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Abstract: Statistical correction methods, the Cumulative ibstion Function (CDF)
matching technique and Regional Statistics MetiiR8I\) are applied to adjust the limited
temporal variability of Advanced Microwave ScanniRadiometer E (AMSR-E) data
using the Common Land Model (CLM). The temporaliafaitity adjustment between
CLM and AMSR-E data was conducted for annual arab@eal periods for 2003 in the
Little River region, GA. The results showed thae thtatistical correction techniques
improved AMSR-E’s limited temporal variability asompared to ground-based
measurements. The regression slope and intercgpowed from 0.210 and 0.112 up to
0.971 and -0.005 for the non-growing season. TheaRies also modestly improved. The
Moderate Resolution Imaging Spectroradiometer (M&DLeaf Area Index (LAI)
products were able to identify periods having aeratated microwave brightness signal
that are not likely to benefit from these stataticorrection techniques.

Keywords. Temporal variability, Statistical correction, Adwaed Microwave Scanning
Radiometer E (AMSR-E), Common Land Model (CLM), L.éaea Index (LAI)
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1. Introduction

Model and field validation studies have identifieldallenges to the direct application of remote
sensing soil moisture products from aircraft anelBte instruments that provide regional surfaoé s
moisture (0 - 5 cm) values [11, 12, 24]. These pot&l tend to capture the soil moisture patterns of
relatively wet and dry regions [17, 22, 23], bu¢ lemotely sensed magnitude often does not caerelat
well with in situ measurements [22, 23]. Sahool €28] pointed out that AMSR-E did not predict the
observed soil moisture temporal variation duringEsfd2 (lowa), SMEX03 (Georgia), and SMEX04
(Arizona). Mohr et al. [17] also pointed out thamotely sensed Electronically Scanned Thinned
Array Radiometer (ESTAR) surface soil moisture dat predict temporal variation as compared to
model and ground data during Southern Great Pldydrology 1997 (SGP97). In particular, the
limited range of remotely sensed soil moisture @ajuespecially during the growing season,
challenges their application [6, 15, 22].

Improvement of satellite soil moisture is possible means of statistical correction or scaling
approaches and may be particularly valuable paouding a satellite soil moisture product in an
assimilation system [21]. The Cumulative Distriloati Function (CDF) matching technique and
Regional Statistics Method (RSM) have been widalgduin diverse disciplines to reduce hydrologic
measurement errors. CDF matching reduced the &etween measured gage rainfall and radar
rainfall [4] as well as Spectral Sensor Microwaweager (SSM/I) satellite rainfall estimation [2].
Reichle and Koster [21] used CDF matching to redbedong-term bias for microwave soil moisture
retrieved from the C-band Scanning Multi-channetidwave Radiometer (SMMR). They found that
the CDF matching technique improved the bias ofmeal moisture derived from SMMR by up to
80% as compared to the bias of original SMMR re#ie They pointed out that this simple technique,
CDF matching technique, would be useful for pradtmperation of future satellite products such as
AMSR-E. Zhan et al. [27] also applied the CDF matghtechnique with Land Data Assimilation
System’s (LDAS) land surface modeling to scale lamnporal variability of the AMSR-E soil
moisture products during SMEX field experiments.ef¥hconcluded the AMSR-E soil moisture
products’ low temporal variability was much impravand that the AMSR-E soil moisture could be
used to assimilate into land surface models aftalireg by CDF matching technique. RSM is routinely
used to predict un-gauged site flow based on negdwged site [18, 14, 10] with applications for
stream flow time series reconstruction [18].

