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Abstract: In this paper, a method is proposed to improve the interferometric phase quality, 

based on fusing data from different polarimetric channels. Since lower amplitude implies 

less reliable phase in general, the phase quality of polarimetric interferometric data can be 

improved by seeking optimal fusion of data from different polarizations to maximize the 

resulting amplitude. In the proposed approach, for each pixel, two coherent polarimetric 

scattering vectors are synchronously projected onto a same optimum direction, maximizing 

the lower amplitude of the two projections. In the single-look case, the fused phase is 

equivalent to the weighted average of phases in all polarimetric channels. It provides a 

good physical explanation of the proposed approach. Without any filtering, the phase noise 

and the number of residue points are significantly reduced, and the interferometric phase 

quality is greatly improved. It is a useful tool to preprocess the phase ahead of phase 

unwrapping. The Cloude’s coherence optimization method is used for a comparison. Using 

the data collected by SIR-C/X-SAR, the authors demonstrate the effectiveness and the 

robustness of the proposed approach. 

Keywords: Polarimetric SAR interferometry; phase improvement 

 

1. Introduction 
 

Interferometric phase improvement is an important step for Interferometric Synthetic Aperture 

Radar (InSAR) applications. The original signals collected by a radar system are corrupted by heavy 

OPEN ACCESS 



Sensors 2008, 8                            

 

 

7173

noise, which is caused by the system itself and the propagation. In the traditional SAR interferometry 

without polarimetric information, several phase filters have been proposed to reduce the noise and 

improve the phase quality [1-5]. 

In polarimetric SAR interferometry (PolInSAR), since the scattering element data of each pixel are 

composed of two scattering matrices or scattering vectors corresponding to two spatially separated 

antennae, it is possible to enhance the coherence and improve the phase between the signals received 

by both the antennae. In recent years, several algorithms have been proposed, such as the coherence 

optimization method with two vectors (CO2) [6, 7], the coherence optimization method with one 

vector (CO1) [8] and so on. The CO2 method is important for vegetation characteristics analysis. In 

addition, these methods can be used for phase improvement by interferometric coherence optimization. 

In this paper, a novel method is proposed. First we provide a mathematical model to maximize the 

lower of the two amplitudes from the interferometric complex signal pair. Then the optimal solution is 

obtained in closed-form. Comparing with the CO2 method, we demonstrate that the proposed method 

has better performance. 

This paper is organized as follows. In Section 2, the coherence optimization method proposed by 

Cloude et al. [6, 7] is reviewed. Section 3 describes the relationship between the amplitude and the 

phase of a complex signal. In general, weak signals with low amplitudes have unreliable phases. To 

improve the phase quality, one should augment the amplitude of the signal. For each scattering 

element, the amplitudes of both the receiving signals should be both as large as possible. The proposed 

method is introduced in detail in Section 4, where the optimal solution is obtained by an 

eigendecomposition. In Section 5, a physical explanation is presented. The improved phase is proved to 

be equivalent to the weighted average of phases in each polarimetric channel in the single-look case, 

which provides a good intuitive explanation for the proposed approach. Section 6 provides the 

experimental results, which demonstrate the performance of the proposed method. Finally, some 

conclusions are given in Section 7. 

 
2. Review of coherence optimization (CO2) method 

 
In SAR interferometry, for each scattering element, two complex scalar signals 1s  and 2s  are 

received from two spatially separated antennae. A 2 2×  Hermitian semi-definite coherency matrix [ ]J  

is defined as: 

[ ]
* *

1 1 1 21 * *
1 2 * *

2 2 1 2 2

s s s ss
s s

s s s s s

  
  = =        

J  (1)  

where *  means the complex conjugation and ...  indicates the expectation value. From [ ]J , the 

interferometric phase can be obtained by 

( )*
1 2arg s sφ =  (2)  

where ( )arg  indicates the argument of a complex number. The interferometric coherence γ  is 

defined as 
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*
1 2

* *
1 1 2 2

, 0 1
s s

s s s s
γ γ= ≤ ≤  (3)  

In polarimetric SAR interferometry, for each scattering element, there are two polarimetric 
scattering matrices, [ ]1S and [ ]2S , or two scattering vectors 

T

HH, VV, HH, VV, HV, VH,

1
, , , 1,2

2
i i i i i i is s s s s s i = + − + = k  (4)  

where T  indicates the matrix transposition operation, and ( ), H or Vpqs p q=  is the complex scattering 

coefficient for q  transmitted and p  received polarizations in the HV-polarimetric basis. Here, we only 

consider the reciprocal case, i.e., HV VHs s= . 

