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Abstract: This study investigates the potential of objectdolaiexture parameters extracted
from 15m spatial resolution ASTER imagery for egtiing tree size diversity in a
Mediterranean forested landscape in Turkey. Tree diversity based on tree basal area
was determined using the Shannon index and GinffiCieait at the sampling plot level.
Image texture parameters were calculated basedheoryrey level co-occurrence matrix
(GLCM) for various image segmentation levels. Asaly of relationships between tree size
diversity and texture parameters found that retetips between the Gini Coefficient and
the GLCM values were the most statistically sigmifit, with the highest correlation
(r=0.69) being with GLCM Homogeneity values. In tast, Shannon Index values were
weakly correlated with image derived texture paramse The results suggest that 15m
resolution Aster imagery has considerable potemiastimating tree size diversity based
on the Gini Coefficient for heterogeneous Mediteean forests.

Keywords. Tree size diversity; remote sensing; brutian piteture analysis; image
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1. Introduction

Biodiversity conservation has become an increagiimgportant issue in forest management, with
forest managers now having to include biodiversaysiderations within existing management plans
[1, 2]. Stand diversity, especially variation ied@rheight and diameter, is an important considerat
biodiversity conservation in forested landscapes4]3 A large diversity in tree sizes can provide a
wide range of habitat for wildlife and continuouslypplies dead trees which are vital for ecosystem
processes such as nutrient cycling. Furthermoreste with greater tree size diversity usually have
greater aesthetic and recreational values [5].

Differences in tree size diversity may be due t@aety of factors including species composition,
age differences and disturbance history. Managemetitities and the effects of insect and fungal
pathogens may also affect tree size diversity. Wawtknted management systems have a
homogenizing effect on stand structures as the igo@ grow even-aged stands. Furthermore shrubs
and deciduous trees are removed by thinning torfaeaifer trees, which are economically more
valuable. Consequently, wood oriented silvicultureatments have decreased the variability of size
and tree species distributions in comparison wittmnanaged stands [6].

Diameter at breast height (DBH), tree height, ammava depth and width can all be used to describe
tree size [7]. DBH is widely used as it is strafghtvard to measure and highly correlated to theioth
parameters [8, 9]. A variety of indices includingagnon's index, Simpson index, Gini coefficient,
Margalef index, Mcintosh index, Berger-Parker ind&hannon evenness, Mcintosh evenness and
coefficient of variation have been used to quarntige size diversity in previous studies (7; 10-12]
These indices can be used in various forestry egpins including; i) comparison of habitat quality
for wildlife in different stands, ii) monitoring othanges in tree size diversity over time, iii)
determining the impact of different silviculturakatments on stand structure, and iv) defining the
appropriate silvicultural treatments for differesténds [7].

Mapping and monitoring tree size diversity ovegtaareas is crucial to forestry. The use of ground-
based methods to determine and map tree size idyvEnsall stands in a landscape is, however, both
expensive and time consuming. Satellite remoteisgriechnologies provide a powerful alternative
for providing such information. Satellite image aladre a cost efficient source of information
especially for large-area forest inventories, amdehbeen widely applied in forest mapping and
monitoring [13-22]. The value of remote sensingaasefficient tool in mapping biodiversity at the
habitat scale also has been emphasized in sevathés [e.g., 23, 24]. More recently, research has
focused on the potential of using remote sensirages for assessment of biodiversity at the pladllev
For example, Bawa et al. (2002) reported that thier statistically significant relation betweere th
species diversity and the Normalized Difference atation Index (NDVI) of IRS 1C imagery (r=0.66,
p<0.01) and NDVI may be used to characterize aodasgh and low species richness of trees in
tropical forests where biodiversity losses are hgfj. Similarly, Levin et al. (2007) showed thhete
are significant correlations between plant specieness and the NDVI of Aster data (rs=0.89,
p<0.01) and the NDVI of Landsat ETM+ data (rs=04830.01) in a mountainous region in Israel [26].

Object oriented image analysis is a widely used tmomapping and monitoring forests [27-29],
and for estimating a range of forest stand attebyB0]. The use of image segmentation algorithms
offered by Definiens Professional software repres@npowerful tool for extracting spectral, spatial
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and textural features at object level. These vlesaltan be used for estimating stand structure
parameters in a cost-efficient manner. In this pape hypothesize that greater tree size diversity
occurs in stands that form more textured imageobbjevhich will allow modeling of tree diameter
diversity indices using textural features deriveshf satellite imagery. Specifically we investigtte
relationships between the textural features derfuaeh Aster imagery and indices characterizing tree
size diversity obtained from ground-based sampi¢spgh a typical Mediterranean forested landscape
in Turkey.

