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Abstract: Accurate, reliable and skillful forecasting of key environmental variables such as 

soil moisture and snow are of paramount importance due to their strong influence on many 

water resources applications including flood control, agricultural production and effective 

water resources management which collectively control the behavior of the climate system. 

Soil moisture is a key state variable in land surface–atmosphere interactions affecting 

surface energy fluxes, runoff and the radiation balance. Snow processes also have a large 

influence on land-atmosphere energy exchanges due to snow high albedo, low thermal 

conductivity and considerable spatial and temporal variability resulting in the dramatic 

change on surface and ground temperature. Measurement of these two variables is possible 

through variety of methods using ground-based and remote sensing procedures. Remote 

sensing, however, holds great promise for soil moisture and snow measurements which 

have considerable spatial and temporal variability. Merging these measurements with 

hydrologic model outputs in a systematic and effective way results in an improvement of 

land surface model prediction. Data Assimilation provides a mechanism to combine these 

two sources of estimation. Much success has been attained in recent years in using data 

from passive microwave sensors and assimilating them into the models. This paper 

provides an overview of the remote sensing measurement techniques for soil moisture and 

snow data and describes the advances in data assimilation techniques through the ensemble 

filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the 

model prediction and reducing the uncertainties involved in prediction process. It is 

believed that PF  provides a complete representation of the probability distribution of state 

variables of interests (according to sequential Bayes law) and could be a strong alternative 
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to EnKF which is subject to some limitations including the linear updating rule and 

assumption of jointly normal distribution of errors in state variables and observation.  
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1. Introduction  

Hydrologic modeling has greatly benefited from observation of land surface water, energy, and 

carbon conditions which are of critical importance owing to their profound impacts on real world water 

resources applications such as flood control, weather and climate prediction, agricultural production 

and water resources management which collectively control the behavior of the climate system.  

Many studies have demonstrated that initial and boundary conditions of state variables such as soil 

moisture, soil temperature or vegetation water content at different temporal and spatial scales exercise 

strong controls on climate, weather and hydrologic processes. [9, 11, 21, 59]. Observing these state 

variables and assimilating them into hydrologic models to improve the model prediction are crucial for 

natural resources management, flood forecasting, and crop management. Depending on the spatial 

scale of interest, there are different ways to measure these state variables. At the local scale, in-situ 

techniques provide fairly accurate measurements of the state variables at the time scale of interest. If 

in-situ observations are directly incorporated and used in large scale models they pose limitations due 

to their very small spatial support. An alternative would be the incorporation of satellite remotely-

sensed measurements which provide spatially integrated measurement of state variables with a specific 

temporal sampling depending upon the orbital placement of the satellites.  

Remote sensing has shown great promise for providing an abundance of data and information that 

were lacking with the in-situ observations. It has also been a valuable tool in many hydrologic 

modeling applications due to its capability of providing unrestricted collection of information with 

wide spatial coverage and temporal repeat [31].  

Soil moisture plays a key role in the terrestrial water cycle and is responsible for the partitioning of 

precipitation between surface water (runoff) and storage through infiltration. Surface and root zone soil 

moisture control the redistribution of incoming radiation (available energy) on the land surface into 

sensible and latent heat (evaporative) fluxes.  Understanding soil moisture is pivotal in various fields 

such as agriculture, ecology, hydrology and even geotechnical engineering. Furthermore, root zone soil 

moisture carries memory from weekly to monthly timescales; therefore its accurate initialization may 

contribute to enhanced prediction of summer precipitation [14, 18, 36]. Soil moisture regulates the 

availability of water and nutrients to plants and it has a significant impact on global water cycles. The 

change in the meteorological fluxes that drive soil moisture is subject to large-scale variations in soil 

moisture creating a feedback mechanism that can have considerable influence on climate and land use 

change [3, 20, 23].  

Snowpack is a major component of seasonal water supply in many middle to high latitude alpine 

catchments and it contributes a considerable percentage (for example, 70-80 percent in the 

northwestern US) to the total annual runoff in these regions. Snow has large influence on land-

atmosphere energy exchanges due to its high albedo, low thermal conductivity and considerable spatial 
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and temporal variability resulting in the dramatic change of surface and ground temperature. Accurate 

estimation of the amount and timing of snowmelt coupled with proper monitoring of snow properties 

including snow extent and snow water equivalent (SWE) are vital to estimating a more accurate water 

supply forecast as required for water resources management. Analyses of snowpack observations 

collected over the past decade indicate that packs are melting earlier in the year and SWE data 

collected from snow course sites display negative trends over the period of record from 1950-2000. 

