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Abstract: Statistical correction methods, the Cumulative Distribution Function (CDF) 

matching technique and Regional Statistics Method (RSM) are applied to adjust the limited 

temporal variability of Advanced Microwave Scanning Radiometer E (AMSR-E) data 

using the Common Land Model (CLM). The temporal variability adjustment between 

CLM and AMSR-E data was conducted for annual and seasonal periods for 2003 in the 

Little River region, GA. The results showed that the statistical correction techniques 

improved AMSR-E’s limited temporal variability as compared to ground-based 

measurements. The regression slope and intercept improved from 0.210 and 0.112 up to 

0.971 and -0.005 for the non-growing season. The R2 values also modestly improved. The 

Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) 

products were able to identify periods having an attenuated microwave brightness signal 

that are not likely to benefit from these statistical correction techniques. 
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1. Introduction  

Model and field validation studies have identified challenges to the direct application of remote 

sensing soil moisture products from aircraft and satellite instruments that provide regional surface soil 

moisture (0 - 5 cm) values [11, 12, 24]. These products tend to capture the soil moisture patterns of 

relatively wet and dry regions [17, 22, 23], but the remotely sensed magnitude often does not correlate 

well with in situ measurements [22, 23]. Sahoo et al. [23] pointed out that AMSR-E did not predict the 

observed soil moisture temporal variation during SMEX02 (Iowa), SMEX03 (Georgia), and SMEX04 

(Arizona). Mohr et al. [17] also pointed out that remotely sensed Electronically Scanned Thinned 

Array Radiometer (ESTAR) surface soil moisture did not predict temporal variation as compared to 

model and ground data during Southern Great Plains Hydrology 1997 (SGP97). In particular, the 

limited range of remotely sensed soil moisture values, especially during the growing season, 

challenges their application [6, 15, 22].  

Improvement of satellite soil moisture is possible by means of statistical correction or scaling 

approaches and may be particularly valuable prior to using a satellite soil moisture product in an 

assimilation system [21]. The Cumulative Distribution Function (CDF) matching technique and 

Regional Statistics Method (RSM) have been widely used in diverse disciplines to reduce hydrologic 

measurement errors. CDF matching reduced the error between measured gage rainfall and radar 

rainfall [4] as well as Spectral Sensor Microwave Imager (SSM/I) satellite rainfall estimation [2]. 

Reichle and Koster [21] used CDF matching to reduce the long-term bias for microwave soil moisture 

retrieved from the C-band Scanning Multi-channel Microwave Radiometer (SMMR). They found that 

the CDF matching technique improved the bias of mean soil moisture derived from SMMR by up to 

80% as compared to the bias of original SMMR retrievals. They pointed out that this simple technique, 

CDF matching technique, would be useful for practical operation of future satellite products such as 

AMSR-E. Zhan et al. [27] also applied the CDF matching technique with Land Data Assimilation 

System’s (LDAS) land surface modeling to scale low temporal variability of the AMSR-E soil 

moisture products during SMEX field experiments. They concluded the AMSR-E soil moisture 

products’ low temporal variability was much improved and that the AMSR-E soil moisture could be 

used to assimilate into land surface models after scaling by CDF matching technique. RSM is routinely 

used to predict un-gauged site flow based on nearby gauged site [18, 14, 10] with applications for 

stream flow time series reconstruction [18].  

The objective of this study is to use modeled soil moisture to improve the Advanced Microwave 

Scanning Radiometer – E (AMSR-E) surface soil moisture’s dynamic range of temporal variability. 

Here we compare the CDF matching and the RSM statistical correction methods. Additionally, the 

value of remotely sensed vegetation to enhance statistical correction methods is also explored. 

Remotely sensed vegetation information, the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Leaf Area Index (LAI) products, is used to identify annual vegetation density variations 

affecting the accuracy of AMSR-E soil moisture products. 
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2. Study area  

This study was conducted in the Little River watershed in near Tifton, GA which was the site of the 

Soil Moisture Experiments in 2003 (SMEX03) field campaign and was also heavily instrumented for 

the long-term calibration and validation of AMSR-E microwave soil moisture. The region’s climate is 

humid with average annual rainfall of 1160 mm. The soils are mostly well drained sands [16]. In the 

watershed, land use is predominantly row-crop agriculture (40%), pasture (18%), forest (36%), and 

wetlands and residential (6%) [5]. The main crops are cotton and peanuts with typical growing seasons 

from May to October. More detailed information on study area is provided by [5]. The Little River 

Watershed study region coincides with a portion of four 25 km by 25 km EASE Grids identified as A, 

B, C, and D (Figure 1). Table 1 describes the geographic location, land use, and soil texture for each 

EASE-Grid.  

