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Abstract: Water monitoring at the scale of a small agricaltuegion is a key point to
insure a good crop development particularly in 8dtéstern France, where extreme
climatic conditions result in long dry periods iprisg and summer with very sparse
precipitation events, corresponding to a cruciatigoe of crop development. Remote
sensing with the increasing imagery resolution issaful tool to provide information on
plant water status over various temporal and dpstees. The current study focussed on
assessing the potentialities of FORMOSAT-2 dataratterized by high spatial (8m pixel)
and temporal resolutions (1-3 day/time revisit),itgprove crop modeling and spatial
estimation of the main land properties. Thirty ddtee images were acquired from March
to October 2006 over a small region called Crau-&auoe in SE France, while numerous
ground measurements were performed simultaneowsly \@arious crop types. We have
compared two models simulating energy transfensdxn soil, vegetation and atmosphere:
SEBAL and PBLs. Maps of evapotranspiration werdyaieal according to the agricultural
practices at field scale. These practices were wmeifitified from FORMOSAT-2 images,
which provided accurate input surface parametetise VAT models.

Keywords: FORMOSAT-2, crop monitoring, evapotranspiration, ILAlbedo, surface
temperature.
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1. Introduction

Describing soil - vegetation - atmosphere transteos prime interest for understanding interacsion
and feedbacks between vegetation and boundary, lagér assessing plant water status [1]. This is
gaining importance over these last years in théextrof climatic changes, because land use evaiutio
can induce significant modifications of surfacex#lg like evapotranspiration, and therefore result i
different irrigation strategies. The Crau-Camargegion located in South-Eastern France (Figurs 1) i
an interesting study case, particularly sensitovglbbal changes. It is a flat region characteribgd
highly contrasted humid areas, with a high divgrsit crops and agricultural practices. The Crau
region is famous for irrigated meadows providing RCQCertified Origin Product) hay exported all
over the world. While the Camargue region is kndamits rice fields that were initially cultivatefdr
soil salinity remediation purposes [2]. Significamodifications have been noticed these last 10syear
Climatic hazards such as long and dry spring psremtd heavy rains in autumn are becoming more
frequent. Consequently, the increasing water dyadciring the growing season, in addition to water
redistribution for the industrial and urban sectdrss led the authorities to restrict irrigatiomiglated
crops like meadow, which are dominant in the Cregian, were affected by those restrictions. Other
crops such as corn, demanding large water quahiiiyyg summer period, disappear progressively of
the cultural landscape. Moreover, rice plantationSGamargue show large differences in yields (nyainl
due to the various cultural practices performetéims of sowing dates, submersion dates after gpwin
and drying up dates before harvesting [2]). Ithieréfore important to estimate with accuracy this
surface variability, to know the real water need &ach field so as to improve crop and water
management.

Remote sensing with the increasing imagery reswius an useful tool to provide such information
on plant water status over various temporal andiadpscales [3]. Evapotranspiration (ET) may be
estimated from remote sensing data with differgureaches: direct methods using thermal infrared
(TIR) data, indirect estimates using assimilation procegslicombining different wavelengths to get
various input parameters [23]. However, the useeaiote sensing for operational applications still
presents several problems. Water and crop mongfeequires a frequent time revisit of satellited an
fine spatial resolution to get accurate informatbrthe field scale. The relatively long time rév{§6
days) for satellites having a high spatial resolutsuch as ASTER or Landsat make their use for
operational applications often unattractive (eviethey have thermal spectral bands which are used i
numerous ET models). Recent satellites such as FORAMT-2 offer both a high spatial and temporal
resolution, since they can revisit a same areayelasy with a constant viewing angle, with a pigél
8m (for FORMOSAT in multispectral range or 2m ira¢ and white). This new sensor generation
characterized by repetitive acquisitions of highotation images is very useful for monitoring land
surface dynamics. Future missions, such as Verjus @entinel2 [42]), having similar characteristic
are thus defined to be part of the GMES progranol§&ll Monitoring for Environment and Security)
with larger objectives dealing on the environmeutvsillance (http://www.gmes.info/). However,
these last satellites do not have spectral bandseirihermal range. Several missions (conducted by
CNES: Centre National d’Etudes Spatiales, Toul®w&nes.fr: IRSUTE [56], SEXTET [34]) have
studied the interest dflR data acquired at fine spatial and temporal remwiutActually there is no
current satellites which have these specific camfigons. Recent works explore future missions to
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answer to this strong demand (let us mention th8 TMERI mission conducted by the CNES). While
waiting for operational solutions, alternative aggorhes are proposed combining information at
different wavelengths and resolutions [56]

A heavy experimentation took place over the Cram@gue region in 2006, including intensive
ground measurements on different crop types, ialighto airborne and satellite data collectionirfiyh
cloudless FORMOSAT-2 images were acquired from MdocOctober. Thermal data were taken at
fine resolution from an airborne thermal camer&rn(8. at few dates during this period (see table 1),
while ASTER and Landsat 5 images were recordedaar resolution.