Therefore, understanding the evolution of snow energy and mass balance processes is imperative for a 

complete description of the hydrological cycle at basin and regional scales to accurately characterize 

and estimate snow properties in the snow dominated regions for flood and avalanche warnings, 

environmental compliance, and water geochemistry for use by water resources managers and planers. 

2. Soil Moisture Observation 

Soil moisture information may be obtained in two ways: 1) it may be derived by running a land 

surface model through which the meteorological forcing observation is propagated; 2) it may be 

retrieved from in-situ measurement or from low-frequency passive and active microwave data. It has 

long been recognized that reliable, robust and automated methods for the measurement of soil moisture 

content could be extremely useful, if not essential, in hydrologic, environmental and agricultural 

applications. Despite the availability of various methods in retrieving soil moisture at a single location 

there are currently no networks of in-situ sensors that provide regional or global data sets. Considering 

that such networks are expensive and impracticable,   attention has gone to remote sensing data, which 

are able to provide large-scale information suitable for regional and global applications. Platforms for 

supporting remote sensing instruments have varied from ground-based supports to aircraft and 

satellites. Ground-based systems can be mounted on trucks or on special structures such as rails to 

allow for movement of the sensor. The advantage of these ground-based systems is the relatively small 

footprint of the sensor providing easy control during the measurement period. The main disadvantage 

is the small coverage of large areas. The aircraft mounted systems can overcome some of these 

limitations while mapping the larger area and can serve as prototypes for future satellite sensors. 

However, satellite remote sensing offers the optimal solution owing to their capability of monitoring 

large areas with long term repetitive coverage.  

 Satellite observations alone are not sufficient because of the temporal and spatial gaps in their 

coverage. Also the deeper soil moistures cannot be observed directly from space. Therefore, the best 

possible system would integrate the benefits of land surface models, in-situ and satellite observations 

to assess global soil moisture conditions. This can be done through Data Assimilation (DA) as a means 

of merging observation with model output to improve upon the accuracy of the estimation. This will be 

explained in detail in section 4.  

Some of the most commonly used remote sensing instruments for soil moisture observation are the 

Multi-Spectral Scanner (MSS), Thematic Mapper (TM), thermal infra-red line scanner, Synthetic 

Aperture Radar (SAR), and microwave radiometer. Although numerous remote sensing systems are in 

existence and have been utilized for soil moisture measurement, the most appropriate is microwave 

remote sensing. Microwave remote sensing provides a means of direct measurement of soil moisture 

for a range of vegetation cover conditions. Such remote measurement provides the opportunity of 
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observing frequent, global sampling of soil moisture with large spatial resolution. The main advantage 

of microwave measurements is that they are not affected by cloud cover and variable solar 

illumination; however, the accuracy in soil moisture estimation is limited to regions with either bare 

soil or low to moderate amounts of vegetation [46].  

The two approaches used in microwave soil moisture measurement are active and passive [31]. In 

active methods a microwave pulse is transmitted and the backscattering from the object is received and 

compared with the signal sent to determine the backscattering coefficient. In passive methods, the 

brightness temperature is measured at microwave length. Different portions of the microwave region of 

the electromagnetic spectrum known as bands are named by letters. Some of the most commonly used 

bands in Earth remote sensing are: K (18-27 GHZ), X (8-12 GHZ), C (4-8 GHZ), and L (1-2 GHZ) 

[31]. The best soil moisture information is provided at very low microwave frequencies (< 6GHZ) 

owing to the reduced atmospheric attenuation and greater vegetation penetration at lower wavelengths. 