2. Materialsand M ethods
2.1. Sudy Area

The study area (centered on 37°18°50"°N, 30°44E5B50 — 1200 m a.s.l.) is mostly composed
pure Pinus brutia stands.Cedrus libani A. Rich., Abies cilicica (Ant. et Klotsch.) Carr.Juniperus
excelsa M. Bieb. and some oak species (includi@gercus coccifera L. and Quercus cerris L.) also
form stands in the study region. Other natural seecies includélnus glutinosa subsp.antitaurica
Yalt., Platanus orientalis L., Liquidambar orientalis Mill. and Salix alba L., which are mostly located
in riparian zones. ThBinus brutia stands have been intensively managed for appraoiynd0 years
and are mostly structurally simple. In contrast $itends ofCedrus libani, Abies cilicica, Juniperus
excelsa and Quercus cerris are more natural in composition and are strudiudiverse. Thus, the
study region covers both managed and unmanagest fetends and represents a wide range of tree
size diversity.

2.2. Creating of segmented images

The analyses were based on the three bands wittn Epatial resolution of Aster (Advanced
Spaceborne Thermal Emission and Reflection Radiemnsatellite data with an image acquisition date
of May 5th 2007. The spectral ranges of the thezalb were 0.52-0.60 um (green), 0.63-0.69 um (red)
and 0.76-0.86 um (near infrared). Image pre-pracgsscluding atmospheric correction and ortho-
rectification were applied by the supplier in ortiercorrect distortions and degradations resulfiom
the image acquisition process and no further inpegeprocessing was undertaken.

The texture features were extracted from the imsggments generated by the multi-resolution
segmentation approach developed by Definiens imameessing software. Segmentation is an
algorithm which creates meaningful objects in aagsby grouping the individual pixels according to
their spatial and spectral properties and is peréal using the scale parameter and homogeneity
criteria. The scale parameter is an abstract tenmhadetermines the maximum allowed heterogeneity
of the resulting image objects. While the scaleapuaater is increased, the homogeneity of segments
decreases and the standard deviation within thetireg image objects increase [31].

The homogeneity criterions are the color, shapejpaxtness and smoothness in Definiens. It is
recommended that the color criterion should be wednuch as possible while keeping the shape
criterion as high as necessary to produce imagectsbfhat suit the purpose. In other words, thercol
criterion is the most important for forming mearfudgobjects because the spectral information is the
primary information contained in an image [32]. Mdheless, the amount of weight color and shape
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information should be given is difficult to defina this algorithm. Therefore, choosing optimal
algorithm-associated parameters towards high-quakigmentation for a given feature type is an
essential step [33]. In order to determine the bestposition of homogeneity criterions that is shlié
for this study and the image data used, the difteoptions of homogeneity criterions were visually
evaluated, with nine color and shape combinatiessett multifariously (0.1 color — 0.9 shape; 0.2
color — 0.8 shape; 0.3 color — 0.7 shape; 0.4 celor6 shape; 0.5 color — 0.5 shape; 0.6 colod- 0.
shape; 0.7 color — 0.3 shape; 0.8 color — 0.2 sh@&pecolor — 0.1 shape) in conjunction with three
different compactness and smoothness combination® ¢ompactness — 0.7 smoothness; 0.5
compactness — 0.5 smoothness; 0.7 compactnesssm@@hness). Landscape patterns such as the
stand borders in the forest maps for the study aveee also taken into consideration in this
assessment. As a result of the visual evaluatidh,color — 0.2 shape and 0.5 compactness — 0.5
smoothness were selected as providing the bestdmmedy combination to create meaningful objects.
The segmentations at eleven different scales wamducted by modifying the scale parameter in
order to determine the optimal segment scale tl@awsthe best modeling of tree size diversity. The
eleven scale parameters tested in this study w&rd 3, 20, 25, 30, 35, 40, 45, 50, 55, and 60. We
accepted this range based on the existing foregt e stand borders in the forest map were viguall
compared with the resulting segments after eacimsetation process. We did not repeat the
segmentation process because we understood thaegmeents created using the scale parameters
which are less than 10 and more than 60 did nah fareaningful objects; segment scales >60
delineated objects capturing both fruit orchards fmmests while segment scales <10 generated sbject
that were too small to match image features wighgitound sampling plot data.

