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Abstract: Accurate, reliable and skillful forecasting of keyvironmental variables such as
soil moisture and snow are of paramount importaheeto their strong influence on many
water resources applications including flood cdntagricultural production and effective
water resources management which collectively obtitie behavior of the climate system.
Soil moisture is a key state variable in land stefatmosphere interactions affecting
surface energy fluxes, runoff and the radiatiorabe¢. Snow processes also have a large
influence on land-atmosphere energy exchanges auwnadw high albedo, low thermal
conductivity and considerable spatial and tempwggalability resulting in the dramatic
change on surface and ground temperature. Measotehthese two variables is possible
through variety of methods using ground-based amdlote sensing procedures. Remote
sensing, however, holds great promise for soil tnogsand snow measurements which
have considerable spatial and temporal variabilierging these measurements with
hydrologic model outputs in a systematic and eiffectvay results in an improvement of
land surface model prediction. Data Assimilatiooyies a mechanism to combine these
two sources of estimation. Much success has beamed in recent years in using data
from passive microwave sensors and assimilatingntlwto the models. This paper
provides an overview of the remote sensing measmetechniques for soil moisture and
snow data and describes the advances in data Eggmtechniques through the ensemble
filtering, mainly Ensemble Kalman filter (EnKF) amdrticle filter (PF), for improving the
model prediction and reducing the uncertaintiesolved in prediction process. It is
believed that PF provides a complete representatiadhe probability distribution of state
variables of interests (according to sequentialeBdgw) and could be a strong alternative
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to EnKF which is subject to some limitations inchgl the linear updating rule and
assumption of jointly normal distribution of errarsstate variables and observation.
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1. Introduction

Hydrologic modeling has greatly benefited from aliagon of land surface water, energy, and
carbon conditions which are of critical importammsng to their profound impacts on real world water
resources applications such as flood control, veaéimd climate prediction, agricultural production
and water resources management which collectivatyrol the behavior of the climate system.

Many studies have demonstrated that initial anchdaty conditions of state variables such as soill
moisture, soil temperature or vegetation water @oinat different temporal and spatial scales egerci
strong controls on climate, weather and hydrolqmcesses. [9, 11, 21, 59]. Observing these state
variables and assimilating them into hydrologic eledo improve the model prediction are crucial for
natural resources management, flood forecastind, caop management. Depending on the spatial
scale of interest, there are different ways to memshese state variables. At the local scalejtin-s
techniques provide fairly accurate measurementbeftate variables at the time scale of intefést.
in-situ observations are directly incorporated asdd in large scale models they pose limitatiores du
to their very small spatial support. An alternativeuld be the incorporation of satellite remotely-
sensed measurements which provide spatially integyraeasurement of state variables with a specific
temporal sampling depending upon the orbital plasdrof the satellites.

Remote sensing has shown great promise for prayidmabundance of data and information that
were lacking with the in-situ observations. It ha@lso been a valuable tool in many hydrologic
modeling applications due to its capability of pbrng unrestricted collection of information with
wide spatial coverage and temporal repeat [31].

Soil moisture plays a key role in the terrestriatev cycle and is responsible for the partitionifg
precipitation between surface water (runoff) amategie through infiltration. Surface and root zooi¢ s
moisture control the redistribution of incoming iettn (available energy) on the land surface into
sensible and latent heat (evaporative) fluxes. ddstdnding soil moisture is pivotal in various dil
such as agriculture, ecology, hydrology and evereginical engineering. Furthermore, root zone soil
moisture carries memory from weekly to monthly thoales; therefore its accurate initialization may
contribute to enhanced prediction of summer préatipin [14, 18, 36]. Soil moisture regulates the
availability of water and nutrients to plants ahtias a significant impact on global water cyclHse
change in the meteorological fluxes that drive swilisture is subject to large-scale variationsdih s
moisture creating a feedback mechanism that cae bansiderable influence on climate and land use
change [3, 20, 23].

Snowpack is a major component of seasonal watgrlygup many middle to high latitude alpine
catchments and it contributes a considerable ptxgen(for example, 70-80 percent in the
northwestern US) to the total annual runoff in theegions. Snow has large influence on land-
atmosphere energy exchanges due to its high allbmsdhermal conductivity and considerable spatial
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and temporal variability resulting in the dramati@ange of surface and ground temperature. Accurate
estimation of the amount and timing of snowmeltpied with proper monitoring of snow properties
including snow extent and snow water equivalent E3\Ate vital to estimating a more accurate water
supply forecast as required for water resourcesag@ment. Analyses of snowpack observations
collected over the past decade indicate that packsmelting earlier in the year and SWE data
collected from snow course sites display negatigads over the period of record from 1950-2000.
Therefore, understanding the evolution of snow gnand mass balance processes is imperative for a
complete description of the hydrological cycle asin and regional scales to accurately characterize
and estimate snow properties in the snow dominagggbns for flood and avalanche warnings,
environmental compliance, and water geochemistry$e by water resources managers and planers.

2. Soil Moisture Observation

Soil moisture information may be obtained in twoyaal) it may be derived by running a land
surface model through which the meteorological ifgycobservation is propagated; 2) it may be
retrieved from in-situ measurement or from low-freqcy passive and active microwave data. It has
long been recognized that reliable, robust andraated methods for the measurement of soil moisture
content could be extremely useful, if not esseniial hydrologic, environmental and agricultural
applications. Despite the availability of variougthiods in retrieving soil moisture at a single tara
there are currently no networks of in-situ sensioas provide regional or global data sets. Consider
that such networks are expensive and impracticalaliégention has gone to remote sensing data, which
are able to provide large-scale information suédbl regional and global applications. Platforros f
supporting remote sensing instruments have variech fground-based supports to aircraft and
satellites. Ground-based systems can be mountdduoks or on special structures such as rails to
allow for movement of the sensor. The advantagbede ground-based systems is the relatively small
footprint of the sensor providing easy control dgrthe measurement period. The main disadvantage
is the small coverage of large areas. The airgrafunted systems can overcome some of these
limitations while mapping the larger area and carves as prototypes for future satellite sensors.
However, satellite remote sensing offers the odtisaéution owing to their capability of monitoring
large areas with long term repetitive coverage.