The objectives of this study were i) to evaluate thotentialities of FORMOSAT-2 data for
mapping the main land properties, and ii) to esnmand better understand the spatial variability of
surface fluxes and microclimate over this regia®ing operative models requiring minimum input data
combining multi spectral data acquired at fine igphaesolution. These models are based on data
acquired in both the optical and thermal domairtge Ticroclimate is represented here by its main
variable: air temperature which is strongly relatedland surface thermal exchanges, vegetation
functioning, and to the plant growth.

Besides, let us mention that it was the first tima&t such remote sensing data (FORMOSAT-2) are
used for agricultural applications. The interesttbé high temporal resolution was particularly
important for this study area, where irrigation vegplied to different surfaces with a high frequenc
(every 8-11 days over the meadows). The impaches$d various agricultural practices has a great
influence on all exchanges between surface andsgtingoe.

For this work, we have used different types of nigdérst to estimate the main biophysical
variables characterizing the various crops, ana tieesimulate surface fluxes and air temperature.
Section 2 presents the dataset used. The modekd,ba#ther on physical or semi-empirical
relationships, are briefly described in sectioBe main results are discussed in section 4. Fyizall
conclusion is made on the potentialities of FORMOSAdata and the future applications.

2. Dataset
2.1. Ground measurements

The study area (centered at 2.3E 45.89N 4E 47.6§Me 1) is characterized by various crop types.
Five representative fields were chosen for intengjround measurements: two wheat fields sown in
winter at different dates and which evolved inteebaoils around the end of June, a meadow field
flooded every 11 days, and cut three times per, y@aprinkler irrigated corn field (depending on
weather conditions), and a rice plantation, sowrApril and then submerged by water during its
vegetative period with a fluctuating water levetilinarvesting in October.

On these five fields, meteorological measuremekésrhinfall, air temperature and moisture, wind
speed, global and atmospheric radiations were dedofrom March to October 2006. Values were
averaged over a time step of 10 min.

Albedo was measured with albedometers (Kipp & Zo@é#fi7) with the same time step during all
the cultural cycle of the study fields. The Kippnsers were calibrated to provide estimates of
incoming radiation over the whole spectrum for nueasients over 300 to 3000 nm spectral band.
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Incident radiation was measured with a pyranomietesited on the center of the experimental area.
The footprints of these measurements ranged frddd 1® 3000m2. Additionally, surface temperatures
were acquired all along the experiment, with KT1&rklann radiothermometers on three locations
(wheat, meadow and rice).

For a few intensive observation periods, surfaceef were measured during several days. 1D-
anenometers (CA27 T Campbell) were set up on theussurfaces, allowing to compute the sensible
heat flux {H). Soil heat fluxes@) were measured using soil fluxmeters (HFT-3, RERS) just below
the surfaces. Pyradiometers (Q7 REBS) measurethdigtion Rn). Finally, the latent heat fludX.E)
was obtained by the residual method of the eneatpnice:

LE=Rn-H-G. Q)
For these intensive observation periods, atmosphmofiles were also acquired according to the
weather conditions (low winds) for several dayshwdttethered balloon up to 200 m above the surface.

Table 1.Main measurements performed on studied fields flsface temperature - KT
17 Heimann, Ta: air temperature - thermistor 10m@zell, g: humidity - Vaisala
capacity probe: HPMP35D, u: wind-speed - anemon#etenL2).

Measurements Wheat 1 then | Wheat 2 then | Irrigated meadow | corn Rice

stubbes bare soil
Micrometeorology | Continuous from Continuous from Continuous from Continuous from Continuous from
(Ta,q,u) + Albedo | 15/3 to 30/9 15/3 to 30/9 15/3 to 30/9 5/5 to 30/9 2714 to 20/10
Ts idem / idem / idem
Surface Fluxes 8 x (2-4) days / 8 x (2-4) days / 8 x (2-4) days
Crop height 6 dates 6 dates 13 dates 5 dates 7 dates
LAI 6 dates 6 dates 13 dates 5 dates 7 dates
Remote sensing 30 FORMOSAT 30 FORMOSAT 30 FORMOSAT 30 FORMOSAT 30 FORMOSAT
Airborne 5 flights 5 flights 5 flights 5 flights 5 flights
Atmospheric 5 dates 5 dates 5 dates 5 dates 5 dates
profiles