2.3. The diversity indicates

A large number of diversity indices can be usedharacterize tree size diversity within a stand [7,
10-12]. We used Shannon index and Gini coefficierihis study because they have been widely used
in previous studies. These diversity indices wetdewdated based on tree diameter at breast helight (
m — DBH) within forest sampling plots.

The Shannon index [34] is a widely used in ecolalgitudies as a measure of tree size diversity (7,
10, 11]. The proportion of basal area per diametesses is used in this index. This index depends o
the selected size class width [35]. Shannon indaluev decreases when the number of classes
decreases with increasing class width [10]. Howethaare is no agreement in the literature concegrnin
what class width should be used. For example, loekand Eid (2006) used 2 cm, Varga et al. (2005)
used 4 cm, and Wikstrom and Eriksson (2000) used Siameter class widths [4, 7, 10]. In this study,
we used 4 cm class widths to characterize basaldisgribution. The maximum value of the Shannon
is In (N) providing that basal area is evenly dstted over all diameter classes and the minimum
value is zero when all trees are in only one diamefss. The Shannon index (H") is calculated as:

H':_Z p In(p,) Q)

where pi is proportion of basal area in size ciaaad N is number of diameter classes
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Since the sensitivity of the Shannon index to thenge in class width is uncertain, we also used the
Gini coefficient as it does not require arbitratgssified diameter classes and has been proposed fo
calculating tree size diversity [7]. The Gini coeint was originally developed in economics for
determining inequality of income distribution andshbeen widely used in the measurement of
heterogeneity in tree sizes [7, 11]. The minimurtugaf this coefficient is zero when all trees have
equal size, while the theoretical maximum valué swhen all trees except one have a value of zero
(extreme inequality). Lexerod and Eid (2006) suggss of the Gini coefficient in forest management;
comparing tree size diversity in different stanehlaating changes in tree size diversity over tiare]
determining the impact of different silviculturattérventions on tree size diversity [7]. The Gini
coefficient (GC) is calculated as:

n

Z(Zj -n-1ba,
GC =+ 2)
> ba;(n-1)

where, baj is basal area for tree in rank j (m2hand n is total number of trees; and j is thekra
of a tree in order from 1,...,n.

Diversity indices were determined for 541 geo-reffieed circular sampling plots that had been
measured as part of forest management plan develdpby forest inventory teams in 2007. In the
Turkish forest inventory system, the sampling plats systematically distributed at 300 m intervals
over the forested areas of a planning unit with pipes of 0.04 ha, 0.06 ha and 0.08 ha depending o
the crown closure degrees of stands. The samplotg ps point data were overlaid with the eleven
segmented images using GIS. A 20 m buffer zone areated from segment boundaries in order to
reduce the spatial error resulting from GPS measene. The texture information derived from a
segment was then matched with the diversity indimesampling plots which are situated in that
segment. If a segment has more than one samplingtpé arithmetic mean of these plots was used in
the correlation analysis.

2.4. Thetexture variables

The textural properties of the segments from tleeerl segmented images were determined based
on the approach of “Texture after Haralick”. Thettee parameters were calculated for all pixelarof
image object based on the grey level co-occurremazigix (GLCM) that is a tabulation of how often
different combinations of pixel grey levels occir,a given direction, in an image object. The grey-
level co-occurrence matrix can reveal certaintaites pertaining to the spatial distribution of gney
levels in an image object. Several statistical messscan be also derived from the GLCM. Hall-Beyer
(2007) separated these into three main groupsinjrast, i) orderliness and iii) descriptive stts
[36]. The GLCM parameters including homogeneityntcast and dissimilarity belonging to the
contrast group use weights related to the distéore the GLCM diagonal. Contrast increases when
the elements of a matrix are away from the diagom&laning greater differences between the grey
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levels of pixels in an image object. Therefore, ¢batrast group measures were examined in this work
because they are considered to be of high potdatigkedicting tree size diversity.

Three GLCM contrast parameters were calculatecdoh band (0.52-0.60 pum, 0.63-0.69 um and
0.76-0.86 um) separately. Since a single GLCM usimg direction might not be enough to describe
the textural features of an image object, the tiBEMC operations were performed based on the four
directions as horizontally (90°), vertically (08hd two diagonally (45° and 135°) [31].