Satellite observations alone are not sufficientalise of the temporal and spatial gaps in their
coverage. Also the deeper soil moistures cannathserved directly from space. Therefore, the best
possible system would integrate the benefits ofl lsmnrface models, in-situ and satellite observation
to assess global soil moisture conditions. Thisleadone through Data Assimilation (DA) as a means
of merging observation with model output to imprayen the accuracy of the estimation. This will be
explained in detail in section 4.

Some of the most commonly used remote sensingumsints for soil moisture observation are the
Multi-Spectral Scanner (MSS), Thematic Mapper (TNHermal infra-red line scanner, Synthetic
Aperture Radar (SAR), and microwave radiometerhdligh numerous remote sensing systems are in
existence and have been utilized for soil moistagasurement, the most appropriate is microwave
remote sensing. Microwave remote sensing providegans of direct measurement of soil moisture
for a range of vegetation cover conditions. Suanate measurement provides the opportunity of
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observing frequent, global sampling of soil moistwith large spatial resolution. The main advantage
of microwave measurements is that they are notctaifie by cloud cover and variable solar

illumination; however, the accuracy in soil moigiwestimation is limited to regions with either bare

soil or low to moderate amounts of vegetation [46].

The two approaches used in microwave soil moigtueasurement are active and passive [31]. In
active methods a microwave pulse is transmittedt@dbackscattering from the object is received and
compared with the signal sent to determine the dxzatkering coefficient. In passive methods, the
brightness temperature is measured at microwaggHeDifferent portions of the microwave region of
the electromagnetic spectrum known as bands arechémletters. Some of the most commonly used
bands in Earth remote sensing are: K (18-27 GHZ}8A2 GHZ), C (4-8 GHZ), and L (1-2 GHZ)
[31]. The best soil moisture information is prowddat very low microwave frequencies (< 6GHZ)
owing to the reduced atmospheric attenuation aedtgr vegetation penetration at lower wavelengths.
Most of the studies to date have used the obsensatvithin L band at 1.4 GHZ as the signals in this
band show the maximum sensitivity to surface saiisture [46]. Due to the effects of moisture on the
dielectric constant and emissivity of soil, micrax@ameasurements are sensitive to soil moisture. In
fact, the sharp contrast between the dielectricstzmts for water (about 80 at frequencies below
5GHZ) and that of dry soil (about 3.5) is what makeeasuring soil moisture using low frequency
passive microwave radiation possible. This largarest between the dielectric constants of watdr an
that of dry soil translate into difference of upli@0 K or more in brightness temperature betweey ve
dry and wet soils [62, 63].

The Advanced Microwave Scanning Radiometer (AMSRyEhe Earth Observing System (EOS)
is currently used for the global soil moisture mapgp[47, 48]. AMSR-E measures radiation at six
frequencies in the range 6.9-89 GHZ with dual ppéion. At an altitude of 705 km, the antenna
scans the upwelling scene brightness temperatwesstioe globe in two days or less with a swath of
1445 km providing near global coverage. Spatiabliggon differs depending on the frequency of
radiation; at 6.9 GHZ the spatial resolution predds 60 km and at 89 GHZ the resolution provided i
5 km. The operational NASA Level-2B AMSR-E “AE_Ldndroduct includes retrievals of surface
soil moisture, a vegetation/roughness correction, guality control variables [4749]. Currently the
AMSR-E soil moisture algorithm is working basedanhange detection approach using the calibrated
AMSR-E channel brightness temperatures [49]. AMSRelE moisture retrievals are made using the
EASE-Grid product. The C-band AMSR-E footprint dd&vel 2A) used by Jackson et al. [32] with a
resolution of approximately 60 km and a samplingphation on average of 10 km along with the
geophysical ancillary data were mapped to an EASH-@ith 25-km resolution. Within each of these
regions ground-based soil moisture sampling wasddwcted at a minimum of 36 geographically
distributed points. Ground sampling included graefinc soil moisture measurements at a depth of 1
and 6 cm and dielectric probe measurements obih@ tm, soil temperatures, surface roughness, and
vegetation parameters.

During calibration and validation field campaigristiee Soil Moisture EXperiments in 2002-2004
(SMEX02, SMEX03, and SMEXO04) [4, 5, 32] the accyraaf the soil moisture algorithm was
investigated on short time scales. Some levelp§istency and calibration stability of the obsdrve
brightness temperatures at specific locations wees in the results. It was concluded, howevet, tha
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the spatial variability of the retrieved soil maoist over areas with different amounts of vegetaison
subject to biases.

3. Snow Observations

Fractional snow cover area (SCA) observations gpitdlly be obtained from visible or infrared
satellite sensors providing high spatial resolutiaservations [28]. However, the effectivenesshaf t
type of sensing is limited by cloud conditions. étter alternative are space-borne passive microwave
remote sensors which are capable of qualitativerwbsions of snow water equivalent (SWE). Since
1978 several satellites have made passive microwgasurements at snow water equivalent sensitive
frequencies [ 15]:

1) The scanning Multichannel Microwave radiome®@MMR), a 5 frequency radiometer providing

observations from October 1978 to August 1987,

2) The Special Sensor Microwave Imager (SSM/l)vhog observations from September 1987

until present; and

3) The Advanced Microwave Scanning Radiometer far Earth Observing system (AMSR-E),

providing observation from May 2002 until present.

The AMSR-E operational snow mapping algorithm emplan empirical relationship to estimate
SWE from surface brightness temperature while gliogi SWE estimate at a spatial resolution of 25
km. The microwave sensors measure snow mass ufaetycand nighttime conditions, however,
dense vegetation cover and water bodies cause fetrgeval errors [22]. Studies by Dong et al.,][15
shows that the SWE retrievals are not sensitivihito snow packs (SWE <10 mm). Several studies
have shown that SCA and SWE observations are gooctes of information to improve upon the
model snow estimates [1, 8, 55, 57, 58].