The main development stages of the various crope wmnitored by different observations and
measurements. Crop heightsef) were measured to estimate surface roughrggsQ(13 hyeg) [5]
needed to simulate fluxes over different fieldsafLArea Index ICAl) was estimated for each field by
both planimetry and hemispherical photographiesngarisons between both methods were performed
for some dates and gave satisfactory results. Vésecthe second method for this study, as it was
easier to implement. For this indirect method, weseds the CAN-EYE software
(http://www.avignon.inra.fr/can_eye/page5.php) deped by Weiss and Baret at INRA Avignon to
process the image series (technical report at/kttpw.avignon.inra.fr/can_eye/page5.php). This
software allows to obtain different surface parargetsuch a$Cover (vegetation fraction)FAPAR
(fraction of absorbed photosynthetically activeiatidn) and theeffective LAl (that does not take into
account vegetation clumping effect), which are caraple to remote sensing estimations [6]. For each
study field, 40 to 60 photographies were taken @ltvansects in cross sectional pattern, according t
the surface heterogeneity and the field size; {gmeporal sampling was done according to the crop
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development). SinceAl measurements were punctual, temporal interpolati@round measurements
using Koetz et al. [7] model was done in orderdmpare them thAl estimated from FORMOSAT-2
images (described later). Table 1 summarizes thén maeasurements performed during the
experiment.

2.2. Remote sensing data and image processing

Thirty cloud free FORMOSAT-2 images were acquirgdrg 3 to 4 days during 8 months at 10:30
TU from March to October 2006, and with a constaawing angle of 41° over the Crau-Camargue
region (Figure 1). FORMOSAT-2 is a Taiwanese highotution satellite launched in May 2004. It
provides images (distribution by SPOT-IMAGE) witietfollowing features: spatial resolution of 8 m
in four spectral bands centred at 488, 555, 6508&@dnm, with a field of view of 24 km, an orbital
cycle of one day, with a constant observation afgge table 2 in appendix for its main featurel)s T
data set was first geolocated, registered, caédrand the cloud and their shadows were discarged b
CNES-Cesbio team in Toulouse according to the niethescribed in Baillarin et al, [8]. Then the
images were corrected from atmospheric effectsgusia atmospheric correction method developed by
Hagolle et al. [9] based on the inversion of anadpieric radiative transfer model.

Figure 1. Localisation of the study area (‘Crau-Camarguegion) and the track of
FORMOSAT-2 image, with the main cover types indécabn a true color image.
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Additionally Thermal Infrared (TIR) data were calted at different spatial resolutions using
spaceborne (ASTER: 1 image acquired on July 26, DBNT 5TM: 8 images for the study period),
and airborne (FLIR camera) sensors. As mention@atiaduction, these data are necessary to estimate
surface fluxes. The main problem is that we camaot the same spatial and temporal resolution with
the current satellites as FORMOSAT-2 data. Thusoanme thermal images (covering the spectral band:
7.5-13um) were acquired in the same period (oma tnterval of 10min ) as the ASTER passage, at
3000m above the surface, along several transeets tbe implemented fields, leading to a spatial
resolution of 3.5 m with a swath of 1.3 km. Fiveetafrom March to September were analyzed.
Atmospheric corrections were performed using MODTRAodel [10] and atmospheric profiles
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obtained from a tethered balloon combined to ostftthe ECMWF (European Centre for Meduim
Range Weather Forecast, 3w.ecmwf.int/index.htmlodeh for the highest atmospheric levels. The
TES (Temperature Emissivity Separation) algorithbd][was used to retrieve surface radiometric
temperature from ASTER data. TES relies on thetsglecariability captured from the multispectral
brightness temperatures within the 5 ASTER TIR Isaatl 90m spatial resolution. The estimated
precision (compared with the ground measuremestayaund 0.5°C for temperature computed from
the airborne camera and in the order of 1.5°CHerASTER data. In this paper, we only focussed on
the combination of FORMOSAT and TIR airborne d&tudies are ongoing on comparison between
ASTER and airborne TIR data.