Similar to [ ]J , the 6 6×  coherency matrix [ ]T  is defined as [6][7] 

[ ] [ ] [ ]
[ ] [ ]

1 11 12H H
1 2

21 222

  
 = =     

   

k T Ω
T k k

Ω Tk
 (5)  

where H  denotes the complex conjugation and transpose. 
To extend the scalar formulation into a vector expression, two normalized complex vectors 1w  and 

2w  are introduced. Then two scattering coefficients 1µ  and 2µ  are defined as the projections of the 

scattering vectors 1k  and 2k  onto the vectors 1w  and 2w , respectively, 

H H
1 1 1 2 2 2,µ µ= =w k w k  (6)  

Then the interferometric phase is derived as 

( ) ( )* H H
s 1 2 1 1 2 2arg argφ µ µ= = w k k w  (7)  

for the single-look (SL) case, and 

( ) [ ]( )* H
m 1 2 1 12 2arg argφ µ µ= = w Ω w  (8)  

for the multi-look (ML) case. 
The generalized vector expression for the coherence γ  is then given by 

[ ]
[ ] [ ]

H
1 12 2

H H
1 11 1 2 22 2

γ =
w Ω w

w T w w T w
 (9)  

To maximize the coherence γ , the Lagrange multiplier method is used to transform the problem 

into two eigendecompositions [6] [7] 

[ ] [ ][ ] [ ]
[ ] [ ] [ ] [ ]

1 1 H

11 12 22 12 1 1

1 H 1

22 12 11 12 2 2

v

v

− −

− −

=

=

T Ω T Ω w w

T Ω T Ω w w
 (10)  

The maximum coherence value is then given by the square root of the maximum eigenvalue [6] 

max maxvγ =  (11)  
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and the corresponding optimum eigenvectors of (10) are 1optw  and 2optw . 

Finally, a sensible constraint is to require 

( )H
1opt 2optarg 0=w w  (12)  

In this method, the interferometric coherence γ  is optimized directly and the maximal coherence 

value can be obtained by 1optw  and 2optw . The corresponding interferometric phase φ  defined in (8) is 

much better than the original phase in each polarimetric channel. The authors derived a decomposition 

of target scattering characteristics. It is one of the most important methods to explore the scattering 

structure and behavior of the vegetation-covered area. 

Though the coherence might indicate the phase noise, however, it is usually estimated by using 

neighborhood information and not accurate. So for phase improvement, coherence optimization is not 

the best approach. Especially in weak signal area, the improved phase by coherence optimization is still 

noisy. Fortunately, the proposed method can be used to obtain a nearly noise-free phase result in the 

moderate noise case. 

 
3. Relationship between the amplitude and the phase of a complex signal 

 

In SAR interferometry, only one polarimetric channel signal can be received, e.g., HH. For each 

scattering element, the amplitudes of the complex signals s1 and s2 vary with the terrain fluctuation and 

the scattering characteristic of the ground targets. In some areas, the amplitude of the received signals 

may be very low. When a complex noise is added to a weak signal, a considerable change in the signal 

phase may occur. In this case, the interferometric phase between two weak signals will be severely 

affected by noises and will be of low quality and unreliable. Therefore, a lot of residue points may exist 

to deteriorate the performance of phase unwrapping. In addition, weak signals usually imply a low 

signal-to-noise ratio (SNR). The noise components in s1 and s2 are totally irrelevant (in repeat-pass 

interferometry mode). According to (3), the coherence between s1 and s2 is corrupted by noise and the 

interferometric phase between two weak signals (or at least one weak signal) is not reliable, i.e., the 

quality is low. 

The purpose of the proposed method is to fuse the interferometric signal pair in each polarimetric 

channel to augment the amplitude of the signals, especially in weak signal area. In general, except the 

effect of decorrelation, most residue points are caused by weak signals. Therefore, optimizing 

amplitude is necessary and effective to improve the phase quality and eliminate the residue points. 

 
4. Amplitude optimization (AO) method 
 

4.1. Model 

 

To improve the phase quality and remove the residue points, a feasible way is to augment the 

amplitudes of both coherent signals. 

In polarimetric SAR interferometry, as mentioned above, each scattering element has two 
polarimetric scattering vectors 1k  and 2k . To extend the scalar formulation into a vector expression, as 
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a similar way to the CO2 method, a normalized complex vectors w is introduced. Then two scattering 

coefficients η1 and η2 are defined as the projections of the scattering vectors k1 and k2 onto the vector 

w, respectively 
H , 1,2i i iη = =w k  (13)  

The goal of the proposed method is to figure out an optimum vector w  to optimize the amplitude of 

η1 and η2 simultaneously. In other words, the lower amplitude between η1 and η2 is maximized. 