Figure 1. Little River watershed at Georgia, network sites, NLDAS-Grids, and EASE-

Grids. 

 

3. Datasets 

The study period was January 1 to December 31, 2003. During 2003, soil moisture data were 

available from in-situ measurements, satellite observations, and CLM model predictions for each grid. 

A brief description appears below. Additional details are available from [5] and [6]. 

3.1 In-Situ Measurements 

Hydra soil moisture sensors installed at 19 in-situ network sites in or near watershed (Figure 1) 

provide soil moisture data at 5 cm below ground surface every 30 minutes [5]. The Hydra probes 

measure the time domain using 6 cm length tines from which average dielectric constant is retrieved 

and dielectric constant is then converted to volumetric soil moisture based on calibration as a function 
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of soil texture. Seven, three, one, and six in-situ network sites were included in EASE-Grids A, B, C, 

and D, respectively (Figure 1). However, most in-situ network sites were determined to be much drier 

than the regional mean soil moisture [5]. In this study, we used time stability analysis introduced by 

Vachaud et al. [25] to characterize time-invariant association between spatial location and statistical 

parametric values of a given soil property. If the concept demonstrates a constancy of spatial soil 

moisture patterns, then the number of observations may be minimized without considerable loss of 

information. Based on time stability analysis, sites RG50, RG32, and RG16 provide the best 

representative measurements for EASE-Grid A, B, and D, respectively (Figure 1). RG67, the only 

available network station, measured from 05/29/2003 to 07/13/2003, is used to represent EASE-Grid C 

(Figure 1). 

Table 1. Geographic locations, land use, and soil texture for Grids A, B, C, and D.  

 Grid A Grid B Grid C Grid D 

Latitude/longitude of 

the Grid’s Northeast 

31.88°N, 

-83.69°W 

31.88°N, 

-83.43°W 

31.65°N, 

-83.69°W 

31.65°N, 

-83.43°W 

Watershed area 

(% of grid cell) 
11.4 5.2 7.5 29.2 

Major IGBP land use category (%) 

Cropland/Pasture 68.7 58.1 65.2 71.8 

Evergreen forest 23.6 35.8 26.6 18.0 

Wetland 4.3 4.8 7.4 8.0 

Reservoir 1.3 - 0.1 0.2 

Mixed forest 1.0 0.5 - - 

Deciduous forest 0.6 0.2 - - 

Residential/Urban 0.5 0.6 0.7 2.0 

Surface soil texture 

Sand (%) 78 79 78 78 

Clay (%) 6 6 6 6 

3.2 Satellite Observations 

The AMSR-E daily land surface products for the 25 km by 25 km EASE-Grids were obtained from 

the National Snow and Ice Data Center (NSIDC). The level-3 soil moisture product with a 25 km grid 

spacing and daily temporal resolution (1:30 pm EST overpass) was used in this study [19]. Detailed 

descriptions for the AMSR-E retrieval algorithms can be found from [19]. 
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The MODIS instrument on the Terra satellite provides global observations of LAI every 1 to 2 days 

[20, 26]. The 8-day composite LAI products with a 1-km sinusoidal grid projection were obtained from 

the Earth Observing System (EOS) data gateway and regridded to match the EASE-Grids spatial 

resolution (25 km).  