3. Methods
3.1. Models for assessing surface fluxes and microclimate

Two models simulating the transfers between sajet@tion and atmosphere were used: the
spatially distributed energy balance model SEBAR][(modified version by [14]) and the ‘Planetary
Boundary Layer Model (described in [13]). They werkosen because they rely on different
assumptions and need only few input parametertyeasnputed from remote sensing data. Both are
based on a single source approach which consisterisidering only one surface resistance for the
combined soil-canopy system. This approach assuna¢sll the surfaces can be represented by one
effective value of temperature and humidity [46dr Ifnore complex canopies, for example sunflower
or tiger bush, the two source modeling schemesgs®pgwo set of resistances to reproduce the
turbulent and radiative exchanges distinguishingy and vegetation components within the low
atmosphere [47]. Even if this last approach seentetmore realistic, many authors have shown that a
simple but correctly calibrated single source magiele satisfactory results for describing the energ
balance compared to ill parameterized dual souxmgets [48].

SEBAL was designed to avoid the use of micrometegical measurements, by exploiting the
information contained in the spatial variabilityptared from solar and thermal remotely sensed
images. Its main characteristic relies on the datetion of wet and dry surfaces on the study akea.
spatial analysis is made on the relationship betvedieedo §) and surface temperaturg) to define a
threshold, separating evaporative and dry areaBA&Ealculates the energy partitioning combining
physical parameterization and empirical relatiopshwith minimum ground data, and computes wind
speed and air temperatuiie)( The latent heat fluxof evapotranspiration) is computed at the satellite
acquisition time, as the residual of the energwamet. A detailed description can been found in.[12]
The main advantages of this model are that i) thedoints have been validated by Jacob et al.; [14]
the model was used with success for various afita [15,16, 53], and ii) it is easy to implement
and not expensive in computing time.

The second model used to estimate surface fluxdstemperatures variations over the Crau-
Camargue, was the Brunet et al. model [13], thatcalleed here ‘PBLs’. It was initially developped
over a homogeneous surface on a daily time scélis. [And-surface model consists in coupling the
simple soil-vegetation-atmosphere transfer modseketieon the Penman-Monteith equations, and the
planetary boundary layePBL) model of Tennekes and Driedonks [18]. The surfsdeeme is based
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on the resolution of the energy budget. The canepyeated as a single big leaf where the complexit
of vegetation-atmosphere interactions were reduoed key parameter, the surface resistamp (
computed with the same parametrisation used ihSBA& model described by Jacquemin and Noilhan
[19]. The formulation foRs (derived from the Jarvis approach) depends uptm &tonospheric factors
and available water in the soil (equation 2)
- I:esmin (2)
R f f,f,f,LAl
WhereRqmin is the minimum stomatal resistanége, are limiting factors varying from 0 to 1. They
depend on atmospheric and soil moisture conditibhey are described in detail in [19, 21]).
PBLs takes into account the feedbacks between caudad atmosphere via the following simple
equation:
X _1
E = E(FXS —Fy )+CFx (3)
Wheret is time, X is air potential temperaturd or air moisture ), CFy is a term due to the
Coriolis force and~xs andFxy are the vertical fluxes at the bottom and thedbihe mixed layerfxs
correspond to the convective fluxes computed bythedeaf surface model.
As the landscape is heterogeneous, we have modifgedurface scheme, in order to take into account
the surface variability, introducing a ‘tile appoba to compute thé=x term [20, 50]. The method
consists in averaging the surface fluxes computed each vegetation class, weighted by their pércen

of surface occupatior according to equation 4 (Figure2).
Zr_]:aiRni:Zr_]:ai[Hi-'-LEi-'-Gi] (4)

This tile approach requests spatially distributesttiables derived from remote sensing data,
described in the next section. Other variables ve¢se requested by the model, like the initialising
variables for the atmosphere, the daily evolutibthe global radiation and windspeed. Temperature
and humidity profiles were initiated using radiasading measurements. Seven characteristic points
define these profilesT,, the potential temperaturegs( the specific humidity) at the surface boundary
layer height licLs), M (and y4s respectively) the slopes of temperature (and hityhidvolution in the
free atmosphere, andT, (4gs) the jump of temperature (or humidity) between fierel mixed
atmosphere (figure 2). The model computes all linees of the energy balance in addition to surface
temperature, air temperatui®) and air moisturegj at each time step, all along the day.
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Figure 2. Simplified description of the atmospheric profddopted in the PBLs model
(symbols defined in the text).
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3.2. Models used for estimation of biophysical variables from FORMOSAT-2 data

High resolution FORMOSAT-2 images were used to iafpatestimate the input parameters
necessary to SEBAL and PBLs. Albed), (roughnessZ,), emissivity € were common to the two
models. Some parameters were derived from a lantheg®e taking into account both the ground
measurements and the expert knowledge on the c@pers were computed using semi-empirical
models combining reflectances in different specttabes as summarized in table 3.