Most of the studies to date have used the observations within L band at 1.4 GHZ as the signals in this 

band show the maximum sensitivity to surface soil moisture [46]. Due to the effects of moisture on the 

dielectric constant and emissivity of soil, microwave measurements are sensitive to soil moisture. In 

fact, the sharp contrast between the dielectric constants for water (about 80 at frequencies below 

5GHZ) and that of dry soil (about 3.5) is what makes measuring soil moisture using low frequency 

passive microwave radiation possible. This large contrast between the dielectric constants of water and 

that of dry soil translate into difference of up to 100 K or more in brightness temperature between very 

dry and wet soils [62, 63].  

The Advanced Microwave Scanning Radiometer (AMSR-E) of the Earth Observing System (EOS) 

is currently used for the global soil moisture mapping [47, 48]. AMSR-E measures radiation at six 

frequencies in the range 6.9-89 GHZ with dual polarization. At an altitude of 705 km, the antenna 

scans the upwelling scene brightness temperatures over the globe in two days or less with a swath of 

1445 km providing near global coverage. Spatial resolution differs depending on the frequency of 

radiation; at 6.9 GHZ the spatial resolution provided is 60 km and at 89 GHZ the resolution provided is 

5 km. The operational NASA Level-2B AMSR-E “AE_Land” product includes retrievals of surface 

soil moisture, a vegetation/roughness correction, and quality control variables [47, 49]. Currently the 

AMSR-E soil moisture algorithm is working based on a change detection approach using the calibrated 

AMSR-E channel brightness temperatures [49]. AMSR-E soil moisture retrievals are made using the 

EASE-Grid product. The C-band AMSR-E footprint data (level 2A) used by Jackson et al. [32] with a 

resolution of approximately 60 km and a sampling resolution on  average of 10 km along with the 

geophysical ancillary data were mapped to an EASE-Grid with 25-km resolution. Within each of these 

regions ground-based soil moisture sampling was conducted at a minimum of 36 geographically 

distributed points. Ground sampling included gravimetric soil moisture measurements at a depth of 1 

and 6 cm and dielectric probe measurements of the top 6 cm, soil temperatures, surface roughness, and 

vegetation parameters.  

During calibration and validation field campaigns of the Soil Moisture EXperiments in 2002-2004 

(SMEX02, SMEX03, and SMEX04) [4, 5, 32] the accuracy of the soil moisture algorithm was 

investigated on short time scales. Some levels of consistency and calibration stability of the observed 

brightness temperatures at specific locations were seen in the results. It was concluded, however, that 
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the spatial variability of the retrieved soil moisture over areas with different amounts of vegetation is 

subject to biases. 

3. Snow Observations 

Fractional snow cover area (SCA) observations can typically be obtained from visible or infrared 

satellite sensors providing high spatial resolution observations [28]. However, the effectiveness of this 

type of sensing is limited by cloud conditions. A better alternative are space-borne passive microwave 

remote sensors which are capable of qualitative observations of snow water equivalent (SWE). Since 

1978 several satellites have made passive microwave measurements at snow water equivalent sensitive 

frequencies [ 15]:  

1) The scanning Multichannel Microwave radiometer (SMMR), a 5 frequency radiometer providing 

observations from October 1978 to August 1987;  

2) The Special Sensor Microwave Imager (SSM/I), providing observations from September 1987 

until present; and  

3) The Advanced Microwave Scanning Radiometer for the Earth Observing system (AMSR-E), 

providing observation from May 2002 until present.  

 

The AMSR-E operational snow mapping algorithm employs an empirical relationship to estimate 

SWE from surface brightness temperature while providing SWE estimate at a spatial resolution of 25 

km. The microwave sensors measure snow mass under cloudy and nighttime conditions, however, 

dense vegetation cover and water bodies cause large retrieval errors [22]. Studies by Dong et al., [15] 

shows that the SWE retrievals are not sensitive to thin snow packs (SWE <10 mm). Several studies 

have shown that SCA and SWE observations are good sources of information to improve upon the 

model snow estimates [1, 8, 55, 57, 58]. 