Snow Cover Area (SCA) among many other land surfeatures is available since 1999 as a 500-
meter daily gridded product from the Moderate Resoh Imaging Spectroradiometer (MODIS)
sensor flown on board the Terra Earth ObservingeBygEOS) platform [27]. The product provides a
binary classification per pixel for snow cover, wip or bare ground. Due to improved spectral
resolution and higher spatial resolution of the MORs compared to GOES and AVHRR, the more
accurate SCA can be obtained from MODIS. The stogyMaurer et al., [40] demonstrated that
MODIS has the ability to significantly better cldgshe greater amount of snow in topographically
complex and forested basins. The MODIS productbessn available since February 2000. One of the
limitations of MODIS data is cloud cover. Andreadisd Lettenmaier, [1] used a fractional cloud cover
threshold of 20% to decide whether to use the @asien or not. They assimilated the SCA if lesstha
20% of the grid cells in their modeling domain weowered by cloud.

4. Hydrologic Data Assimilation

An explosion of activities has been witnessed dkierpast two decades on the development and
application of data assimilation systems. Datanaitsion is a way to integrate the data from variaft
sources with different resolutions and accuracigis model prediction to improve deterministic model
accuracy [41]. In other words, data assimilatiorused to not only update the hydrological model
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states that optimally combine model outputs witsestsation, but also to quantify observational and
hydrological model errors. Data assimilation hasrbesed in other disciplines including the oceah an
meteorological sciences to improve upon the prabitity of short term weather forecasting modets. |
recent years, development and application of degarélation in hydrologic modeling has grown with
the intention to exploit the increased availabibfyremotely sensed land surface variables [ 10439
52, 61]. Numerous studies have also evaluatedssiendation of soil moisture, snow, and surfacenski
temperature observations [e.g. 1, 6, 10, 16, 3958155, 57]. These studies demonstrate the paken
of data assimilation to improve the land surfacedeh@redictions as well as explore the difficulties
and complexities in data management associateddatthassimilation.

One of the data assimilation techniques that hasenbused in hydrologic application is the
variational method [see 54, 56]. In this method gh&blem is formulated as a set of model statefs tha
minimizes a cost function defining the model reaidd’he model error in this method is generally
assumed to be time-invariant. As noted by Seo.gf] the state-space formulation of the system i
not needed in this procedure, however, the assompuf time-invariant model covariance is not
realistic. The derivation of the adjoint model,igéhis essentially the linearized hydrologic model,
also adds to the complexity of implementation df firocedure.

Among many other data assimilation techniques, gbquential assimilation algorithms using
filtering have garnered the attention of hydroltgislue to flexibility in handling all sources of
uncertainties and as well as the possibility gesting the data sequentially as it becomes dlaila
One of the early hydrologic data assimilation mdthe the application of linear Kalman filter [e.qg.
34, 35]. In the case of nonlinear, hydrological eloidhe data is rendered in state-space form and by
assuming that the model state variables are diffedele the Extended Kalman filter (EKF) can be
used. By using this method the model error atithe bf observation can be estimated by propagating
the covariance matrix of model errors. As repolig@Evenseril9] and Reichle et al. [33he EKF can
lead to unstable results in the presence of stnemfjnearity in the system. As noted by Reichlalet
[53] EKF cannot be used in large scale environnieasaimilation problems such as distributed
hydrological models. This problem can be bypassgdigboring the spatial correlations among
variables in the watershed. This assumption, howdénghly limits the application of EKF because the
knowledge of spatial correlation among the statdalbbes or the model fluxes is of paramount
importance for accurately updating the model statebles.

Another approach to data assimilation is Monte €&insemble) methods. These methods have
received considerable attention by hydrologistseitent years as they are easy to implement and the
computational burden is less of an issue with tieeeiased computing power nowadays. To cope with
the drawbacks of the EKF, a Monte Carlo-based Kalfiiter called ensemble Kalman filter (EnKF)
was introduced by Evens¢h9]. One of the advantages of the EnKF when compardhdet standard
EKF is that the estimation of priori model covadans not needed for the updating (analysis) step
although its calculation using the model ensenmbkgraightforward. The primary application of EnKF
in hydrology is the soil moisture or soil temperatyrofile estimation improvement in vertical
direction by assimilating in-situ observation ome sensing data [10, 17, 24, 29, 30, 38, 53].
Moradkhani et al. [43] extended the applicatiorir@f EnKF to dual state and parameter estimation of
conceptual hydrologic models while the time-varyumgertainty of the states and parameters were
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obtained through this procedure. For some otheliGgions of EnKF in uncertainty assessment of
conceptual rainfall-runoff model, please see [68, 6

The EnKF uses a Monte Carlo approach to approxiteteconditional second-order moments of
variables of interest using a finite number of @mdy generated model replicates. However, the major
limitation of all the filtering techniques rooted Kalman filtering is their closure at the secomden
moments implying that the filter evolution is chetexized by their model state covariance. Also, the
EnKF is limited to the linear updating rule with nsaderable simplification while using a highly
nonlinear hydrologic model. This has encouraged ligdrologists to look into other filtering
techniques, such as Particle filter (PF) [44, &, & avoid the aforementioned limitations. Theirma
difference of particle filter from other data as#ation methods is that the model state variablkes a
not updated but rather their probability distrilbnt are evolved through time. In fact the model
ensemble members are characterized by a set aktdisandom particles with associated weights
(probabilities). The probability distributions ofaalel predictions are then calculated as a weighted
combination of the ensemble members [2, 44].

4.1. Sequential Bayesian Data Assimilation using Ensemble Filtering

The mathematical framework of estimation theoryptes the tools required to approach variety of
data assimilation problems. The basic objectivelaih assimilation is to characterize the statenof a
environmental system at some future time basedeknowledge of the initial system state. Bayesian
inference provides a mechanism to combine the gatwe (hydrologic data) and qualitative data
(prior information obtained by the experience operts in the field) to yield the posteriori as more
informative probability distribution of variable aiterest. Bayesian formulation allows hydrologists
estimate the uncertainty about model predictioa systematic way and can be accomplished without
resort to calibration which is sometimes problematicertain applications.

