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Abstract: Range and velocity estimation of moving targets using conventional stepped-
frequency pulse radar may suffer from the range-Doppler coupling and the phase 
wrapping. To overcome these problems, this paper presents a new radar waveform named 
multiple stepped-frequency pulse trains and proposes a new algorithm. It is shown that by 
using multiple stepped-frequency pulse trains and the robust phase unwrapping theorem 
(RPUT), both of the range-Doppler coupling and the phase wrapping can be robustly 
resolved, and accordingly, the range and the velocity of a moving target can be accurately 
estimated. 
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1. Introduction  

Range and velocity estimation of moving targets using high range resolution radar is a topic of great 
interest. To achieve this goal, there are two problems to be considered. The first problem is how to 
obtain high range resolution. It is known that the range resolution is inversely proportional to the 
bandwidth of the transmitted signal and directly transmitting and receiving the ultra-wideband signal 
are difficult to be realized. Stepped-frequency pulse train processing is a well-known technique to 
obtain high range resolution without the requirement of wide instantaneous bandwidth [1-7], and it is 
adopted in this paper. The second problem is how to correctly measure the range and velocity of the 
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moving target. When the target of interest is stationary, its position can be estimated by inverse 
discrete Fourier transform (IDFT) on the stepped-frequency pulse train [4-6]. However, when the 
target is moving, it is necessary to deal with the following difficulties. Firstly, the radial velocity of the 
target may cause range estimate shifted, which is called range-Doppler coupling [4-6], and both range 
position and radial velocity can not be correctly retrieved in the IDFT results. Secondly, for high speed 
target such as airplane or missile, the IDFT results only provide the remainders of the estimate of 
coupled range and velocity due to the 2π  modulo folding of the IDFT, which is called phase 
wrapping. Thirdly, the remainders may be erroneous due to the possible interference, e.g., noise or 
clutter. Several effective methods have been proposed to resolve the range-Doppler coupling, such as 
by randomized stepped frequency modulation [6] or by elaborated design of the interpulse frequency 
coding [4-5]. However, how to robustly resolve the phase wrapping problem is not considered in these 
methods.  

In this paper, we propose a new algorithm to robustly resolve both of the range-Doppler coupling 
and the phase wrapping. The radar transmits and receives multiple stepped-frequency pulse trains with 
different carrier frequencies, and IDFT is operated on every pulse train. It will be shown that, using the 
difference information among multiple IDFT results and the robust phase unwrapping theorem 
(RPUT) [8-9], both range and radial velocity of the moving target can be correctly estimated.  

This paper is organized as follows. In Section 2, the range-Doppler coupling and the phase 
wrapping is reviewed in conventional stepped-frequency pulse train processing. In Section 3, the 
multiple stepped-frequency pulse trains are introduced and an algorithm is proposed to resolve both of 
the range-Doppler coupling and the phase wrapping. In Section 4, some numerical examples are given 
to demonstrate the proposed algorithm. 

2. Single Stepped-Frequency Pulse Train Processing 

In this section, we review the single stepped-frequency pulse train processing and introduce the 
range-Doppler coupling and the phase wrapping. Like most studies on stepped-frequency pulse train 
processing, we take the following assumptions: 1) the target moves with constant velocity v relative to 
the radar during the observation duration; 2) in each pulse the radar transmits the narrowband chirp 
signal and the pulse bandwidth is fΔ ; 3) the pulse train to be processed consists of the pulses stepped 
in frequency with a fixed frequency step and the step is equal to fΔ ; 4) the observation duration is 
short so that the target range migration does not exceed the range resolution cell of each pulse (denoted 
by RΔ  and determined by /(2 )R c fΔ = Δ ), which is reasonable for most moving targets since fΔ  is 
small according to 2).    