Snow Cover Area (SCA) among many other land surface features is available since 1999 as a 500-

meter daily gridded product from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensor flown on board the Terra Earth Observing System (EOS) platform [27]. The product provides a 

binary classification per pixel for snow cover, cloud, or bare ground. Due to improved spectral 

resolution and higher spatial resolution of the MODIS as compared to GOES and AVHRR, the more 

accurate SCA can be obtained from MODIS. The study by Maurer et al., [40] demonstrated that 

MODIS has the ability to significantly better classify the greater amount of snow in topographically 

complex and forested basins. The MODIS product has been available since February 2000. One of the 

limitations of MODIS data is cloud cover. Andreadis and Lettenmaier, [1] used a fractional cloud cover 

threshold of 20% to decide whether to use the observation or not. They assimilated the SCA if less than 

20% of the grid cells in their modeling domain were covered by cloud.  

4. Hydrologic Data Assimilation 

An explosion of activities has been witnessed over the past two decades on the development and 

application of data assimilation systems. Data assimilation is a way to integrate the data from variety of 

sources with different resolutions and accuracies with model prediction to improve deterministic model 

accuracy [41]. In other words, data assimilation is used to not only update the hydrological model 
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states that optimally combine model outputs with observation, but also to quantify observational and 

hydrological model errors. Data assimilation has been used in other disciplines including the ocean and 

meteorological sciences to improve upon the predictability of short term weather forecasting models. In 

recent years, development and application of data assimilation in hydrologic modeling has grown with 

the intention to exploit the increased availability of remotely sensed land surface variables [ 10, 39, 42, 

52, 61]. Numerous studies have also evaluated the assimilation of soil moisture, snow, and surface skin 

temperature observations [e.g. 1, 6, 10, 16, 39, 51, 52, 55, 57].  These studies demonstrate the potential 

of data assimilation to improve the land surface model predictions as well as explore the difficulties 

and complexities in data management associated with data assimilation. 

One of the data assimilation techniques that have been used in hydrologic application is the 

variational method [see 54, 56]. In this method the problem is formulated as a set of model states that 

minimizes a cost function defining the model residual. The model error in this method is generally 

assumed to be time-invariant. As noted by Seo et al., [56] the state-space formulation of the system is 

not needed in this procedure, however, the assumption of time-invariant model covariance is not 

realistic.  The derivation of the adjoint model, which is essentially the linearized hydrologic model, 

also adds to the complexity of implementation of this procedure.  

Among many other data assimilation techniques, the sequential assimilation algorithms using  

filtering have garnered the attention of hydrologists due to flexibility in handling all sources of 

uncertainties and as well as the  possibility of ingesting the data sequentially as  it becomes available. 

One of the early hydrologic data assimilation methods is the application of linear Kalman filter [e.g., 

34, 35]. In the case of nonlinear, hydrological model the data is rendered in state-space form and by 

assuming that the model state variables are differentiable the Extended Kalman filter (EKF) can be 

used. By using this method the model error at the time of observation can be estimated by propagating 

the covariance matrix of model errors. As reported by Evensen [19] and Reichle et al. [53] the EKF can 

lead to unstable results in the presence of strong nonlinearity in the system. As noted by Reichle et al., 

[53] EKF cannot be used in large scale environmental assimilation problems such as distributed 

hydrological models. This problem can be bypassed by ignoring the spatial correlations among 

variables in the watershed. This assumption, however, highly limits the application of EKF because the 

knowledge of spatial correlation among the state variables or the model fluxes is of paramount 

importance for accurately updating the model state variables.  

Another approach to data assimilation is Monte Carlo (ensemble) methods. These methods have 

received considerable attention by hydrologists in recent years as they are easy to implement and the 

computational burden is less of an issue with the increased computing power nowadays. To cope with 

the drawbacks of the EKF, a Monte Carlo-based Kalman filter called ensemble Kalman filter (EnKF) 

was introduced by Evensen [19]. One of the advantages of the EnKF when compared to the standard 

EKF is that the estimation of priori model covariance is not needed for the updating (analysis) step 

although its calculation using the model ensemble is straightforward. The primary application of EnKF 

in hydrology is the soil moisture or soil temperature profile estimation improvement in vertical 

direction by assimilating in-situ observation or remote sensing data [10, 17, 24, 29, 30, 38, 53]. 

Moradkhani et al. [43] extended the application of the EnKF to dual state and parameter estimation of 

conceptual hydrologic models while the time-varying uncertainty of the states and parameters were 
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obtained through this procedure. For some other applications of EnKF in uncertainty assessment of 

conceptual rainfall-runoff model, please see [63, 64].  