In a Bayesian formulation, the solution to an iseeproblem is given by posterior probability
distribution P(M|D) over the model spac®(M|D) encompasses all the available information of a
model which are taken from both dgqf), through the likelihood functiof(D|M), and also data-
independent prior information expressed by prioobability P(M) density. The mathematical
description of Bayes law is given as:

P(D|M)P(M) o
P(D)
where the denominatop(D) is the normalization factor. In other words it eres that the
integration ofp(M|D) results tol. The likelihood functiorp(D|M) which measures the likelihood of a
given modeM through its misfite(.), the residual between observation and model sinanais given
in general form as follows:

P(M|D) =

p(DIM) U exp(-e(.)) 2

With the assumption that the model residuals arauatly independent (normally distributed) with
constant variance (i.i.d.) the likelihood functicem be computed using [7]:
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In the absence of an explicit mathematical expoestr P(D|M) and P(M), which is common in
high dimensional problems, Monte Carlo samplingused to explore posterioP(M|D). The
importance sampling, Metropolis-Hastings algoritand Gibbs sampler are the most commonly used
sampling techniques in practideshould be noted that the sampling should nobiased toward any
particular region of parameter space and therelpyossibility of entrapment in local minima.

The original Bayes law explained above (eq. 1hishie batch form where the available historical
data is taken for the uncertainty estimation thiotige conditional probability. However, this form
makes no attempt to include information from newseshations as they become available. The
flexibility required to use the new information @ovided by a sequential Bayesian scheme.
Moradkhani et al. [43, 44] showed that the methoalsed on sequential Bayesian estimation are better
able to benefit from the temporal organization ammdcture of information achieving better confogmit
of the model output with observations.

Let’'s consider the state variabteas the quantity of interest to be estimated withie Bayesian
framework. Due to stochastic nature »@f the pertinent information about it at any timean be
extracted from the observatidh= [y1, y», ... y through the recursive Bayes law:

)= PCY %) POX 1Y) — POY X)) P(X [Yia) (@)

Yt = t’Yt
P(x 1Y) = p(x, Y, PO, | Vo) [ POV 1) P(x, [Y,)dx

As seen in the schematic of recursive Bayes |law Fsgure 1 below), the forecast densitypQf|Y:.
1) can be estimated via Chapman-Kolmogorov equati® &suming thak; follows the Markov
property, therefore:

PO 1Y) = [ PO 1 %0) PO% [ Vi) (5)

The main complication in using the recursive Bdg@sremains in the multidimensional integration
of forecast density as shown in eq. (5) which makesclosed form solution of posterior density (eq.
4) practically intractable. This suggests thatehesemble methods through the usage of Monte Carlo
sampling provide a practical solution to such peoid.
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Figure 1. Sequential Bayesian scheme for evolution of theditmmal probability
density of the state variables by assimilating olegens from time-1 to timet.

Forecast Density

attimet
p(% 1Y)
. . 1 Posterior Density
Posterior Density at time t
at time t-1
—_ p(x [Y)
P04 1Y)
Illl> y \ mytl)ﬂ) Iﬁ Illl>
A

>

Likelihood at time t

4.1.1. Ensemble Kalman Filter

In sequential filtering, the uncertain state ofydrological systenx;, given a set of observatiom;
is presented by the conditional probability dengityctionp(x|y::)). Ensemble methods can be used to
calculate the sample approximation to this den&ityction by generating the random replicates of
model state variables. Following Jazwinski [33] ¢femeric nonlinear dynamic system in earth sciences
are written in discrete-time for both state and sneament equations as follows:

X= f(Xt-1, U, O)+ Wy (6)
yi= h(X)+vi (7)
wherex;is ann-dimensional vector of true but uncertain statealdes,u;is a vector of uncertain
true of model inputs] is vector of model parameters andepresents the uncertainties due to errors in
model formulationy;is the measurement vector ands a vector of additive random measurement
errors. The model and measurement errors are tlypi@ssumed to be Gaussian and independent
random vectors with mean zero and covariar@eand R; respectively. Two sequential estimation
operations are discerned in filtering applications:
1) the forecasting step which is the transitiorstaite variables from one observation time to the
next represented through transition probabpiiy|x:1) in eq. (5),
2) the analysis (updating) step which involves uipgaof the forecasted (propagated) states with
the new observation.
Ensemble procedures present a practical alterntatisa exact Bayesian solution by relying on digcre
estimation of forecast (priori) and analysis (paoet® densities through a set of random varialaled
corresponding weights:
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p(x 1Y) = > W 8(x —X°) ®)

i=1

p(x 1Y) = > W 3(% X" ©)

i=1

These are the empirical approximations of foreaast analysis (update) densities by summation of
n Dirac delta functions where andw denote thé™ sample and its weight before and after updating
shown by minus and plus signs respectively. Thedoan replicates and associated weights are
generated through a variety of methods, one of wisiche ensemble Kalman filter (EnKF).

The forecasting step in the EnKF where the evatutbthe model for each ensemble member is
equally weightedw/~ =1/n, is presented in below:

x = (x40, u) (10)
Thereby, the forecast density in (8) will become:
1S i- 15 i=
p(&l\c_l)ﬁZJ(xt—xt )=525[x1—f(xt ul,6)] (11)
i=1 i=1

It is noted that in this process, the generatioraatiom input samples of is required to generate

the model state replicates in eq. (11). One wagédoerate the input replicates is to consider the
standard error obtained from eq. (7) and genehstegandom variable using the Gaussian distribution
as illustrated in Moradkhani et al. [45]. As sebrotigh eq. (11), the forecasting step is a MontéoCa
approach to derive thp(x |Y,, fipm the uncertainty ini’ using p(u, )and in some applications by
the uncertainty inherent in the parameters of tbdehthroughp(8) . For more details on the inclusion

of parameter uncertainty in the filtering, see Miktzani et al., [43, 44].

If the dynamical system, including states and mesasant equations, are linear and all sources of
uncertainty are normally distributed the celebratéaman filter provides the optimal recursive
solution to the state updating problem. If the eystis nonlinear, as is the case for most of the
hydrologic systems, the linearization of the systamght be considered. Developed from the early
work using state-space filtering, Georgakakos ef2&l] implemented an automatic procedure into the
NWSRFS using the EKF. Certain shortcomings of thec@dure have been discovered including
reformulation of the original SAC-SMA model to at-space form, using first order approximation
of Taylor series which leads to unstable resultewtine nonlinearity in the model is strong, andviiea
computational demands owing to error covarianc@ggation. To overcome the limitation of the EKF,
the EnKF was introduced Evensen [19] which wereal dee assimilating data in large nonlinear ocean
and atmospheric models. The EnKF is also based Maomte Carlo or ensemble generations where the
approximation of the forecast state error covaeanmatrix is made by propagating an ensemble of
model states using the updated states from thequ®etme step. The key point in the performance of
the EnKF is to generate the ensemble of obsenatbreach update time by introducing noise drawn
from a distribution with zero mean and covariangaat to the observational error covariance matrix;
otherwise the updated ensemble will possess aaergovariance [43].