Table 3. Input parameters for both models SEBAL and PBesved from remote
sensing data. (f: empirical function, or semi enapir models described in the next

paragraph).
Spatialized inputs | SEBAL PBLs
Common for Albedo= f(FORMOSAT)
both models Roughness=f(landuse map, FORMOSAT)
Emissivity= f{(FORMOSAT)
For each model Ts=f(FLIR) f2=f(FORMOSAT,FLIR)
NDVI LAI=f(FORMOSAT)
+params linked to surface resistance
(idem z0)

First a land use classification was done, based oraximum likelihood supervised classification
from images acquired at 5 dates, chosen at the stages of crop development. Sixteen classes were
identified. Those classes included vegetation coasrwell as free water surfaces and bare soi Thi
map has been then improved introducing informaéibaut the agricultural practices applied to some
crops.
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Indeed, the identification of the main cultural girees performed at the field scale, such as
irrigation, meadow cut, harvest, plowing, sowindegas crucial for an accurate determination of the
main surface parameters. For example, the roughmapsvas deduced from the Brutsaert’relationship
(20=0.13hy), hveg being the mean height measured for each vegetatioer. The crop heights were
derived from the landuse map and expert knowleAfehe meadows were not cut at the same date.
According to the cut date and irrigation frequeneg, have observed from our ground measurements
that crop height varied from 0.05 m to 0.6 m, legdio evapotranspiration values varying from 1 to 7
mm per day. Here two factors have an impact orddueease of evapotranspiration; irrigation and LAI
decrease due to the cut. Simulations performed wrigated meadow with a crop model (STICS,
described in [51]) clearly highlighted this largeffetence of evapotranspiration due to these
agricultural practices (figure 3). It is therefongportant to know with accuracy the occurrenceuufis
main practices.

Figure. 3. Simulation of evapotranspiration performed witbrap model (STICS) over
the irrigated meadow flooded every 11 days and3ctitnes from I January to 31
August 2006.
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The high spatial and temporal resolution of the MRS AT-2 images allowed to track these surface

modifications as it is displayed on figure 4. Theeecessive NDVI images taken at the end of April,

zoomed over irrigated meadow fields, showed cletiréy freshly cut fields which are associated to

large drops in NDVI. From the analysis of thesegeral variations, a map of the cut dates was done

for the irrigated meadows (fig 4d).
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Figure 4. NDVI computed for 3 consecutive dates in Aprik4b b)27/5, ¢)30/5/2006
from FORMOSAT images zoomed on irrigated meadowsvahg to detect d) the date
of the grass cut for the different fields.(see ayojpe for NDVI definition).
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This information has been also used to derive mvdgeme parameters occurring in the formulation
of the surface resistanc& applied in the PBLs model (eq 2). Values for mmom resistances:
(Rsmin) Were affected for each crop class according &ldmduse map accounting cultural practices
performed (for examplBgyin Was lower for irrigated fields than for dry crops)

Among the four limiting factors appearing in eqoatl, the most important fs which represents the
root zone available water fraction. It varies beaw® (completely dry) and 1 (saturated). It is ofte
difficult to estimate with accuracy because it garia lot spatially at regional scale and all alang
cultural cycle according to crop development staged for different practices (such as irrigation).
Numerous studies have shown the relationships leetveeirface temperaturdsf and plant water
status [22, 23]. In SEBALTs is an input data that indirectly informs on thetsg variability of soil
moisture at regional scale. Concerning PBLs,is a model output, and two approaches exist to
estimatef,: either by forcing the model by fa map as accurate as possible, deduced from various
observations, or by estimatifigthrough assimilation methods [24]. In a first €agre have chosen to
force PBLs with &, map obtained from remote sensing data and obsengatirhe second approach
based on an assimilation procedure to retri@vis currently under study [20]. For this studywas
deduced from the analysis of the thermal imagesised) at fine resolution with the airborne camera,
combined with the FORMOSAT image acquired at theesdate. We have assumed a negative linear
correlation betwees and f, with minimum Ts corresponding to a maximura and inversely, a
maximumTs corresponding to a minimufa(eq 5).