Every GLCM is normalized according to the formuéddw [36];

2V, )

Where; i: the row number; j: the column number;, ¥ie value in the cell i,j of the matrix; Pij: the
normalized value in the cell i,j; N: the numberods or columns.

The GLCM homogeneity measures the closeness dafistriébution of elements in the GLCM to the
GLCM diagonal. The GLCM homogeneity of an imageeabjs high if GLCM concentrates along the
diagonal. It decreases exponentially accordindpéir istance to the diagonal. The formula of GLCM
homogeneity is [36];

N-1 R )

)

i,,-z:01+ (i-i) ()

GLMC Contrast is a measure of the amount of locaiations in the grey-level co-occurrence
matrix. It is the opposite of the GLMC Homogenediyd increases exponentially when i-j increases.
The formula of GLMC Contrast is [36];

N

YR, i-if 5)

i,j=0

LN

The Dissimilarity is similar to GLMC Contrast, hower increases linearly as i-j increases. It is high
if the local region has a high contrast. The formmafl GLMC Dissimilarity is [36];

1

.
2Rl (6)

i,j=0

2.5. Satistical analysis

Correlation analysis was performed to determirtbaéfe was a significant relationship between the
texture parameters and the diversity indices. Baeaproduct moment correlation coefficient (r) was
used to assess the relationship between the vesiall two-tailed p value was used to calculate
statistical significance; a value of P<0.05 wasetako be significant. Therefore, the variables that
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show the highest correlation were identified toabksh a regression model for mapping tree size
diversity. The Gini coefficient was used as theafgent variable while the texture parameter was
used as an explanatory variable for the regressiodel. Since the linear regression analysis assumes
all variables have a normal distribution, the Kogramov-Simirnof Z test was applied to the variables.

If P>0.05, a variable was accepted as having a alodistribution. The significance of the slope loé¢ t
regression line was determined by the t-statistic.

3. Reaults

An initial examination of the relationship betwe@mi coefficient and Shannon index values for
the sample plots showed this to be non-linear. foee a Spearman’s correlation test was used to
determine the strength of the relationships betwbese two variables, with a correlation to rs 550.
(P<0.01).

Statistically significant linear relationships ocmd between the textural parameters and the
diversity indices, with the Gini coefficient morgangly correlated (highest r = 0.69, P < 0.01nthze
Shannon index (highest r = 0.35, P < 0.01) withgenderived texture parameters, and for this reason
the rest of this paper focuses on the Gini coeffitiFor the Gini coefficient, the strongest catiehs
were with a scale parameter of 40 (Fig. 1). Fos guale parameter, the correlation between Gini
values and the texture parameters was highest t@€Ms Homogeneity (r = 0.69, P < 0.01),
intermediate for GLCM Dissimilarity (r = 0.65, POs01) and lowest for GLCM Contrast (r = 0.58, P <
0.01).

The texture parameters of the GLCM Homogeneity thiedGLCM Dissimilarity derived from the
green band (0.52-0.60 um) were most strongly catedl with the Gini coefficient, while for GLCM
Contrast derived from the red band (0.63-0.69 prejewmost strongly correlated with the Gini
coefficient (Fig. 1). However, the Near InfraredR) band (0.76-0.86 um) yielded the lowest r values
for all texture parameters. This was especiallyaspmpt for GLCM Contrast, with markedly lower
correlation r values than in any of the others .(E)g The other interesting result is that the luga of
the three bands obtained using GLCM homogeneity whrser to each other across all scales when
compared with the GLCM Dissimilarity and the GLCM@rast results (Fig. 1).

As a result, the GLCM Homogeneity values of band052-0.60) derived from the segments
generated by scale parameter of 40 were choseneasxplanatory variable for predicting the Gini
coefficient because the highest r value were obthifrom this relation. Therefore, a regression
analysis was performed to determine the abilityGhiCM Homogeneity to predict Gini coefficient
values and be used as a tool for mapping treedsizgsity. Least squares linear regression analysis
was used because visual examination of the sqaltieisuggested that relations between the GLCM
Homogeneity and the Gini coefficient were lineaig(R2). According to the Kolmogorov-Simirnof Z
test, both the Gini coefficient and the GLCM Homoegiy values were found to be normally
distributed (P > 0.05). The resultant regressios gignificant, with a negative slope, indicatingtth
image texture values decrease as Gini coefficiecrteases and that GLCM Homogeneity values of
band 1 can be used to predict Gini values.