Let denoteX ™ as the ensemble of forecasted model statex{, ..., %) at each time, for each of

the state variables havimgensemble members, that is
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X ={ XX} (12)
If the priori error in the forecasted ensemble mersls shown b ={x~ - x } with
R
E[X]=%"=—2 % (13)
i=1

And, & ={¢",...€"}
Then the model error covariance is calculated tyd&émm the ensemble as follows:
_ _ T 1 _ =
R =Elee ]-me[e[ (14)
Knowing the priori error covariance of model stafiesn (14), the state updates can be obtained by
(15) :
X" =% HK (Y~ 5) =X +K (Y —HX) (15)
Where
K, =P H'(HP'H" +R)" =C”[C” +R™ (16)

where PFHT =C* is the cross covariance of model states and olsmmvaprediction,
HP HT =CY is the covariance of the observation prediction ahdis linearized observation

transformation matrix in eq. (7). If it is assuntedt the forecast and measurement are jointly nprma
their densities are sufficiently characterized bgit mean and covariances, meaning that the higher
order moments are ignored in the update step.

In the EnKF implementation, the observatmt each time should be perturbed, usually using
normal distribution with zero mean and variafteThis creates an ensemble of perturbed observation
which are used in eq. (15) to update the modelrebhemembers.

4.1.2. Particle Filter

Similar to Ensemble Kalman filter, the sequentiay8sian algorithm can be used to derive the
particle filter. Various names are associated with particle filters such as bootstrap filter, the
condensation algorithm, sequential Monte Carlo dmmypinteracting particle approximations, and
survival of the fittest [2]. Unlike the Kalman ®it which simplifies the recursive estimation by
assuming Gaussian distribution for state varialtles,particle filter relaxes the need for restveti
assumptions regarding the forms of the probabilignsities; that is, PF can easily manage the
propagation of non-Gaussian distribution throughlimear hydrologic models [44]. To improve the
estimation accuracy and stability it is possiblérémk the time evolution of the model by meanslbf
moment characteristics through a full probabiligndity function [2, 44]. This is facilitated by ogi
particle filters. Particle filters share the samestasting step with EnKF. However, for the updgtin
step, the updated ensemble members (replicate&eptdéhe same as the forecast values and only the
weights (probabilities) are updated. As mentionadier, in PF the state ensemble members are not
updated but rather their probability distributiomberefore,

X=X (17)
and from eq. (4), the filtering posterios]* is calculated as follows:
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" e v - _b -
W =b.p(y, [ X)W =b.p(y, [ %)W =;p(ytlxt) (18)

Where p(y, |x~ )is the likelihood function for the forecasted repties,b is the normalizing
constant in eq. (189 =1/ p(Y, | .., and we defined earlier tha~ =1/n . By substituting egs. (17)

and (18) into eq. (9), we can obtain the updatest@ymr) probability distribution. In the case of

Gaussian likelihood, the problem of degeneracyasfigles (ensemble collapse to a single point) may
be experienced as those patrticles that are clodbe measurement get higher weights while sther
are discarded. One solution is to use many pastigl@ch, in the case of a distributed model, may no
be a cost effective solution. The second methdd ismplement the resampling technique to prevent
the samples from degeneracy. Some of the sampéidgniques used in particle filtering are the

Sequential Importance sampling (SIS), Sequentigdohtance Resampling or Sampling Importance
Resampling (SIR) and regularized sampling [2] as rtiost commonly used sampling procedures.
Employing the proper sampling technique keeps thsgigbes from dispersion due to stochastic
behavior of the system or degeneracy. For detaiedmation on SIR-particle filter and sampling see
Moradkhani et al. [44]. Through the SIR filter, thresampling is made with replacement n times. In
fact, the probability of a selection of any sampl¢ is equal taw/*. When resampling is over, the new

ensemble of equally weighted particles»gf with weightsw/* =1/nis created. In this process the

replicates with higher weights (probabilities) havéigher chance to be selected and the low weight
replicates are more likely to be discarded.
After the resampling step, the posterior distribatiill be presented as:

p(x [Y) ~%i5(x X (19)

i=1
The new resampled replicates are taken and fongdardgme and procedure through equations (10)
and (11) is continued.

4.1.3. DA Experiment Setup through Observing System SitrariegExperiment (OSSE)

In general, OSSE is designed to enable the motteksramine the performance of data assimilation
procedures and even to obtain the sensitivity ef pnocedure to different models with different
parameterizations and physical representations.EQ@8cally consists of at least four components:
(1) A simulated data sets of land model statesa @yward model to link the states with observadio
(3) a model to degrade these observations accaratgpatial resolution, (4) integrating the degdade
observation into a prediction model. A schematiO&SE is shown in figure 2:
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Figure 2. Schematic of Observing System Simulation Experin@®3SE).
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For such synthetic experiments, “truth” is defingden the model is integrated (run) for a set of
meteorological, soil, vegetation and initial comatis. Considering that the observation from
microwave remotely sensed data for soil moistueeimithe form of brightness temperature, the model
output (soil moisture) should be converted to kingks temperature to make them ready to be ingested
in the updating step of the filtering process. Eifi@re, the modeled soil moisture is taken to aatads
transfer model (RTM) [47]. By doing so, a synthdbicgghtness temperature is generated from the
model. To account for the measurement noise a me@an normally distributed random number is
added to the brightness temperature which syntibticreates the noisy observation (see figure 2).
The open loop simulations are conducted when usmicerhputs are propagated into the model to
degrade the model estimate. To ensure that thertamty in the model input is realistic a
meteorological forcing data set different from tbéthe truth run is used. For example, as desdribe
by Kumar et al. [37], the land surface model isrspsing meteorological forcing from the Global Data
Assimilation System (GDAS) - the global operationaather forecast model of the National Center
for Environmental Prediction (NCEP) [13] create® thruth” or control run then the open loop
simulation is conducted while forcing the land aod model with meteorological forcing from
Goddard Earth Observing System (GEOS) [50].