The EnKF uses a Monte Carlo approach to approximate the conditional second-order moments of 

variables of interest using a finite number of randomly generated model replicates. However, the major 

limitation of all the filtering techniques rooted in Kalman filtering is their closure at the second-order 

moments implying that the filter evolution is characterized by their model state covariance. Also, the 

EnKF is limited to the linear updating rule with considerable simplification while using a highly 

nonlinear hydrologic model. This has encouraged the hydrologists to look into other filtering 

techniques, such as Particle filter (PF) [44, 64, 65], to avoid the aforementioned limitations. The main 

difference of particle filter from other data assimilation methods is that the model state variables are 

not updated but rather their probability distributions are evolved through time. In fact the model 

ensemble members are characterized by a set of discrete random particles with associated weights 

(probabilities). The probability distributions of model predictions are then calculated as a weighted 

combination of the ensemble members [2, 44]. 

4.1. Sequential Bayesian Data Assimilation using Ensemble Filtering 

The mathematical framework of estimation theory provides the tools required to approach variety of 

data assimilation problems. The basic objective of data assimilation is to characterize the state of an 

environmental system at some future time based on the knowledge of the initial system state. Bayesian 

inference provides a mechanism to combine the quantitative (hydrologic data) and qualitative data 

(prior information obtained by the experience of experts in the field) to yield the posteriori as more 

informative probability distribution of variable of interest. Bayesian formulation allows hydrologists to 

estimate the uncertainty about model prediction in a systematic way and can be accomplished without 

resort to calibration which is sometimes problematic in certain applications. 

In a Bayesian formulation, the solution to an inverse problem is given by posterior probability 

distribution P(M|D) over the model space. P(M|D) encompasses all the available information of  a 

model which are taken from both data (D), through the likelihood function P(D|M), and also data-

independent prior information expressed by prior probability P(M) density. The mathematical 

description of Bayes law is given as: 

        

 
)(

)()|(
)|(

DP

MPMDP
DMP =         (1) 

where the denominator, p(D) is the normalization factor. In other words it ensures that the 

integration of p(M|D) results to 1. The likelihood function p(D|M) which measures the likelihood of a 

given model M through its misfit e(.), the residual between observation and model simulation, is given 

in general form as follows: 

 

 p(D|M) ∝  exp(-e(.))         (2) 

  

With the assumption that the model residuals are mutually independent (normally distributed) with 

constant variance (i.i.d.) the likelihood function can be computed using [7]: 
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In the absence of an explicit mathematical expression for P(D|M) and P(M), which is common in 

high dimensional problems, Monte Carlo sampling is used to explore posterior P(M|D). The 

importance sampling, Metropolis-Hastings algorithm and Gibbs sampler are the most commonly used 

sampling techniques in practice. It should be noted that the sampling should not be biased toward any 

particular region of parameter space and thereby no possibility of entrapment in local minima. 

The original Bayes law explained above (eq. 1) is in the batch form where the available historical 

data is taken for the uncertainty estimation through the conditional probability. However, this form 

makes no attempt to include information from new observations as they become available. The 

flexibility required to use the new information is provided by a sequential Bayesian scheme. 

Moradkhani et al. [43, 44] showed that the methods based on sequential Bayesian estimation are better 

able to benefit from the temporal organization and structure of information achieving better conformity 

of the model output with observations.  

 

Let’s consider the state variable xt as the quantity of interest to be estimated within the Bayesian 

framework. Due to stochastic nature of xt, the pertinent information about it at any time t can be 

extracted from the observation Yt = [y1, y2, … yt] through the recursive Bayes law:  
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As seen in the schematic of recursive Bayes law (see Figure 1 below), the forecast density of p(xt|Yt-

1) can be estimated via Chapman-Kolmogorov equation [33] assuming that xt follows the Markov 

property, therefore: 

∫ −−−−− = 11111 )|()|()|( ttttttt dxYxpxxpYxp       (5) 

 

 

The main complication in using the recursive Bayes law remains in the multidimensional integration 

of forecast density as shown in eq. (5) which makes the closed form solution of posterior density (eq. 