3.3 Modeled Soil Moisture 

For this study, near surface soil moisture was modeled using the CLM. The CLM simulates land 

surface processes based on the energy and water balance solution integrated by an implicit time-

integration scheme [8]. This study used hourly forcing data obtained from the North American Land 

Data Assimilation System (NLDAS) [7]. Spatial resolution of 15 km for NLDAS forcing were 

regridded to match the EASE-Grids spatial resolution (25 km). Soil model parameters were determined 

using soil texture characterized by sand and clay percentage. Land use types based on the International 

Geosphere-Biosphere Programme (IGBP) classification were used for vegetation parameterizations 

[8]. The initial subsurface soil temperature and moisture content values were obtained from the Soil 

Climate Analysis Network (SCAN) 2027 site in Grid D, located in southeast of the watershed (Figure 

1). The regression relationship indicates reasonable agreement between the CLM and the in-situ 

surface soil moisture [6]. However, the CLM simulated soil moisture tended to be wetter than the 

observed soil moisture, particularly after rainfall events. This may be caused by scale mismatch 

between the single point in-situ measurements and the grid averaged soil moisture. A limitation of 

CLM’s mosaic approach is that it can not identify actual geographical location of fluxes and stores [9]. 

The AMSR-E soil moisture values only weakly agree with in-situ measurements [6].  

4. Approach for adjustment of temporal variability of AMSR-E  

The CDF matching technique uses distributions from one source to correct the distribution from a 

second source [2, 4]. Here, it was used to correct extremely low temporal variability of the AMSR-E 

data using a modeled distribution (i.e., CLM distribution). Figure 2 shows that the CDF of the actual 

AMSR-E retrieved soil moisture has less variability than the CDF of either the ground-based 

measurements or the CLM soil moisture. Arrows on the dashed lines show how the actual AMSR-E 

soil moisture is corrected to scaled AMSR-E soil moisture by the CDF matching. After CDF matching, 

the scaled AMSR-E soil moisture shows a similar distribution pattern as that of the ground- based 

measurements and CLM soil moisture (Figure 2). The scaled (corrected) AMSR-E soil moisture can be 

derived as [21] 

 (1) 

where cdfm is the cdf of the CLM soil moisture, cdfs is the cdf of the AMSR-E soil moisture, x is the 

actual AMSR-E retrieved soil moisture, and x’ is the scaled (corrected) AMSR-E soil moisture. 

The RSM is applied to correct temporal variability of the AMSR-E products as well as the CDF 

matching technique. The scaled (corrected) AMSR-E soil moisture can be derived as [14]  

 

(2) 

 )(

])[( ),(
),(

i

iiji
iij x

xxy
yZ

σ
σ −

+=

)()'( xcdfxcdf sm =



Sensors 2008, 8              

 

 

2622

where Z(j,i) is the scaled AMSR-E soil moisture for day j of month i, x(j,i) is the original AMSR-E 

soil moisture products for day j of month i, ix  and σ(xi) are the mean and standard deviation of the 

AMSR-E soil moisture in month i, and iy  and σ(yi) are the corresponding mean and standard deviation 

of the CLM soil moisture in month i. 

Figure 2. CDF estimation at EASE-Grid A. 
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5. Result and Discussions 

AMSR-E soil moisture retrievals are unreliable for dense canopies due to increased attenuation with 

increasing vegetation due to their greater vegetation water content [19]. Njoku [19] pointed out soil 

moisture retrievals from the AMSR-E microwave bands were not sensitive in high vegetation regions 

due to this attenuation by vegetation density. The CDF matching and RSM analyses were applied 

separately for the complete 2003 period and the 2003 non-growing season which is the period having 

less sensitive soil moisture retrievals. The non-growing season was determined from the relationship 

between AMSR-E and MODIS LAI products. In previous soil moisture studies, the LAI product has 

provided excellent temporal vegetation information necessary to characterize vegetation [3] and has 

the advantage of being strongly physically-based [1]. 

 Monthly AMSR-E soil moisture variations were calculated and compared to monthly average 

LAI values (Figure 3). Generally, soil moisture variations decreased as LAI increased. The threshold 

LAI value to identify growing season of cotton and peanut is estimated to be 1.5 for this study. This  

finding is also supported by a visual inspection of AMSR-E soil moisture and MODIS LAI time series 

plot for 2003. While the limitations of this LAI threshold are self-evident, for the local threshold 

provides a quantitative means to identify the growing season. 
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Figure 3. Relationship between monthly variability of AMSR-E soil moisture and 30-

day average of MODIS LAI for 2003. 
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Given the attenuated AMSR-E’s soil moisture response corresponding with vegetation density 

exceeding 1.5, the statistical correction methods were analyzed separately for entire year of 2003 and 

non-growing period of 2003 (i.e., January to April and November to December, 2003). This finding is 

supported by Jacobs and Sudheer [13]. They pointed out that typical crop growth season of cotton and 

peanut in Georgia region is from May to October [13]. 