5. Summary

This paper provides a review of the most commongedu remotely sensed land surface
measurements, mainly microwave remote sensing ptedor both soil moisture and snow (SWE and
SCA) to be used in a data assimilation frameworkrprove upon the land surface model prediction.
Passive microwave remote sensing provides a mdatiseot measurement of soil moisture for a range
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of vegetation cover conditions. Such remote measen¢ provides the opportunity of observing
frequent, global sampling of soil moisture withgarspatial resolution.

Fractional snow cover area (SCA) observations gpitdlly be obtained from visible or infrared
satellite sensors providing high spatial resolutaisservations [28]. However, cloud conditions are
always limiting the effectiveness of these sensorsetrieval. SCA can also be obtained from the
Moderate Resolution Imaging Spectroradiometer (M&DBtudies demonstrate that MODIS has the
ability to significantly better classify the greateamount of snow in topographically complex and
forested basins. Although MODIS data has shown domtations to cloud cover, it is suggested as a
better product well-suited for data assimilatiopa&e-borne passive microwave remote sensors can
also provide a capability for qualitative obsergati of snow water equivalent (SWE). Among several
satellites that have made passive microwave measmts for snow water equivalent, Advanced
Microwave Scanning Radiometer for the Earth Obsgrvsystem (AMSR-E), was used by [1],
however, the magnitude of improvement was foundeaninimal as compared to the assimilation of
SCA from MODIS.

The concept of data assimilation was discussedvaodf the advanced techniques, mainly EnKF
and PF were explained in detail. Considering that tBchniques are used mainly for reducing the
uncertainty, there is still a lack of consensus hiydrologic community on the selection and
implementation of a suitable land DA method to m#et need. It needs to be realized that
contemporary DA methods are used for estimatingstaée variables (here, soil moisture, SWE or
SCA), and uncertainties associated with them, hewewt all sources of uncertainties are addressed
in the assimilation process. These include ungegan model parameters and also model structure
which are ignored in DA implementations. Although this paper we did not intend to provide a
comprehensive review of all the data assimilati@thuds, we focused on two of emerging techniques
as reported by few studies in section 4. It wastiorad that the ensembile filtering using PF reduolts
full representation of prognostic variable and epanameter probability distributions. The EnKF is
limited to the linear updating rule as in the amgi Kalman filter and also assumption of Gaussian
distribution of errors in observation and model.n€idering that the soil moisture and snow water
equivalent probability distribution significantlyhange over time and are often non-normal, the
existing assumptions in EnKF limit its applicationstrongly nonlinear hydrologic models. Knowing
the potentials of PFs, further implementation of &Fan alternative procedure for operational data
assimilation is suggested. The synthetic studyuiiiioOSSE design as seen in section 4.1.3 is an
appropriate procedure to judge about the meritsadrtain technique for land data assimilation thied
method can be used to adequately quantify and raeitme hydrologic predictive uncertainty while
including model parameter uncertainty in the wisdbeme.

Acknowledgements
Author would like to thank anonymous reviewers foeir constructive comments resulting in an

improvement of the paper. The partial financial mup for this study was provided by NOAA grant
NA070AR4310203.



Sensors008, 8 3000

References

10.

11.

12.

13.

14.

15.

Andreadis, K.M.; Lettenmaier, D.P. Assimilating raely sensed snow observations into a
macroscale hydrology modédv. in Water Resou2006, 29, 872-886.

Arulampalam, M.S.; Maskell, S.; Gordon, N.; Cladp,A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracki®ignal Processing, IEEE Transactions on Signal
Processing?002, 50, 174-188.

Beljaars, A.C.M.; Viterbo, P.; Miller, M.J.; Bett$,.K. The Anomalous Rainfall over the United
States during July 1993: Sensitivity to Land Swefaearameterization and Soil Moisture
Anomalies.Mon. Weather Re\1996, 124, 362-383.

Bindlish, R.; Jackson, T.J.; Gasiewski, A.; StankBy, Klein, M.; Cosh, M.H.; Mladenova, 1.;
Watts, C.; Vivoni, E.; Lakshmi, V.; Bolten, J.; Kee T. Aircraft based soil moisture retrievals
under mixed vegetation and topographic conditi®®emote Sensing of Environm&008, 112,
375-390.

Bindlish, R.; Jackson, T.J.; Gasiewski, A.J.; Klelh.; Njoku, E.G. Soil moisture mapping and
AMSR-E validation using the PSR in SMEX(MRemote Sensing of Environm@006, 103 127-
139.

Bosilovich, M.G.; Radakovich, J.D.; Silva, A.; Taay, R.; Verter, F. Skin Temperature Analysis
and Bias Correction in a Coupled Land-AtmospherdaDAssimilation SystemJ. of the
Meteorological Soc. of Japan. Ser2007, 85A 205-228.

Box, G.E.P.; Tiao, G.C. IBayesian Inference in Statistical Analysigjdison-Wesley: Boston,
MA, USA, 1973.

Clark, M.P.; Slater, A.G.; Barrett, A.P.; Hay, L.BIcCabe, G.J.; Rajagopalan, B.; Leavesley, G.
H. Assimilation of snow covered area informatiotoifydrologic and land-surface modefsiv.

in Water Resour2006, 29, 1209-1221.

Claussen, M. On multiple solutions of the atmosphaggetation system in present-day climate.
Global Change Biol1998, 4, 549-559.

Crow, W.T.; Wood, E.F. The assimilation of remotensed soil brightness temperature imagery
into a land surface model using Ensemble Kalmateriilg: a case study based on ESTAR
measurements during SGP®@dv. in Water Resou2003, 26, 137-149.

Das, N.N.; Mohanty, B.P. Temporal dynamics of P@Rdu soil moisture across spatial scales in
an agricultural landscape during SMEX02: A wavelpproachRemote Sensing of Environment
2008, 112, 522-534.