The objective of this study is to use modeled swiisture to improve the Advanced Microwave
Scanning Radiometer — E (AMSR-E) surface soil nnoess dynamic range of temporal variability.
Here we compare the CDF matching and the RSM ttafisorrection methods. Additionally, the
value of remotely sensed vegetation to enhanceéststat correction methods is also explored.
Remotely sensed vegetation information, the MoeéerResolution Imaging Spectroradiometer
(MODIS) Leaf Area Index (LAI) products, is used ittentify annual vegetation density variations
affecting the accuracy of AMSR-E soil moisture prot.
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2. Study area

This study was conducted in the Little River watexsin near Tifton, GA which was the site of the
Soil Moisture Experiments in 2003 (SMEXO03) fieldmgaaign and was also heavily instrumented for
the long-term calibration and validation of AMSRattcrowave soil moisture. The region’s climate is
humid with average annual rainfall of 1160 mm. Bods are mostly well drained sands [16]. In the
watershed, land use is predominantly row-crop agitice (40%), pasture (18%), forest (36%), and
wetlands and residential (6%) [5]. The main crogsatton and peanuts with typical growing seasons
from May to October. More detailed information dndy area is provided by [5]. The Little River
Watershed study region coincides with a portiofoaf 25 km by 25 km EASE Grids identified as A,
B, C, and D (Figure 1). Table 1 describes the ggagc location, land use, and soil texture for each
EASE-Grid.

Figure 1. Little River watershed at Georgia, network sitdeDAS-Grids, and EASE-

Grids.
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3. Datasets

The study period was January 1 to December 31,.2D0&ng 2003, soil moisture data were
available from in-situ measurements, satellite ola®ns, and CLM model predictions for each grid.
A brief description appears below. Additional distaire available from [5] and [6].

3.1 In-Situ Measurements

Hydra soil moisture sensors installed at 19 in-siétwork sites in or near watershed (Figure 1)
provide soil moisture data at 5 cm below groundasa every 30 minutes [5]. The Hydra probes
measure the time domain using 6 cm length tinew findhich average dielectric constant is retrieved
and dielectric constant is then converted to volmmeoil moisture based on calibration as a fuorcti
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of soil texture. Seven, three, one, and six in-sgtwork sites were included in EASE-Grids A, B, C,
and D, respectively (Figure 1). However, most to-sietwork sites were determined to be much drier
than the regional mean soil moisture [5]. In tHisdy, we used time stability analysis introduced by
Vachaud et al. [25] to characterize time-invariagsociation between spatial location and statlstica
parametric values of a given soil property. If t@ncept demonstrates a constancy of spatial soil
moisture patterns, then the number of observatinag be minimized without considerable loss of
information. Based on time stability analysis, sitRG50, RG32, and RG16 provide the best
representative measurements for EASE-Grid A, B, Bndespectively (Figure 1). RG67, the only
available network station, measured from 05/29/20037/13/2003, is used to represent EASE-Grid C

(Figure 1).

Table 1. Geographic locations, land use, and soil textaré&sfrids A, B, C, and D.

Grid A Grid B Grid C Grid D
Latitude/longitude off  31.88N, 31.88N, 31.65N, 31.65N,
the Grid's Northeast| -83.69W -83.43W -83.69W -83.43W
Watershed area
(% of grid cell) 11.4 5.2 7.5 29.2
Major IGBP land use category (%)
Cropland/Pasture 68.7 58.1 65.2 71.8
Evergreen forest 23.6 35.8 26.6 18.0
Wetland 4.3 4.8 7.4 8.0
Reservoir 13 - 0.1 0.2
Mixed forest 1.0 0.5 - -
Deciduous forest 0.6 0.2 - -
Residential/Urban 0.5 0.6 0.7 2.0
Surface soil texture
Sand (%) 78 79 78 78
Clay (%) 6 6 6 6

3.2 Satellite Observations

The AMSR-E daily land surface products for the 8% lixy 25 km EASE-Grids were obtained from
the National Snow and Ice Data Center (NSIDC). [Elwvel-3 soil moisture product with a 25 km grid
spacing and daily temporal resolution (1:30 pm ES&rpass) was used in this study [19]. Detailed
descriptions for the AMSR-E retrieval algorithms dze found from [19].
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The MODIS instrument on the Terra satellite prosidéobal observations of LAl every 1 to 2 days
[20, 26]. The 8-day composite LAI products with-&rh sinusoidal grid projection were obtained from
the Earth Observing System (EOS) data gateway agddded to match the EASE-Grids spatial
resolution (25 km).