The received baseband echo can be expressed as  

      
22 ( ) / 2 ( ) 4( , ) rect exp exp ( ) ( )   c

p

R n c R nx n j j f n f R n
T c c

μ πμ πγ μ
⎡ ⎤⎛ ⎞− ⎛ ⎞ ⎡ ⎤= ⋅ − ⋅ − + Δ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎣ ⎦

,        (1) 

where rect(⋅) is the rectangular function, Tp is the pulse width, γ is the chirp rate, cf  is the base carrier 
frequency, n is the pulse index number, n=1, 2, …N, N is the total number of pulses, μ  is the fast-time 
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(or range-time), c is the speed of light, 0( )R n R vTn= − , R0 is the initial range position of the target, and 

T is the pulse repetition interval. The goal of this paper is to estimate R0 and v.  
After the range compression in every pulse, (1) becomes 

                       2 4( , ) exp ( )( )c
M Rx n j f n f M R r vTn

c c
πμ δ μ Δ⎛ ⎞ ⎡ ⎤≈ − ⋅ − + Δ Δ + −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

,                         (2) 

where δ(⋅) is the Delta-Dirac function, M is range cell index number where the target is detected in 
each pulse, 0 ( 1)r R M R= − − Δ  and 0 r R≤ < Δ . Since M has been determined in each pulse, we only 
need to estimate r and v from (2). Multiplying ( )exp 4 /cj f M R cπ Δ  to (2), we have  

224( ) exp 2 2c
c

f vTr vTx n j f r j n j n
c R c R
π π π⎧ ⎫⎛ ⎞= − − − ⋅ + ⋅⎨ ⎬⎜ ⎟Δ Δ⎝ ⎠⎩ ⎭

.                    (3) 

When the target is stationary, i.e., v=0, one can directly estimate r by IDFT in terms of n on (3) and 
finding the peak position. However, when the target is moving, i.e., v≠0, in IDFT results the peak 
appears at the position mod( ,1)α α′ = , where mod(⋅) is the modulus operation and  

                                                                   2 cf vTr
R c

α −
Δ

.                                                                 (4) 

We first consider the case that v is small so that 0 1α α′≤ = < . It is clear in (4) that r and v cannot be 
respectively retrieved by using the knowledge of α . This problem is called range-Doppler coupling. It 
is also noted that the last exponential term on the right-hand side of (3) causes the power spread in 
IDFT results but it does not affect the peak position α′ , so we ignore this term in what follows. On the 
other hand, when v is large so that Kα α′= +  for an unknown integer K, the value of α  can not be 
uniquely determined from IDFT results. This problem is called phase wrapping. Moreover, the 
estimate of α′  may be erroneous due to the existence of noise and clutter. Several effective methods 
have been proposed to resolve the range-Doppler coupling [4-6]; however, the robust phase 
unwrapping is not considered in these methods. In next section we propose a new algorithm to resolve 
both of the range-Doppler coupling and the phase wrapping. 

3. Multiple Stepped-Frequency Pulse Trains Processing 

In this section, we present a new waveform named multiple stepped-frequency pulse trains and 
describe how to resolve both range-Doppler coupling and phase wrapping using this waveform.  

We replace the single stepped-frequency pulse train by multiple stepped-frequency pulse trains. 
This new waveform is shown in Figure 1, where three (or multiple) stepped-frequency pulse trains 
with different base carrier frequencies are simultaneously used. This can be realized by the following 
way: three antennas are fixed in the radar platform, and the same stepped-frequency pulse train is 
modulated on different carrier frequencies 1cf , 2cf  and 3cf  and transmitted by three antennas, 
respectively, and then the different echoes on 1cf , 2cf  and 3cf  are collected and demodulated by three 
antennas, respectively. Without loss of generality, we assume 1 2 3c c cf f f< <  and 2 1( )c cf f−  and 

3 1( )c cf f−  are two distinct positive real numbers and not integer multiple of each other.  
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Now we perform the processing described in the previous section on three stepped-frequency pulse 
trains. By performing P-point IDFT in terms of n in (3), we have  