The regression equation {Sini Coefficient = -0.9719 x GLCM Homogeneity + 0.5494
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This regression equation was then used to prodspatal map of tree size diversity (Fig. 3) based
on Gini coefficient estimated from GLCM Homogeneity

Figure 1. The Pearson’s correlation coefficients of the rete between the Gini
coefficient and the texture parameters for the exlesegment level with regard to the
bands.
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Figure 2. The scatter plot of Gini Coefficient values agaitigt corresponding GLCM
Homogeneity values of band 1.
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Figure 3. A tree size diversity map based on the Gini coeffit values estimated from
GLCM Homogeneity values of the image segments ofdbda generated from scale
parameter of 40.

4136000

4132000

JR

i

#
Wy

41280000 5y coer

4124000 BN 25-30 4+

292000 296000 300000 304000 308000

4. Discussion and Conclusion
4.1. Comparison of Gini coefficient and Shannon index

Lexerod and Eid (2006) observed a stronger coroeldbetween the Shannon index and Gini
coefficient than observed here (rs = 0.73 cf. 0.95)s difference may result from differences ie th
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tree species and forest conditions of the two shedyons. For example, the typical Mediterranean
forests we studied have degraded stands becausege$tanding anthropogenic impacts, with crown

closure of less than 40 %. In the area studied, ltleeeaverage tree density in degraded standsOis 15
individuals ha-1 which results in a small numbetregs inside a sampling plot. Thus, Shannon index
values calculated from these sampling points maynffeenced by sample size thus weakening the
relation between Gini coefficient and Shannon indExe other reason may be differences in size
classes used. Lexerod and Eid (2006) used 2 cmetkaimlass width while 4 cm was used here, which
might also influence the association between thme €efficient and Shannon index [7].

The most appropriate diameter class width to usedtculating the Shannon index is still under
debate [10]. It is clear that when the class widtiteases, the number of classes become too low for
the index to be meaningful. Conversely, when tke siass width is very small (e.g., 1 cm) the index
may lose its sensitiveness to tree size diver$itys is clearly illustrated by comparing three exdan
plots representing low, moderate and high treedilzersity (Table 1). The Gini coefficient is setihs
to the variation of tree size diversity, while t8annon index yields incongruous values which are
strongly influenced by diameter class width (TabjeThis is only a simple example using only three
plots and a more comprehensive investigation igsired to better determine the effect of class width
on the Shannon index. Such an evaluation shoutdcaigsider the effect of sample size.

Table 1. The Gini and Shannon values calculated from theetexample plot data which
represent low, moderate and high tree size diyersit

Shannon Index

Diameter Class Width (cm)

GINI

coefficient 1 2 3 4

DBH (cm)

Low tree
) 20;20;21;22;23;24,25;26;26;26;27;28;28
size 0.167 2.367 1.705 1.462 1.293
) ) 29;30;30;31;31;31;32;32;32;32;33;33;33
diversity

Moderate
- 20;20;21,22;23;24,25;27;27;27,29;30;32
tree size 0.270 2.553 2.304 1.883 1.875
] ) 32;32;34,35;36;38;38;39;40;40;40;45,45
diversity

High tree
) 09;10;10;18;20;20;28;28;28;37;37;38;45
size 0.496 2.058 1.637 1.928 1.593
) ) 45;45;53;53;53;60;61;61;61;82;82;83;83
diversity

The greater utility of Gini coefficient in deternmg tree size diversity based on basal area
measurements in comparison to other indices suchasnon index, Simpson, Margalef, Mcintosh,
Berger-Parker, Shannon evenness and Mcintosh es®mas been emphasized in other studies [e.qg.,
7]. Consequently, it can be concluded that the Goefficient which does not require an arbitrary
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classified diameter classes is a more reliablenpater for quantifying tree size diversity. Furthens
existing sample plot data measured during timbenagament plan inventories can be used in the
calculation of the Gini coefficient because it tbeefficient is less sensitive to the number oésren a
sampling plot.