— (meax- f2min)'(Ts - Tsmin)
f,= - +f

Smax smin

()

2max

In order to define these extreme values for thelistl day, we have analysed the relationship
betweenTs andNDVI (figure 5). From a simple thresholding ®a andNDVI values, we could well
separate the very wet areas corresponding to swantgpseadows that have been floodeBV1>0.7
andTs < 35°C, for whichf, will be maximum) from very dry areas correspondindpare soil or wheat
stubbles IDVI<0.3 andTs >47°C, wherd; is at minimum). The maximum and minimum measured
surface temperaturesls max and Ts min, Of these extreme surfacegere of 59.8°C and 18.8°C
respectively. The estimation of the extremeg$2ofesulted in several PBLs runs, made with different
values off2. We have chosen the values which gave the beshaggins of sensible heat fluxes
compared to our ground measuremefitgaxandf, minwere therefore set to 0.7 and 0.3 respectively.
We noticed that these extremes corresponded tdhtieshold values oNDVI defined to separate
irrigated areas from very dry lands. The other sigieesented in table 1 are currently under study in
order to see if the same relationships can be féomndifferent surface and atmospheric conditions.
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Figure 5. Relationship obtained over a small area covetitgg measurement fields
(5x5km), between NDVI computed from FORMOSAT datal &s measured from the
TIR airborne camera on July 26 at 11:30TU.(the ceasses correspond to NDVI
averaged over an class interval of 0.002).
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For LAl estimation, among the various models proposeleniterature (see reviews made by [25]),
we chose the simple relation initially proposed Asrar et al. [26], and widely used for various

applications [27].
(1 NDVI -NDVI
LA _{KLN j"r(NDVI S—NDVIJ ©)

whereNDVI,, is the asymptotic value AMDVI whenLAl tends towards a maximum value, that was
practically around 7 in our study ca$dDVIsis the bare soiNDVI value andK ,, is the extinction
coefficient. Those parameters were fitted to messdata using an optimisation approach based on the
simplex method, which aimed at minimizing the RM#an Square ErroRMSE) between measured
and calculatedLAl. A ‘leave-one-out’ cross-validation re-sampling thuel described briefly in
appendix [43, 45] was applied to estimate the perémce of the approach.

Emissivity maps were then estimated from LAl maassording to the model proposed by Francois et
al, [28]. Values varied between 0.95 and 0.98.

Various models have also been proposed in thaltiter to estimate albedo. They vary from simple
techniques based on multi linear regressions usidgectional reflectances acquired in the Visible
(VIS) and Near InfraredNIR) ranges [29], to more complex models using ragkatransfer models
such as SAIL [30] and inversion procedures [31]reHagain, we have chosen the simplest model
based on a linear combination of VIS and NIR reflaces &is, onir).- As no coefficient set for linear
combination of wavebands was yet defined for FORMD, we have adjusted a new coefficients
set from our data set. Different regression modelse tested with several spectral band combinations
Only positive, significant bands were kept and $hen of the coefficients was verified to be almost
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equal to one as suggested by Jacob et al. [32]llI§ithe best result was obtained with only twods
in the red and near infrared ranges shown in eguatj

(7)

a=0.6450,, +0.3820,,

Let us mention that different methodologies foreasgng LAI and albedo (not described in this paper)
have been compared using the same data set [papaitted 52]. We have chosen in this study only
the simplest methods which gave the better results.

4. Results - Discussion
4.1. Validation of biophysical variables

The performance criteria (defined in appendix) oiatd for albedo estimationRMSEr = 7.07%
and RSMEA=0.014) were very acceptable since they were coabaron one hand, to the precision
obtained by Weiss and Baret [33], and Jacob ¢B2].while estimating shortwave albedo, and, on the
other hand, to the albedometer precision which arasind 5%. Note that those results were very
satisfactory (fig 6b) despite the fact that thesseal variations of the solar zenith and azimuthjlem
were neglected. However, we can notice a sliglgedson for meadow and rice which have specific
cultural practices (rice always submergred by waterd meadow flooded each 11 days). Let us
mention that these relationships must be validatent different vegetation covers in order to evedua
their extrapolation capacities.

Figure 6: Comparison betwees) estimated_Al based orNDVI method and measured
using hemispheric photographies abj estimated and measured albedos over the
different field from March to October 2006.
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For LAI estimation, the best fitted values found INDVI.,, NDVIs, andK_ were respectively 0.9,
0.1, and 0.70, with a RMSEof 26.8%. The results compared to ground measurenveere globally
satisfactory as displayed in figure 6a. Those \&alere very comparable to those obtained in other
studies [27, 35]. However, we can notice more d&pa for irrigated meadows at hidtAl values.
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Discrepancies between simulations and measurerfmntsgh values of LAl (>4) hare already been
observed by several authors [17, 6]. In order tbebeinderstand this dispersion, we have analyzed t
temporal variation oLAl. Figure 7 displays a comparison between the dyrmmwmi estimated and
measured meadowAl, the evolution of vegetation height,y, and the main cultural practices
performed over the study period (3 cuts and irrigaievery 11 days approximately). We can first
notice that the 3 cuts, represented by verticabvesron the figure, are well identified HyAl
measurements and FORMOSAT data. We saw that siongagave better results if they were only
compared to the measurements with their confid@meevals than to interpolated data. The choice of
the linear interpolation dfAl appears indeed questionable. Other empirical rsagsdd classically to
interpolateLAl data such as those proposed by [53] can be apistiort period for the meadow
between each cut. However such empirical modelsataake into account small variations due to
various factors such as water stress which carctaffél for small periods between two irrigation
events.