2 ci i
i i

f vT pr K
R c P

ε− = + +
Δ

,                                                       (5) 

where integers ip  are the peak position estimates in the P-point IDFT results on cif , 0 ip P≤ < , iε  

are estimation errors, and Ki are unknown integers, i =1, 2, 3. When P is larger than the pulse number 
N, the sequence x(n) in (3) should be zero-padded before the IDFT. Assume that the errors iε  are 

bounded by  

 1| |
2i P P

τε ≤ + ,                                                                  (6) 

where 0 Mτ≤ <  is the maximal error level in estimation of the remainders ip . At the right hand side of 

(6), the first term is the quantization error and the second term is caused by possible interference, e.g., 
noise or clutter. Herein we are interested in the estimation of r and v from (5).  
 

Figure 1. Multiple stepped-frequency pulse trains with different base carrier frequencies. 
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We first estimate v. Subtracting the first equation from the other two equations in (5), respectively, 
we have  

 

1
2 1 1 1

2
3 1 2 2

2 ( )

2 ( )

c c

c c

vT f f L
c P
vT f f L
c P

β ξ

β ξ

− = + +

− = + +
,                                           (7) 

where  
1 1 2 2 1 3

1 1 2 2 1 3

1 1 2 2 1 3

        
        

          

p p p p
L K K L K K
β β

ξ ε ε ξ ε ε

= − = −
= − = −
= − = −

,                                                (8) 

and 1 2| |i P P
τξ < + . The problem is to estimate v using the reminders 1β  and 2β . In (7), while iξ  cause 

small errors and they are difficult to be eliminated, the wrong iL  may cause large folding errors. Thus, 
to estimate v, it is necessary to correctly determine iL , which follows the robust phase unwrapping 

problem studied in [8-9] and is what we focus on in the following. Since 0 ip P≤ < , 1 1
P
β

<  and 

2 1
P
β

< . If 1 0β < , the first equation of (7) can be rewritten as  

1
2 1 1 1

2 ( ) ( 1) ( 1)c c
vT f f L
c P

β ξ− = − + + +  

so that 10 1 1
P
β⎛ ⎞≤ + <⎜ ⎟

⎝ ⎠
. This is not essential for estimating v because determining 1L  is replaced by 

determining 1( 1)L − . Thus, without loss of generality, we assume 1 20 , 1
P P
β β

≤ < . Let Γ  be the smallest 

positive real number such that 1 2 1/( )c cf fΓ Γ −  and 2 3 1/( )c cf fΓ Γ −  are integers and they are 
coprime. This holds because 2 1( )c cf f−  and 3 1( )c cf f−  are not integer multiples of each other, and Γ  
can be known since all cif are known. Multiplying 1Γ  and 2Γ  to the two equations in (7), respectively, 

yields 

                                                      

1
1 1 1 1 1

2
2 2 2 2 2

2

2

vT L
c P
vT L
c P

β ξ

β ξ

Γ = Γ + Γ + Γ

Γ = Γ + Γ + Γ
.                                           (9) 

According to the RPUT obtained in [8], if  

                                                            1 21| |
2 2

cv
T

Γ Γ
< ⋅ ⋅

Γ
,                                                     (10) 

where the presence of factor 1/2 is due to two possible motion directions for the target, i.e., toward the 
radar and away from the radar, and  

                                                            1 22(1 2 )( )P τ> + Γ + Γ ,                                         (11) 
then 1L  and 2L  can be correctly determined as   

                                 
1 2
2 1

1 2
1 2 0,1, 1 1 1 1 2 2 2

0,1, 1
( , ) arg min l

l
L L l l

P P
β β

= Γ −
= Γ −

= Γ + Γ − Γ − Γ  .                           (12) 

About the detailed proof of (12), we would like to refer the readers to [8]. Then v can be estimated by  
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1 2
1 2