4.2. The relations between the texture parameters and Gini coefficient

A remarkable result from this study is that thetieh between the Gini coefficient and the GLCM
Homogeneity and Dissimilarity values of the greamdb (0.52-0.60) is stronger than the other bands,
while the texture parameters of the NIR band (@B&B pm) are the least strongly correlated.
Surprisingly, the NIR band yields extreme GLCM Gast texture values in the segments which are
adjacent to the border of study area. The supgrimf the green band might arise from its
sensitiveness to the bare soil and exposed rodiexedore, it can be concluded that the unmanaged
stands with high tree size diversity and less crolesure yield a more textured image in the gresat p
of electromagnetic spectrum due to its distincttapability. In visually inspection on the imageisit
easily noticed that the NIR band in some segmeitidbiis uncongenial texture values compared with
bands 1 and 2. The two image segments belongifptto an unmanaged mixed stand consisted of
Cedrus libani andAbies cilicica, and a manageeinus brutia stand illustrate their spectral responses to
these bands (Fig. 4). In this example, the texteatures of band 1 and band 2 is very definitesas i
expected. However, in the band 3, although theg lzadifferent structure, the texture values beloggi
to the two forests are very similar to each otli@nsequently, this makes the development of a
statistically robust regression model using thetuex values of the NIR band to predict the Gini
coefficient difficult, particularly when CLCM Corast and GLCM Dissimilarity values are used.

The results presented here indicate that Aster emyagiith 15 m resolution is promising for
estimating the Gini coefficient as an indicatorti@fe size diversity for heterogeneous Mediterranean
landscapes. The highest correlation coefficiend.@€) was found between the GLCM Homogeneity
of band 1 and the Gini coefficient using the segm@enerated by the scale parameter of 40. This
relation can allow mapping tree size diversity ldage Gini coefficient over large geographical areas
Such satellite derived maps can then be used toaaeachanges in tree size diversity over time tand
determine the impact of different management imetions on tree size diversity at the landscape
scale. We are not aware of any other researchhminvestigated the relationship between tree size
diversity and remote sensing imagery. Therefores situdy suggests another and potentially very
important application of remote sensing in foreahagement and conservation.

When the extreme values in the scatter plots of KBLBomogeneity of band 1 against Gini
coefficient are inspected, two stand types areesvids outliers. These are; i) matii@us brutia
stands with low crown closure located on rocky ates and ii) youn®inus brutia stands that have
not yet attained crown closure. In this latter ¢asaquis vegetation includinglyrtus communis L.,
Arbutus andrachne L., Erica arborea L., Quercus coccifera, Ceratonia siliqua L. andLauris nobilis L.
grow within the youndPinus brutia stand. Although the calculated Gini coefficientues are low in
both these situations due to the stands having begrarly thinned, the texture parameters can be
high because of the presence of substantial areasck and soil, and the diverse understorey
vegetation yielding highly textured images (Fig. Bhis problem might be addressed by combining
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spectral or shape properties of segments withekiite features to estimate the Gini coefficienteno
efficiently.

Figure 4. The spectral responses and Gini coefficient ofttfpécal both managed and
unmanaged stands and their corresponding textlwesvavith regard to the bands.
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Figure 5. Two example stands with low tree size diversitywleer, some types of maquis
vegetation enter into the brutian stands becausg rdach enough light. Therefore, they
creates more textured image due to their varyiregtsal characteristics.

2_5m

Lauris
nobilis L.

Pinus brutia

Quercus

A

Ten.

Ten.

Lauris
nobilis L.

Gini Coefficient: 0.15

coccitra L.
W R N i GHof Band1: 0.09
M ) GHof Band2: 0.1
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Gini Coefficient: 0.13
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GHof Band2: 0.15

GHof Band 3: 024
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GH: GLCM Homogeneity (all direction), GD: GLCM Dissimilarity (all direction)
GC: GLCM Contrast (all direction)

This study has used the available forest surveg detasured as part of forest management plan
preparation. It can be expected that a strongetioel might be found if a more targeted sampling
approach [e.g., 37] was undertaken aimed at meggsthre Gini coefficient. We recommend the scale
parameter of 40 for mapping the Gini coefficienthé existing sampling plot data is used. HowewWer,

a specific sampling strategy apart from the tradai one is undertaken as the basis for determihiag
Gini coefficient, then smaller segment scales miogghinore suitable for modeling the Gini coefficient

The satellite data used in this project was acduinespring (May). As the spectral differences
among plant communities are dependent on the seastimation of Gini coefficient by means of
satellite data might be more reliable if data frotiner seasons was also used. In addition to thergx
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parameters belonging to “contrast” group, the messof “orderliness” and “descriptive statistics”
groups can be also investigated in any furtheriesud
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