Table 2 compares the actual and the corrected AMSR-E values to the measured values by grid. Both 

correction methods greatly improved the regression constants (i.e., slope A close to 1.0 and intercept B 

close to zero). For the entire year, the regression constants, A and B, were improved from 0.141 and 

0.121 up to 0.791 and 0.051, respectively for 2003. The R2 values also improved modestly.  

Removing periods with a limited AMSR-E response from the analysis greatly improved the results. 

The A, B, and R2 were improved with ranges up to 0.658-0.971, 0.046--0.005, and 0.306-0.468, 

respectively during non-growing season. The present results indicate that MODIS vegetation products 

may be productively used in combination with the AMSR-E datasets. Additionally, these findings 

suggest that evaluating the improvement to AMSR-E values during periods with known signal 

attenuation will likely distort the methods’ value.  

While both statistical correction methods did an excellent job improving enhanced the AMSR-E soil 

moisture products, the RSM had stronger correlations across the EASE-Grids (Table 2). The A, B, and 

R2 were better estimated by the RSM. Figure 4 illustrates the relative improvement possible using the 

RSM corrected AMSR-E values as compared to the actual AMSR-E values. Figure 5 shows that the 

time series of RSM corrected AMSR-E values are much better aligned with the measured series than 

the actual AMSR-E values. However, RSM corrected AMSR-E values tend to be wetter than ground-

based measurements due to a wet bias of the modeled CLM soil moisture. Our results clearly shows 
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that statistical correction techniques can be used to appropriately adjust AMSR-E’s limited temporal 

variability using modeled soil moisture.  

Figure 4. The actual AMSR-E and the RSM corrected AMSR-E soil moisture values 

compared with ground based measurements for non-growing period by EASE-Grid. 
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Figure 5. Time series of the actual AMSR-E and the RSM corrected AMSR-E soil 

moisture values compared with ground based measurements and CLM for non-growing 

period by EASE-Grid. 
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Table 2. Results of statistical correction methods with the original constants across the 

EASE-Grids (Note: Y =Ax + B, x = Ground based measurements and y = AMSR-E).  

 

Entire year of 2003 

Grid Grid A Grid B 

AMSR-E Actual CDF RSM Actual CDF RSM 

A 0.148 0.568 0.679 0.141 0.462 0.484 

B 0.121 0.066 0.051 0.121 0.082 0.079 

R2 0.195 0.186 0.266 0.263 0.237 0.265 

Grid Grid C Grid D 

AMSR-E Actual CDF RSM Actual CDF RSM 

A 0.154 0.525 0.791 0.173 0.605 0.654 

B 0.121 0.074 0.078 0.115 0.059 0.052 

R2 0.298 0.242 0.435 0.289 0.272 0.316 

Non growing season of 2003 

DOY 1 - 120 (Jan. - Apr.) and DOY 305 - 365 (Nov. - Dec.) for 2003 

Grid Grid A Grid B 

AMSR-E Actual CDF RSM Actual CDF RSM 

A 0.266 0.916 0.971 0.210 0.658 0.686 

B 0.105 0.011 -0.005 0.112 0.046 0.033 

R2 0.320 0.306 0.435 0.363 0.351 0.468 

Grid Grid C Grid D 

AMSR-E Actual CDF RSM Actual CDF RSM 

A - - - 0.223 0.718 0.741 

B - - - 0.111 0.041 0.028 

R2 - - - 0.386 0.372 0.444 

 

6. Conclusion 

In this study, we used the statistical correction methods, CDF matching technique and RSM, to 

improve limited temporal variability of the AMSR-E products at SMEX03 region. We found that these 

simple statistical correction methods associated with the CLM improved the low temporal variation of 

the AMSR-E products in dynamic vegetation regions. Further, we found that the statistical correction 

analysis results differ greatly when periods having an attenuated microwave brightness signal are 

identified using vegetation density information from satellites (i.e., LAI) and removed from the 

analysis. Clear identification of such periods will aid our ability to appropriately apply the retrieved 

soil moisture products as well as to study means to enhance retrieved products using model derived 

statistics.  
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