2 1 3 1

1 1ˆ
4 ( ) ( )c c c c

cv L L
T f f P f f P

β β⎡ ⎤⎛ ⎞ ⎛ ⎞= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎣ ⎦
,                  (13) 

and the estimation error can be upper bounded by  

2 1 3 1

(1 2 ) 1 1ˆ
4 ( ) ( )c c c c

cv v
TP f f f f

τ ⎡ ⎤+
− ≤ +⎢ ⎥− −⎣ ⎦

.                              (14) 

Submitting (13) into (5) and using 0 1r
R

≤ <
Δ

, r can be estimated by  

                                                     
3

1

ˆ2ˆ mod ,1
3

i ci

i

p f vTRr
P c=

Δ ⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑ ,                                         (15) 

and the target range position can be accordingly estimated by 0
ˆ ˆ( 1)R M R r= − Δ + . The estimation error 

of r can be upper bounded by  

1 2 3

2 1 3 1

( )1 2 1 1ˆ| | 1
2 3 ( ) ( )

c c c

c c c c

f f fr r R
P f f f f

τ ⎧ ⎫⎡ ⎤+ ++ ⎪ ⎪− ≤ Δ ⋅ ⋅ ⋅ + +⎨ ⎬⎢ ⎥− −⎪ ⎪⎣ ⎦⎩ ⎭
.                  (16) 

To sufficiently utilize the information of the N pulses, it is better to let P ≥ N, and accordingly, (11) 
may be rewritten as  

                                                 [ ]1 2max , 2(1 2 )( ) 1P N τ≥ + Γ + Γ + .                                         (17) 

Figure 2. The estimation error of speed v versus various maximal remainder error level τ . 

 

4. Numerical Examples  

In this section, some numerical examples are given to show the effectiveness of the proposed 
algorithm. Assume that the observation range is about 20km, the pulse repetition interval T=0.625ms, 
the pulse number N=64, the frequency step (it is equal to the pulse bandwidth) fΔ =5MHz, the base 
carrier frequencies 1cf , 2cf  and 3cf  are 7GHz, 9GHz and 10GHz, respectively, a target is moving 

toward the radar with speed 100m/s, and the initial distance between the radar and the target is 
R0=19885m. In each pulse, the low range resolution is /(2 )c fΔ =30m, so after the range compression 
in every pulse, the target can be detected at 663th low range resolution cell, i.e., M=663, and 
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0 ( 1)r R M R= − − Δ =25m. Substituting above parameters into (4) yields | |α >1, which implies that the 

phase wrapping problem occurs.  
According to the derivation in the previous section, one can calculate that 96 10Γ = × , 1Γ =3 and 

2Γ =2. The maximal determinable speed is max| |v =120m/s according to (10). We consider the maximal 

remainder error levels τ =0, 1, 2, 3, 4, 5 and let P=128 that satisfies (11). In Fig. 2, the error between 
the estimate v̂  in (13) and the true value of v and the error upper bound in (14) versus various τ  are 
plotted, and they are marked by ○ and *, respectively. In Fig. 3, the error between the estimate r̂  in 
(15) and the true value of r and the error upper bound in (16) versus various τ  are plotted, and they 
are marked by ○ and *, respectively. In Fig. 2 and Fig. 3, τ =0 means high SCNR (signal-to-clutter-
noise ratio) case while the larger τ  means low SCNR case, and the results are obtained by 100 trials. 
One can see the proposed algorithm robustly provides small estimation errors, even when the 
remainders are erroneous. 

 
Figure 3. The estimation error of range r versus various maximal remainder error level τ . 

 

5. Conclusion 

In this paper, a new radar waveform is designed and a new algorithm is proposed to estimate the 
range and velocity of a moving target. In order to resolve both range-Doppler coupling and phase 
unwrapping, three (or multiple) stepped–frequency pulse trains and the RPUT are used. Theoretical 
analysis and the simulation results show that the proposed algorithm can accurately estimate the range 
and the velocity of the moving target. As a remark, the proposed algorithm relies on the detectability 
of the moving targets. About the moving target detection using stepped-frequency pulse train, we 
would like to refer the readers to [7] and the corresponding topic will also be under our future 
investigation. 
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