4) practically intractable.  This suggests that the ensemble methods through the usage of Monte Carlo 

sampling provide a practical solution to such problems.  
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Figure 1. Sequential Bayesian scheme for evolution of the conditional probability 

density of the state variables by assimilating observations from time t-1 to time t. 
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4.1.1.  Ensemble Kalman Filter 

 

In sequential filtering, the uncertain state of a hydrological system xt,, given a set of observation y1:t 

is presented by the conditional probability density function p(xt|y1:t). Ensemble methods can be used to 

calculate the sample approximation to this density function by generating the random replicates of 

model state variables. Following Jazwinski [33] the generic nonlinear dynamic system in earth sciences 

are written in discrete-time for both state and measurement equations as follows: 

 

xt= f(xt-1, ut , θ)+ wt        (6) 

yt= h(xt)+vt         (7) 

where xt,is an n-dimensional vector of true but uncertain state variables, ut is a vector of uncertain 

true of model inputs, θ is vector of model parameters and wt represents the uncertainties due to errors in 

model formulation, yt is the measurement vector and vt is a vector of additive random measurement 

errors. The model and measurement errors are typically assumed to be Gaussian and independent 

random vectors with mean zero and covariances Qt and Rt respectively. Two sequential estimation 

operations are discerned in filtering applications:  

1) the forecasting step which is the transition of state variables from one observation time to the 

next represented through transition probability p(xt|xt-1) in eq. (5),  

2) the analysis (updating) step which involves updating of the forecasted (propagated) states with 

the new observation.  

Ensemble procedures present a practical alternative to an exact Bayesian solution by relying on discrete 

estimation of forecast (priori) and analysis (posteriori) densities through a set of random variables and 

corresponding weights: 
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These are the empirical approximations of forecast and analysis (update) densities by summation of 

n Dirac delta functions where xi and wi denote the ith sample and its weight before and after updating 

shown by minus and plus signs respectively. The random replicates and associated weights are 

generated through a variety of methods, one of which is the ensemble Kalman filter (EnKF). 

The forecasting step in the EnKF where the evolution of the model for each ensemble member is 
equally weighted, nwi

t /1=− , is presented in below: 
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Thereby, the forecast density in (8) will become: 
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It is noted that in this process, the generation of random input samples of itu is required to generate 

the model state replicates in eq. (11). One way to generate the input replicates is to consider the 

standard error obtained from eq. (7) and generate the random variable using the Gaussian distribution 

as illustrated in Moradkhani et al. [45]. As seen through eq. (11), the forecasting step is a Monte Carlo 
approach to derive the )|( 1−tt Yxp from the uncertainty in itu  using )( tup and in some applications by 

the uncertainty inherent in the parameters of the model through )(θp . For more details on the inclusion 

of parameter uncertainty in the filtering, see Moradkhani et al., [43, 44]. 

If the dynamical system, including states and measurement equations, are linear and all sources of 

uncertainty are normally distributed the celebrated Kalman filter provides the optimal recursive 

solution to the state updating problem. If the system is nonlinear, as is the case for most of the 

hydrologic systems, the linearization of the system might be considered. Developed from the early 

work using state-space filtering, Georgakakos et al. [25] implemented an automatic procedure into the 

NWSRFS using the EKF. Certain shortcomings of the procedure have been discovered including 

reformulation of the original SAC-SMA model to a state-space form, using first order approximation 

of Taylor series which leads to unstable results when the nonlinearity in the model is strong, and heavy 

computational demands owing to error covariance propagation. To overcome the limitation of the EKF, 

the EnKF was introduced Evensen [19] which were used for assimilating data in large nonlinear ocean 

and atmospheric models. The EnKF is also based upon Monte Carlo or ensemble generations where the 

approximation of the forecast state error covariance matrix is made by propagating an ensemble of 

model states using the updated states from the previous time step. The key point in the performance of 

the EnKF is to generate the ensemble of observations at each update time by introducing noise drawn 

from a distribution with zero mean and covariance equal to the observational error covariance matrix; 

otherwise the updated ensemble will possess a very low covariance [43].  
Let denote −X  as the ensemble of forecasted model state (x1, x2, …, xm) at each time t, for each of 

the state variables having n-ensemble members, that is  
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Knowing the priori error covariance of model states from (14), the state updates can be obtained by 

(15) :  
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where xy

tC=− T
t HP is the cross covariance of model states and observation prediction, 
yy
tC=− T

t HHP is the covariance of the observation prediction and H is linearized observation 

transformation matrix in eq. (7). If it is assumed that the forecast and measurement are jointly normal, 

their densities are sufficiently characterized by their mean and covariances, meaning that the higher 

order moments are ignored in the update step. 