Delworth, T.; Manabe, S. The Influence of Soil Wets on Near-Surface Atmospheric Variability.
J. of Climatel989, 2, 1447-1462.

Derber, J.C.; Parrish, D.F.; Lord, S.J. The New b@loOperational Analysis System at the
National Meteorological CentéWeather and Forecastintp9l, 6, 538-547.

Dirmeyer, P.A. The Role of the Land Surface Backg State in Climate Predictability. of
Hydromet.2003, 4, 599-610.

Dong, J.; Walker, J.P.; Houser, P.R. Factors affgctemotely sensed snow water equivalent
uncertaintyRemote Sensing of Environm2a05, 97, 68-82.



Sensors008, 8 3001

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Drusch, M. Initializing numerical weather predigtionodels with satellite derived surface soil
moisture: Data assimilation experiments with ECMW/HRhtegrated forecast systerd. of
Geophysical Resn press.

Entekhabi, D.; Nakamura, H.; Njoku, E.G. Solving timverse problem for soil moisture and
temperature profiles by sequential assimilatiommufitifrequency remotely sensed observations.
Geoscience and Remote Sensing, IEEE Transactioh@9dn32, 438-448.

Entin, J.K.; Robock, A.; Vinnikov, K.Y.; HollingerS.E.; Liu, S.; Namkhai, A. Temporal and
spatial scales of observed soil moisture variatiartbe extratropicsl]. of Geophysical Re2000,
105 11865-11877.

Evensen, G. Sequential data assimilation with dimesr quasi-geostrophic model using Monte
Carlo methods to forecast error statisticSGeophys. Re$994, 99, 10143-10162.

Fennessy, M.J.; Shukla, J. Impact of Initial Soiktess on Seasonal Atmospheric Prediction.
of Climate1999, 12, 3167-3180.

Foley, J.A. The sensitivity of the terrestrial lpbere to climatic change: A simulation of the
middle HoloceneGlobal Biogeochem. Cycld994, 8, 505-525.

Foster, J.L.; Sun, C.; Walker, J.P.; Kelly, R.; 6@aA.; Dong, J.; Powell, H. Quantifying the
uncertainty in passive microwave snow water eqeivalobservationsRemote Sensing of
Environmen®005, 94, 187-203.

Galantowicz, J.F.; Entekhabi, D.; Njoku, E.G. Testsequential data assimilation for retrieving
profile soil moisture and temperature from obsertedand radiobrightnessGeoscience and
Remote Sensing, IEEE Transactionsle@9, 37, 1860-1870.

Gallus, W.A.; Segal, M. Sensitivity of Forecast iall in a Texas Convective System to Soil
Moisture and Convective Parameterizatidfeather and Forecastirgp00, 15, 509-525.
Georgakakos, K.P.; Graham, N.E.; Carpenter, T.Mepr@akakos, A.P.; Yao, H. Integrating
Climate-Hydrology Forecasts and Multi-Objective Be®ir Management for Northern California.
EOS2005, 86, 122-127.

Georgakakos, K.P.; Rajaram, H.; Li, S.G. On Imptb¥gperational Hydrologic Forecasting of
StreamflowsIIHR Report1988, 325, 162.

Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS/TarSnow Cover 8-day L3 Global 500 m
Grid V004, Boulder CO, USANational Snow and Ice Data Cent@000, digital media.

Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirateo, N.E.; Bayr, K.J. MODIS snow-cover
productsRemote Sensing of Environm2a02, 83, 181-194.

Hoeben, R.; Troch, P.A. Assimilation of active nommave observation data for soil moisture
profile estimationWater Resour. Re2000, 36, 2805-2819.

Houser, P.R.; Shuttleworth, W.J.; Famiglietti, J.Gupta, H.V.; Syed, K.H.; Goodrich, D.C.
Integration of soil moisture remote sensing androlpdic modeling using data assimilation.
Water Resour. Re$998, 34, 3405-3420.

Jackson, T.J. Estimation of surface soil moistusengt Microwave sensor€Encyclopedia of
Hydrology2005, 54, 799-809.

Jackson, T.J.; Bindlish, R.; Gasiewski, A.J.; StankB.; Klein, M.; Njoku, E.G.; Bosch, D.;
Coleman, T.L.; Laymon, C.A.; Starks, P. Polarinetscanning radiometer C- and X-band



Sensors008, 8 3002

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

microwave observations during SMEXQEEE Transactions on Geoscience and Remote Sensing
2005, 43, 2418-2430.

Jazwinski, A.H. Stochastic Processes and Filtering Thedxgademic Press: New Yor&970, pp
376.

Kitanidis, P.K.; Bras, R.L. Real-Time Forecastingitiwa Conceptual Hydrologic Model 2.
Applications and Result§Vater Resour. Re$980, 16, 1034-1044.

Kitanidis, P.K.; Bras, R.L. Real-Time Forecastingittwa Conceptual Hydrologic Model 1.
Analysis of UncertaintyWater Resour. Re$980, 16, 1025-1033.

Koster, R.D.; Suarez, M.J.; Liu, P.; Jambor, U.r@BeA.; Kistler, M.; Reichle, R.; Rodell, M.;
Famiglietti, J. Realistic Initialization of Land Bace States: Impacts on Subseasonal Forecast
Skill. J. of Hydromet2004, 5, 1049-1063.

Kumar, S.V.; Peters-Lidard, C.D.; Tian, Y.; Hous€R.; Geiger, J.; Olden, S.; Lighty, L.;
Eastman, J.L.; Doty, B.; Dirmeyer, P.; Adams, Jitchkll, K.; Wood, E.F.; Sheffield, J. Land
information system: An interoperable framework fugh resolution land surface modeling.
Environmental Modeling & Softwa006, 21, 1402-1415.

Li, X.; Koike, T.; Pathmathevan, M. A very fast silated re-annealing (VFSA) approach for land
data assimilationComputers and Geoscienca4, 30, 239-248.

Margulis, S.A.; McLaughlin, D.; Entekhabi, D.; DusnS. Land data assimilation and estimation
of soil moisture using measurements from the Sont@eeat Plains 1997 field experimewWater
Resour. Re<2002, 38, 1299.

