box onto the master amplitude image.   
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The increments of both linear subsidence velocities and elevation errors between two adjacent PSs 

of each arc were then estimated by maximizing MC with equation (8). As discussed early, we used a 

MC threshold of 0.45 to reject low-quality arcs and “bad” PS candidates. 1502 PSs and 4092 arcs thus 

remained as the valid input of the subsequent LS network adjustment in which PS1 was selected as a 

reference point for LS solution [3-4]. The linear subsidence rates and elevation errors at 1502 true PSs 

were derived. Figure 5 shows the classed map of linear subsidence rates (in cm/yr) at all the true PSs. 

The subsidence rates from 1992 to 2002 in the study area range from -2.1 to -0.6 cm/yr, and the 

averaged subsidence rate reaches -1.1 cm/yr.  
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         Figure 4. All the detected PSs superimposed onto an optical orthoimage. 
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          Figure 5. The classed map of linear subsidence rates at all the PSs. 
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It should be pointed out that the FCN used in our approach is more advantageous than TIN used 

elsewhere in terms of accuracy and reliability for estimating subsidence rates and elevation errors at 

PSs, although the former incurs much heavier computation burden than the latter. The reliability with 

FCN is significantly enhanced because it has much more connections (arcs) between adjacent PSs than 

TIN. In other words, the total number of redundant observations in FCN is much larger than that in 

TIN. Hence the LS estimator for FCN is less disturbed by outliers. Our testing results derived with 

simulated data indicated that the FCN-based LS estimation can efficiently resist against a small portion 



Sensors 2008, 8                            

 

 

4737

of outliers in measurements (ε∆ , v∆ ). In addition, the FCN tends to remain more PS points than TIN 

when deleting some “bad” arcs by MC thresholding. The weaker links in TIN may cause more isolated 

PSs which can not be connected with other PSs, and some true PSs are erroneously rejected. The 

stronger links in FCN are therefore useful for recovering the finer details of deformation field.  

Figure 6. The atmospheric phases in the partial AOI for the master image. 
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The atmospheric delay and nonlinear subsidence in the study area were finally separated by a time-

space filtering method as discussed in section 3.3. Prior to such separation, the residual phases in each 

differential interferogram were extracted by detrending both linear subsidence and topographic effect. 

The atmospheric phases of the master image (by ERS-2 on May 5, 1998) were derived by a LP space 

filtering applied onto the mean of 25 residual-phase images (see equation (15)), while the atmospheric 

phases of any slave image were estimated by time-space filtering according to equation (16). As an 

example, Figure 6 shows the atmospheric phases in the partial AOI for the master image, which vary 

from -1.2 to 0.4 radians, i.e., range change of -5 to 2 mm in radar line of sight. As a remark, we stress 

that exactly separating nonlinear subsidence from atmospheric artifacts is indeed a challenging task. 

The further improvement on this point is still required, particularly by integrating a priori information 

on atmosphere and subsidence available from some other monitoring approaches such as GPS 

permanent tracking network. 
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Figure 7. Time series of subsidence at 5 PSs as marked in Figure 4. 
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Figure 8. Perspective view of the subsidence field accumulated between June 1992 and 

August 2002. 

 
 

After deriving atmospheric phases, equation (17) was used to calculate nonlinear subsidence. The 

time series of subsidence was eventually obtained as a sum of linear and nonlinear parts. As examples, 

Figure 7 shows the so-obtained temporal evolution of subsidence at 5 PSs (see Figure 4) in the central 
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part of the study area, where about 15-cm land sinking was accumulated from 1992 to 2002. It is 

obvious that the linear subsidence trend dominates the nonlinear component with a peak-to-trough 

variation of about 4 cm in this study area. For visualization, a perspective view of the entire subsidence 

field is shown in Figure 8, where the remarkable sinking parts can be better appreciated. Maximum and 

minimum subsidence values are -18 and -9 cm, respectively.  

In recent years, both precise leveling and GPS survey have been carried out to monitor subsidence 

in Shanghai by some authorities [1-2]. Both the first- and second-order leveling are carried out once 

per year for benchmarks in the downtown area. The annual subsidence rates (see Figure 5) and the 

accumulated quantity (see Figure 8) estimated with PS-networking SAR interferometry are in good 

agreement with the leveling subsidence results reported in some open literature [1-2]. This indicates 

that our approach presented in this study is effective for detecting land subsidence in Shanghai. The 

current land sinking is highly related to the large-scale urban construction and the overuse of 

groundwater. Especially from 1992 to 1995, the skyscrapers’ constructions are most remarkable [1]. It 

should be noted that the estimated vertical displacement may also contain the settlement of skyscrapers, 

and not purely the natural subsidence of the land surface. The annual subsidence rate is however much 

smaller than that occurring in the 1980’s. This is primarily attributed to some mitigation strategies 

proposed by city managers and planners, which include reducing groundwater withdrawal, increasing 

river water use, pumping water back into depleted aquifers, and utilizing light materials for 

construction.  

5. Conclusions 

To mitigate the negative impacts of both temporal decorrelation and atmospheric delay on mapping 

deformation with conventional DInSAR, this paper has presented an approach called PS-networking 

SAR interferometry for detection of land subsidence in Shanghai, China. With use of 26 ERS-1/2 SAR 

images acquired 1992 through 2002 over Shanghai, the time series of land subsidence is analyzed with 

a very strong network which is formed by freely connecting neighboring PSs according to a given 

distance threshold. The mathematical models and computing methods are addressed systematically by 

considering spatial autocorrelation and LS parameter estimation. The linear and nonlinear subsidence, 

atmospheric effect as well as topographic error were separated effectively in this way. The subsidence 

velocity field in 10 years over Shanghai was also derived. It was found that the annual subsidence rates 

in the study area range from -2.1 to -0.6 cm/yr, and the averaged subsidence rate reaches -1.1 cm/yr. 

The maximum subsidence accumulated in 10 years is up to -18 cm. These are generally in good 

agreement with the leveling subsidence results reported elsewhere. In addition, the testing results 

indicated that the FCN proposed in this study is more advantageous than the TIN used elsewhere in 

terms of reliability for estimating subsidence rates and elevation errors at PSs, although the former 

incurs much heavier computation burden than the latter.     

With further improvement, it is anticipated that PS-networking SAR interferometry would become 

an operational tool to monitor the slowly-accumulated urban subsidence, and thus complementing the 

conventional geodetic tools such as GPS and leveling. In China, there are a number of cities which are 

suffering from land subsidence. Besides Shanghai, the other typical sinking cities include Tianjin and 
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Taiyuan. The reliable and prompt measurements reflecting land subsidence evolution are valuable for 

assessing and mitigating some geological hazards related to land sinking. 
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