 In the EnKF implementation, the observation yt at each time should be perturbed, usually using 

normal distribution with zero mean and variance R. This creates an ensemble of perturbed observation 

which are used in eq. (15) to update the model ensemble members.  

 

4.1.2.  Particle Filter 

 

Similar to Ensemble Kalman filter, the sequential Bayesian algorithm can be used to derive the 

particle filter. Various names are associated with the particle filters such as bootstrap filter, the 

condensation algorithm, sequential Monte Carlo sampling, interacting particle approximations, and 

survival of the fittest [2]. Unlike the Kalman filter which simplifies the recursive estimation by 

assuming Gaussian distribution for state variables, the particle filter relaxes the need for restrictive 

assumptions regarding the forms of the probability densities; that is, PF can easily manage the 

propagation of non-Gaussian distribution through nonlinear hydrologic models [44]. To improve the 

estimation accuracy and stability it is possible to track the time evolution of the model by means of all 

moment characteristics through a full probability density function [2, 44]. This is facilitated by using 

particle filters. Particle filters share the same forecasting step with EnKF. However, for the updating 

step, the updated ensemble members (replicates) are kept the same as the forecast values and only the 

weights (probabilities) are updated. As mentioned earlier, in PF the state ensemble members are not 

updated but rather their probability distributions. Therefore, 

 
 −+ = i

t
i
t xx           (17) 

and from eq. (4), the filtering posterior, +itw is calculated as follows: 
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Where )|( −i

tt xyp is the likelihood function for the forecasted replicates, b is the normalizing 

constant in eq. (18), )|(/ 1:1 −= tt yyp1b and we defined earlier that nwi
t /1=−  . By substituting eqs. (17) 

and (18) into eq. (9), we can obtain the update (posterior) probability distribution. In the case of 

Gaussian likelihood, the problem of degeneracy of particles (ensemble collapse to a single point) may 

be experienced as  those particles that are closer to the measurement  get higher weights while  others 

are discarded. One solution is to use many particles which, in the case of a distributed model, may not 

be a cost effective solution. The second method is to implement the resampling technique to prevent 

the samples from degeneracy. Some of the sampling techniques used in particle filtering are the 

Sequential Importance sampling (SIS), Sequential Importance Resampling or Sampling Importance 

Resampling (SIR) and regularized sampling [2] as the most commonly used sampling procedures. 

Employing the proper sampling technique keeps the particles from dispersion due to stochastic 

behavior of the system or degeneracy. For detailed information on SIR-particle filter and sampling see 

Moradkhani et al. [44]. Through the SIR filter, the resampling is made with replacement n times. In 
fact, the probability of a selection of any sample of j is equal to +j

tw . When resampling is over, the new 

ensemble of equally weighted particles of +j
tx with weights nw j

t /1=+ is created. In this process the 

replicates with higher weights (probabilities) have a higher chance to be selected and the low weight 

replicates are more likely to be discarded.  

After the resampling step, the posterior distribution will be presented as: 

 

  ])(
1

)|(
1
∑

=

+−≈
n

i

j
tttt xx

n
Yxp δ         (19) 

The new resampled replicates are taken and forwarded in time and procedure through equations (10) 

and (11) is continued. 