3.3 Modeled Soil Moisture

For this study, near surface soil moisture was neadasing the CLM. The CLM simulates land
surface processes based on the energy and watercbasolution integrated by an implicit time-
integration scheme [8]. This study used hourly iftgadata obtained from the North American Land
Data Assimilation System (NLDAS) [7]. Spatial rasmbn of 15 km for NLDAS forcing were
regridded to match the EASE-Grids spatial resotu¢zb km). Soil model parameters were determined
using solil texture characterized by sand and ctaggntage. Land use types based on the Internktiona
Geosphere-Biosphere Programme (IGBP) classificatiere used for vegetation parameterizations
[8]. The initial subsurface soil temperature andistuse content values were obtained from the Soil
Climate Analysis Network (SCAN) 2027 site in Grid Dcated in southeast of the watershed (Figure
1). The regression relationship indicates reasenalgireement between the CLM and the in-situ
surface soil moisture [6]. However, the CLM simatatsoil moisture tended to be wetter than the
observed soil moisture, particularly after rainfeltents. This may be caused by scale mismatch
between the single point in-situ measurements hadgtid averaged soil moisture. A limitation of
CLM’s mosaic approach is that it can not identi€yual geographical location of fluxes and storgs [9
The AMSR-E soil moisture values only weakly agrethwn-situ measurements [6].

4. Approach for adjustment of temporal variability of AM SR-E

The CDF matching technique uses distributions fooma source to correct the distribution from a
second source [2, 4]. Here, it was used to coerttemely low temporal variability of the AMSR-E
data using a modeled distribution (i.e., CLM dlstition). Figure 2 shows that the CDF of the actual
AMSR-E retrieved soil moisture has less variabilityan the CDF of either the ground-based
measurements or the CLM soil moisture. Arrows an dashed lines show how the actual AMSR-E
soil moisture is corrected to scaled AMSR-E soiistwe by the CDF matching. After CDF matching,
the scaled AMSR-E soil moisture shows a similatriistion pattern as that of the ground- based
measurements and CLM soil moisture (Figure 2). Sd¢sded (corrected) AMSR-E soil moisture can be
derived as [21]

cdf (x') = cdf,(x) (1)
wherecdf, is the cdf of the CLM soil moisturedf; is the cdf of the AMSR-E soil moisturejs the
actual AMSR-E retrieved soil moisture, axids the scaled (corrected) AMSR-E soil moisture.

The RSM is applied to correct temporal variabilifythe AMSR-E products as well as the CDF
matching technique. The scaled (corrected) AMSRiEsoisture can be derived as [14]

— U(yi)[x i i _Xi]
Ziiiy =Yt 0(()(’i)’ )
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whereZ;; is the scaled AMSR-E soil moisture for dagf monthi, x;; is the original AMSR-E
soil moisture products for dgyof monthi, xi ando(Xx) are the mean and standard deviation of the
AMSR-E soil moisture in month and y, anda(y;) are the corresponding mean and standard deviation

of the CLM soil moisture in month

Figure 2. CDF estimation at EASE-Grid A.
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5. Result and Discussions

AMSR-E soil moisture retrievals are unreliable di@ense canopies due to increased attenuation with
increasing vegetation due to their greater vegmtatrater content [19]. Njoku [19] pointed out soil
moisture retrievals from the AMSR-E microwave bamgse not sensitive in high vegetation regions
due to this attenuation by vegetation density. Tl matching and RSM analyses were applied
separately for the complete 2003 period and the 2@Mh-growing season which is the period having
less sensitive soil moisture retrievals. The namagng season was determined from the relationship
between AMSR-E and MODIS LAI products. In previaal moisture studies, the LAl product has
provided excellent temporal vegetation informatmetessary to characterize vegetation [3] and has
the advantage of being strongly physically-baséd [1

Monthly AMSR-E soil moisture variations were cdited and compared to monthly average
LAI values (Figure 3). Generally, soil moisture radions decreased as LAl increased. The threshold
LAI value to identify growing season of cotton gmehnut is estimated to be 1.5 for this study. This
finding is also supported by a visual inspectioAMSR-E soil moisture and MODIS LAI time series
plot for 2003. While the limitations of this LAI tbshold are self-evident, for the local threshold
provides a quantitative means to identify the grgrgeason.
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Figure 3. Relationship between monthly variability of AMSRs&il moisture and 30-
day average of MODIS LAl for 2003.
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Given the attenuated AMSR-E’s soil moisture respoosrresponding with vegetation density
exceeding 1.5, the statistical correction methodsevanalyzed separately for entire year of 2003 and
non-growing period of 2003 (i.e., January to Apinid November to December, 2003). This finding is
supported by Jacobs and Sudheer [13]. They poouethat typical crop growth season of cotton and
peanut in Georgia region is from May to October][13