Maurer, E.P.; Rhoads, J.D.; Dubayah, R.O.; Lettéeam#®.P. Evaluation of the snow-covered
area data product from MODI8ydrol. Process2003, 17, 59-71.

McLaughlin, D.; O'Neill, A.; Derber, J.; Kamachi, .NOpportunities for enhanced collaboration
within the data assimilation communitQuarterly Journal of the Royal Meteorological Sagie
2005, 131, 3683-3693.

McLaughlin, D. An integrated approach to hydrolodata assimilation: interpolation, smoothing,
and filtering.Adv. in Water Resou2002, 25, 1275-1286.

Moradkhani, H.; Hsu, K.; Hong, Y.; Sorooshian, 8vdstigating the impact of remotely sensed
precipitation and hydrologic model uncertainties tre ensemble streamflow forecasting.
Geophys. Res. Lef2006, 33, L12107.

Moradkhani, H.; Hsu, K.L.; Gupta, H.; Sorooshian|Jacertainty assessment of hydrologic model
states and parameters: Sequential data assimilasimg the particle filterWater Resour. Res.
2005, 41, W05012.

Moradkhani, H.; Sorooshian, S.; Gupta, H.V.; HouseR. Dual state—parameter estimation of
hydrological models using ensemble Kalman filfey. in Water Resou2005, 28, 135-147.

Njoku, E.G.; Chan, S.K. Vegetation and surface hmegs effects on AMSR-E land observations.
Remote Sensing of Environm&a6, 100 190-199.

Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, JT.Kghiem, S.V. Soil moisture retrieval from
AMSR-E. Geoscience and Remote Sensing, IEEE TransactioP@03n41, 215-229.



Sensors008, 8 3003

48.

49.

50.

51.

52.

53.

54.

55.

56.

S57.

58.

59.

60.

61.

62.

63.

Njoku, E.G., AMSR-E/Aqua L2B surface soil moistusmcillary parms, and QC EASE-Grids,
June 2002 to May 2006Natl. Snow and Ice Data CentBoulder, CO,2006, digital media,
(Updated daily; available at http://nsidc.org/datagre/)

Njoku, E.G.; Entekhabi, D. Passive microwave rensansing of soil moisturdl. of Hydrology
1996, 184, 101-129.

Pfaendtner, J.; Bloom, S.; Lamich, D.; Seablom, Sienkiewicz, M.; Stobie, J.; da Silva, A.
Documentation of the Goddard Earth Observing Syst&faOS) Data Assimilation System—
Version 1.NASA Tech.Mem@d995, 104606

Reichle, R.H.; Entekhabi, D.; McLaughlin, D.B. Dosaaling of radio brightness measurements
for soil moisture estimation: A four-dimensionalriaional data assimilation approadiater
Resour. Re2001, 37, 2353-2364.

Reichle, R.H.; Koster, R.D. Global assimilationsatellite surface soil moisture retrievals into the
NASA Catchment land surface mod@eophys. Res. Le005, 32.

Reichle, R.H.; Koster, R.D.; Liu, P.; Mahanama,.B.PNjoku, E.G.; Owe, M. Comparison and
assimilation of global soil moisture retrievals rfrothe Advanced Microwave Scanning
Radiometer for the Earth Observing System (AMSRdfd the Scanning Multichannel
Microwave Radiometer (SSMR]. of Geophysical Re2007, 112, D09108.

Reichle, R.H.; Walker, J.P.; Koster, R.D.; HousBrR. Extended versus Ensemble Kalman
Filtering for Land Data Assimilatiold. of Hydromet2002, 3, 728-740.

Rodell, M.; Houser, P.R. Updating a Land Surfaced®avith MODIS-Derived Snow Coved. of
Hydrometorology2004, 5, 1064-1075.

Seo, D.; Koren, V.; Cajina, N. Real-Time VariatibnAssimilation of Hydrologic and
Hydrometeorological Data into Operational Hydrotogorecastingl. of Hydromet2003, 4, 627-
641.

Slater, A.G.; Clark, M.P. Snow Data Assimilatiomén Ensemble Kalman Filtek. of Hydromet.
2006, 7, 478-493.

Sun, C.J.; Walker, J.P.; Houser, P.R. A methodofogynow data assimilation in a land surface
model.J. of Geophysical Re2004, 109, D08108.

Texier, D.; de Noblet, N.; Harrison, S.P.; HaxadtirA.; Jolly, D.; Joussaume, S.; Laarif, F.;
Prentice, I.C.; Tarasov, P. Quantifying the rolebadsphere-atmosphere feedbacks in climate
change: coupled model simulations for 6000 years dBB comparison with palaeodata for
northern Eurasia and northern Afri€zlim. Dyn.1997, 13, 865-881.

Vrugt, J.A.; Gupta, H.V.; Nuallain, B.O; Bouten, \Real-Time Data Assimilation for Operational
Ensemble Streamflow Forecastidg.of HydromeR006, 7, 548-565.

Walker, J.P.; Houser, P.R.; Reichle, R. New Teaobgies Require Advances in Hydrologic Data
Assimilation.EOS2003, 84, 545.

Wang, J.R.; Choudhury, B.J. Passive microwave tiadidrom soil: examples of emission models
and observations, in Passive microwave remote rsgiugiland-atmosphere interactions, edited by
B. J. Choudhury, et a/SP1995, 423-460.

Wang, J.R. The dielectric properties of soil-watertures at microwave frequencid®adio Sci.
1980, 15, 977-985.



Sensors008, 8 3004

64. Weerts, A.H.; El Serafy, G.Y. H. Particle filteringnd ensemble Kalman filtering for state
updating with hydrological conceptual rainfall-rdhanodels. Water Resour. Re2006, 42,
W09403.

65. Zhou, Y.; McLaughlin, A.; Entekhabi, D. Assessirte tPerformance of the Ensemble Kalman
Filter for Land Surface Data Assimilatiodlon. Weather Re2006, 134, 2128-2142.

© 2008 by the authors; licensee Molecular Diver$itgservation International, Basel, Switzerland.
This article is an open-access article distributedier the terms and conditions of the Creative
Commons Attribution license (http://creativecommong/licenses/by/3.0/).