 

4.1.3.  DA Experiment Setup through Observing System Simulation Experiment (OSSE) 

 

In general, OSSE is designed to enable the modeler to examine the performance of data assimilation 

procedures and even to obtain the sensitivity of the procedure to different models with different 

parameterizations and physical representations. OSSE typically consists of at least four components: 

(1) A simulated data sets of land model states, (2) a forward model to link the states with observations, 

(3) a model to degrade these observations accuracy and spatial resolution, (4) integrating the degraded 

observation into a prediction model. A schematic of OSSE is shown in figure 2: 
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Figure 2. Schematic of Observing System Simulation Experiment (OSSE). 
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For such synthetic experiments, “truth” is defined when the model is integrated (run) for a set of 

meteorological, soil, vegetation and initial conditions. Considering that the observation from 

microwave remotely sensed data for soil moisture are in the form of brightness temperature, the model 

output (soil moisture) should be converted to brightness temperature to make them ready to be ingested 

in the updating step of the filtering process. Therefore, the modeled soil moisture is taken to a radiative 

transfer model (RTM) [47]. By doing so, a synthetic brightness temperature is generated from the 

model. To account for the measurement noise a zero mean normally distributed random number is 

added to the brightness temperature which synthetically creates the noisy observation (see figure 2). 

The open loop simulations are conducted when uncertain inputs are propagated into the model to 

degrade the model estimate. To ensure that the uncertainty in the model input is realistic a 

meteorological forcing data set different from that of the truth run is used. For example, as described 

by Kumar et al. [37], the land surface model is spun using meteorological forcing from the Global Data 

Assimilation System (GDAS) - the global operational weather forecast model of the National Center 

for Environmental Prediction (NCEP) [13] creates the “truth” or control run then the open loop 

simulation is conducted while forcing the land surface model with meteorological forcing from 

Goddard Earth Observing System (GEOS) [50].  

5. Summary 

This paper provides a review of the most commonly used remotely sensed land surface 

measurements, mainly microwave remote sensing products for both soil moisture and snow (SWE and 

SCA) to be used in a data assimilation framework to improve upon the land surface model prediction. 

Passive microwave remote sensing provides a means of direct measurement of soil moisture for a range 
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of vegetation cover conditions. Such remote measurement provides the opportunity of observing 

frequent, global sampling of soil moisture with large spatial resolution. 

Fractional snow cover area (SCA) observations can typically be obtained from visible or infrared 

satellite sensors providing high spatial resolution observations [28]. However, cloud conditions are 

always limiting the effectiveness of these sensors in retrieval. SCA can also be obtained from the 

Moderate Resolution Imaging Spectroradiometer (MODIS). Studies demonstrate that MODIS has the 

ability to significantly better classify the greater amount of snow in topographically complex and 

forested basins. Although MODIS data has shown some limitations to cloud cover, it is suggested as a 

better product well-suited for data assimilation. Space-borne passive microwave remote sensors can 

also provide a capability for qualitative observations of snow water equivalent (SWE). Among several 

satellites that have made passive microwave measurements for snow water equivalent, Advanced 

Microwave Scanning Radiometer for the Earth Observing system (AMSR-E), was used by [1], 

however, the magnitude of improvement was found to be minimal as compared to the assimilation of 

SCA from MODIS.  

The concept of data assimilation was discussed and two of the advanced techniques, mainly EnKF 

and PF were explained in detail. Considering that DA techniques are used mainly for reducing the 

uncertainty, there is still a lack of consensus in hydrologic community on the selection and 

implementation of a suitable land DA method to meet this need. It needs to be realized that 

contemporary DA methods are used for estimating the state variables (here, soil moisture, SWE or 

SCA), and uncertainties associated with them, however, not all sources of uncertainties are addressed 

in the assimilation process. These include uncertainty in model parameters and also model structure 

which are ignored in DA implementations. Although in this paper we did not intend to provide a 

comprehensive review of all the data assimilation methods, we focused on two of emerging techniques 

as reported by few studies in section 4. It was mentioned that the ensemble filtering using PF results to 

full representation of prognostic variable and even parameter probability distributions. The EnKF is 

limited to the linear updating rule as in the original Kalman filter and also assumption of Gaussian 

distribution of errors in observation and model. Considering that the soil moisture and snow water 

equivalent probability distribution significantly change over time and are often non-normal, the 

existing assumptions in EnKF limit its application in strongly nonlinear hydrologic models. Knowing 

the potentials of PFs, further implementation of PF as an alternative procedure for operational data 

assimilation is suggested. The synthetic study through OSSE design as seen in section 4.1.3 is an 

appropriate procedure to judge about the merits of a certain technique for land data assimilation and the 

method can be used to adequately quantify and minimize the hydrologic predictive uncertainty while 

including model parameter uncertainty in the whole scheme. 
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