Finally, we can conclude that single multidate moubip relationships empirical approaches yield
accurate estimates dfAl and albedo from the limited information provideg BORMOSAT-2
sampling (three wave bands and one direction).

Figure 7. a) Rainfall and irrigation events over the study peérib) Measured
vegetation height with vertical bars correspondioghe 95% confidence interval of
measurementsc) Comparison between estimated and measured LAlrragjaied
meadow over the study period.
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4.2. Validation of Surface fluxes

Spatial variations of the main energy fluxes arrdteinperatures were simulated by both models:
SEBAL and PBLs for the July 26 2006. Comparisonsrewenade between simulations and
measurements accounting for the footprint of thtegrated flux measurements. The footprint was
computed based on the analytical solution of tiffeglon equation of [36].

In general, there was reasonable agreement betsaresible flux outputs from both models versus
ground measurements (figure 7). The RMSE were otispéy of 27 W/m? for SEBAL estimations and
of 30 W/m2 for the PBLs estimations. Let us mentlwre that these values were computed, for
SEBAL, between instantaneous simulations obtairte@1e30 and measurements performed at the
same time (see figure 9). While RMSE computed BL$takes into account all values simulated
from 6:00 to 18:00 TU compared to the measurememiraged at the same time step. The
instantaneous RMSE for PBLs at the time than SEBA&k of 31.7W/m2. These errors are acceptable
since they were comparable to those found in teealiure [1, 23].

Figure 8. Comparisons between sensible heat fluxes estihiatehe main crops with

PBLs model (bold line) and field data (points) aced with 1D anenometers. (SEBAL
estimations : black square).
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Figure 9. Sensible heat flux computed with the SEBAL mddelthe July 26 2006 at
11:30 TU,a) compared to the measurements performed over &fields,b) over a
small area extracted from the FORMOSAT and FLIRgesa
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The simulated surface fluxes showed large spatiahtrons due to differences in soil moisture and
surface roughness, which were highly dependantutinral practices performed on each field, as it is
shown in figure 9. Irrigation appeared, as expectsl the factor explaining the greatest spatial
variation. Irrigated meadows showed the lowesteslior sensible heat fluxes (figure 9a), while bare
soils or wheat stubbles, which were very dry as thate, had the highest values of sensible heat flu
(250 W/m?2). On Figure 9b we observed different Huga for meadows due to differences in irrigation
and cut dates.

The large confidence intervals observed for tha éetd (fig 9a) were essentially due to the sugfac
heterogeneity. Indeed, this field was sown reldyilete on May 8 and was intermittently irrigated by
sprinklers depending on weather conditions. Thé was very stony at some locations, with a low
water reserve, that explained the bad developménthis crop for 2006. The measurement
representativeness was therefore arguable overdhsfield.

Figure 10. Air temperature estimated at 2m above the sudaé®m SEBAL model
andb) PBLs model for the 26 July at 11:30TU.

4.3. Air temper ature estimations

Figure 10 shows the air temperature maps obtairgdSEBAL and PBLs at 11:30TU for the 26
of July. Both models clearly simulated a different&°C between wet and dry areas, which was in the
order of the difference observed from the metegiold measurements performed on the various
fields and in the range of order of other studegshe same area [55]. However, we noticed that
SEBAL gave higher values than PBLs and overesticdhbjeabout 2°C when compared to the ground
measured temperatures. These results suggesothataf the simplifying assumptions in SEBAL may
not be strictly applicable over a wide range ofdibans present within this region, in particuldre
linear relationship between surface air temperatifierence and Ts. Numerous papers have also
discussed the problem linked to the choice of thedm threshold to separate wet and dry area,tand i
influence on this linear relationship to retriey®m®ae canopy air temperature [1, 37, 54].
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5. Summary-Conclusion