Table 2 compares the actual and the corrected AEMSRBHlues to the measured values by grid. Both
correction methods greatly improved the regressmrstants (i.e., slope A close to 1.0 and interBept
close to zero). For the entire year, the regressarstants, A and B, were improved from 0.141 and
0.121 up to 0.791 and 0.051, respectively for 200@ R values also improved modestly.

Removing periods with a limited AMSR-E responserfrthe analysis greatly improved the results.
The A, B, and R were improved with ranges up to 0.658-0.971, 0605, and 0.306-0.468,
respectively during non-growing season. The pressslts indicate that MODIS vegetation products
may be productively used in combination with the 83RIE datasets. Additionally, these findings
suggest that evaluating the improvement to AMSR&ties during periods with known signal
attenuation will likely distort the methods’ value.

While both statistical correction methods did anedbent job improving enhanced the AMSR-E soil
moisture products, the RSM had stronger correlatamross the EASE-Grids (Table 2). The A, B, and
R? were better estimated by the RSM. Figure 4 ilatss the relative improvement possible using the
RSM corrected AMSR-E values as compared to theabh&MSR-E values. Figure 5 shows that the
time series of RSM corrected AMSR-E values are mhtter aligned with the measured series than
the actual AMSR-E values. However, RSM correctedSRVE values tend to be wetter than ground-
based measurements due to a wet bias of the mo@é&ledsoil moisture. Our results clearly shows
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that statistical correction techniques can be ueesppropriately adjust AMSR-E’s limited temporal

variability using modeled soil moisture.
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Figure 4. The actual AMSR-E and the RSM corrected AMSR-H swisture values
compared with ground based measurements for namiggqeriod by EASE-Grid.
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Table 2. Results of statistical correction methods with éhiginal constants across the

EASE-Grids (Note: Y =Ax + B, x = Ground based meaments and y = AMSR-E).

Entire year of 2003
Grid Grid A Grid B
AMSR-E Actual CDF RSM Actual CDF RSM
A 0.148 0.568 0.679 0.141 0.462 0.484
B 0.121 0.066 0.051 0.121 0.082 0.079
R? 0.195 0.186 0.266 0.263 0.237 0.264
Grid Grid C Grid D
AMSR-E Actual CDF RSM Actual CDF RSM
A 0.154 0.525 0.791 0.173 0.605 0.654
B 0.121 0.074 0.078 0.115 0.059 0.054
R? 0.298 0.242 0.435 0.289 0.272 0.314
Non growing season of 2003
DOY 1 -120 (Jan. - Apr.) and DOY 305 - 365 (Nowec.) for 2003
Grid Grid A Grid B
AMSR-E Actual CDF RSM Actual CDF RSM
A 0.266 0.916 0.971 0.210 0.658 0.686
B 0.105 0.011 -0.005 0.112 0.046 0.039
R? 0.320 0.306 0.435 0.363 0.351 0.464
Grid Grid C Grid D
AMSR-E Actual CDF RSM Actual CDF RSM
A - - - 0.223 0.718 0.741
B - - - 0.111 0.041 0.028
R? - - - 0.386 0.372 0.444

6. Conclusion

In this study, we used the statistical correctioethnds, CDF matching technique and RSM, to
improve limited temporal variability of the AMSR{itoducts at SMEXO03 region. We found that these
simple statistical correction methods associatet thie CLM improved the low temporal variation of
the AMSR-E products in dynamic vegetation regidaigither, we found that the statistical correction
analysis results differ greatly when periods havarg attenuated microwave brightness signal are
identified using vegetation density information rfrosatellites (i.e., LAI) and removed from the
analysis. Clear identification of such periods vaill our ability to appropriately apply the retrev
soil moisture products as well as to study meansnttance retrieved products using model derived
statistics.
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