This study focussed on assessing the potentialdfeEORMOSAT-2 data for water and crop
monitoring at regional scale. We have shown thathilgh temporal and spatial resolutions of these
new remote sensing data allowed providing accwsatiace parameters that lead to satisfactory flux
simulations when used as input data in both lamthse models tested. Indeed, identification of each
crop type associated with its main cultural pradids possible (such as irrigation and cut date of
meadow for example). Roughness map can then beratald with more precision. The main surface
parameters characterizing the vegetation developswahn ad Al, or the surface radiative properties
such as albedo can be derived from these data wwsimgle methodologies easy to implement
everywhere. The found relationships were acquirateuthe specific geometrical configuration of the
site, i.e. under 41° zenith view angle and solaitheangles ranging from 25° up to 45°. Application
other conditions may require adaptations, eithengu8RDF models if well calibrated over the
surfaces investigated, or replication of the wheig@erimental process under these new conditions.
Alternative approaches based on radiative transfedel inversion were not yet applied from this
study, and should require further efforts. Howevtre fact that single multidate multicrop
relationships based on empirical approaches yietdirate estimates dfAl and albedo from the
limited information provided by FORMOSAT-2 samplifithree wave bands and one direction)
indicates that this might be possible under wediiingel prior information.

Preliminary simulations using two different landrface models (SEBAL and PBLS) were
performed using input parameters derived from FORM®D-2 data, to compute surface fluxes and air
temperature above canopy. The results obtainefluborestimations were satisfactory for both models
with a slight overestimation for microclimate vdnies simulated with SEBAL due to simplified
assumptions used in this model. Both models wesedan surface energy balance with a single
source approach. This study has shown that withnmoim ancillary information, simple models could
be used for water management with quite acceptasiglts [53]. However, it would be required to
have remote sensing data at high spatial and teahpesolution. FORMOSAT-2 provides images
every day in four spectral bands in the visible awér infrared domains. Thermal data are also
necessary at fine resolution. Currently, there ravesatellites which provide similar temporal and
spatial resolution such as FORMOSAT-2 in this g@¢atange. MODIS (EOS) or AVHRR (from
NOAA meteorological satellites) deliver thermal aladn a daily basis but with a coarse spatial
resolution of 1km. A higher resolution was achiebgd_andsat (TM: 120m, ETM: 60m), and ASTER
(90m) but the time revisit is low (16 days), andra allow to detect for example meadow irrigation
occurring every 11 days in our region. There isrenity a strong demand from the scientific
community for having thermal sensors with fineroteson, such as the former European SPECTRA
mission which yielded the Chinese SPECTLA missiblerienti, 2005 personal communication), or
future MISTIGRI mission currently in study by CNE®$4]. Meanwhile, recent works have explored
the possibility to use simultaneously various spatésolutions [39] Different methodologies have
been proposed to disaggregate large pixelk td estimate subpixdls combining various information
at different wavelengths [40, 41].
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A next step for the current study will be to analyBis point which requires more investigations in
the future for operational applications, in compgrASTER and airborne data acquired over the same
area.
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Appendix

FORMOSAT?2 features (from http://www.spotimage.fr/iweb/en/979-formo&atmagery-features.php)

Black &White : 2-m
Colour 2-m (merge)
Multispectral (R, G, B, NIR): 8-m

Bundle (separate Pan and MS images)

Products

P :0,45 - 0,90 pm (Panchromatic)
B1:0,45- 0,52 um (Blue)
Spectral bands B2 :0,52 - 0,60 pm (Green)
B3:0,63 - 0,69 um (Red)

B4 : 0,76 — 0,90 pum (Near-infrared)

Sensor footprint 24 km x 24 km

Reuvisit interval Daily

Viewing angles Cross-track and along-track (forviaift): +/- 45°
Yes

Satellite tasking
Panchromatic and multispectral images can be aadjair the same tine

Image dynamics 8 bits/pixel

MS : 35 Mb

Image file size (level 1A without metadata)
Pan: 137 Mb

NDVI definition
NDVI=(reflectancgear inrarea reflectancesq)/( reflectanc@ear infrared reflectanceyq
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Performance criteria

Absolute and relative root mean square efRM$E, andRMSER) between predictedPf and observed

(O) values were calculated according the followingnfola, weren is the total number of

observations, an¢O> the mean value of those observed values

Brief description of the‘leave-one-out’ cross validtion method

A ‘leave-one-out’ cross validation method is aistatal method used for estimating generalization
error based on "resampling” [43,44,45]. It a corepubtensive method used frequently in applied
statistics. The method is based on observed dadaalbows robust estimation of sampling varianaes o
standard errors and (asymmetrical) confidence vater The fundamental idea of the model-based
sampling theory approach to statistical inferengethat the data arise as a sample from some
conceptual probability distributiorf, In practical application, the cross validation amg that N
separate times (N being, the number of data paintise set), the function approximator is trained o
all the data except for one point and a predicisomade for that point. the average error is coegbut
and used to evaluate the model.
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