According to Section 3, if both the amplitudes are augmented, the interferometric phase quality can be 

improved. 

Mathematically, the above optimization problem is described as follows: 

( )( )H H
1 2max min ,

subject to  1=
w

w k w k

w
 (14)  

4.2 Solution 

 

To obtain the analytic solution of the above problem, it can be transformed into an equivalent 

problem as follows: 

( )
2 2 2H H H

1 1 2

2 2 2H H H
2 1 2

max ,

subject to  max , if

max , if 

1

a b

a

b

= ≤

= >

=

w

w

w k w k w k

w k w k w k

w

 (15)  

According to the quadratic programming theory, 
2H

1w k  and 
2H

2w k  are two quadrics in three 

dimensional complex space. Each of them has only one local maximum, which is also the global 

maximum. The solution has two following cases. 

Case I: 

If the global maximum of 
2H

1w k  is equal to a  or the global maximum of 
2H

2w k  is equal to b , 

then the optimal w  has the same direction as 1k  or 2k  which has the lower amplitude: 

( ) 1 1 1 21

2 2 1 2

/ , if

/ , if

 ≤= 
>

k k k k
w

k k k k
 (16)  

Case II: 

If the global maximum of 
2H

1w k  is greater than a  and the global maximum of 
2H

2w k  is greater 

than b , then the optimal solutions of a  and b  must be located on the boundary of 
2 2H H

1 2≤w k w k  

and 
2 2H H

1 2>w k w k . Therefore, when w  is the optimum projection direction, both the projections 

must have the same amplitude: 

H H
1 2=w k w k  (17)  
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In this situation, an eigendecomposition method can be used to obtain the analytic solution. The 

detailed process is described in Appendix A. The solution is 

( ) ( ){ }2 H H1 2 2
1 1 1 2

1 2 1

, exp jarg
|| ||

α λα
α λ

+= = − −
+

v v
w v k k v

v v
 (18)  

where 1 0λ > , 2 0λ <  are two non-zero eigenvalues of matrix H H
1 1 2 2−k k k k , with corresponding 

eigenvectors 1v  and 2v , respectively. 

Appendix A also gives the judgment condition of the two situations. The final solution of the model 

(14) is 

( )

( )

H H H H
1 1 1 2 1 1 1 22 2 2
H H H H

1 12 1 2 2 2 1 2 2

1

, if max , or min ,

, else

λ λ
λ λ

       − −       > <       =        



v k v k v k v k
w

v k v k v k v kw

w

 (19)  

In the single-look case, the fused phase is 

( ) ( )* H H
s 1 2 1 2arg argφ η η= = w k k w  (20)  

and in the multi-look case, the fused phase is 

( ) [ ]( )* H
m 1 2 12arg argφ η η= = w Ω w  (21)  

 
5. Physical explanation 

 
The cross-correlation item H2 1k k  is important, because it contains both the polarimetric and 

interferometric information. Let ϕ  denote the phase of H2 1k k , then ϕ  can be proved to be equivalent to 

the fused phase in the single-look case, i.e., sφ  in (20). (See Appendix B.) 

( )H
s 2 1argφ ϕ= =k k  (22)  

According to the definition of the scattering vector in (4), the inner product H2 1k k  can be expanded 

as 

VV HVHH j jjH * * * * * *
2 1 HH,2 HH,1 VV,2 VV,1 HV,2 HV,1 HH,2 HH,1 VV,2 VV,1 HV,2 HV,12 e e 2 es s s s s s s s s s s sϕ ϕϕ= + + = + +k k  (23)  

where pqϕ  denotes the interferometric phase of pq  channel. It is a weighted average of information in 

each polarimetric channel. Since ,1pqs  and ,2pqs  denote the amplitudes of the signals, the larger the 

product of them, the larger the weight. This is reasonable from the basic viewpoint in Section 3: the 

phase of strong signals is more reliable than that of weak signals in general. Since a larger weight is 

assigned to a more reliable phase of a given polarimetric channel, the noise of the improved phase is 

reduced effectively and the coherence is enhanced. 
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6. Experiments and results 
 

6.1. Experimental data 

 

Here we used the single-look L-band experimental data consisting of fully polarimetric complex 

image pairs of the Tien Shan test site acquired by the SIR-C/X-SAR radar system on Oct. 8 and 9, 

1994. The test area is close to the southern edge of Lake Baikal, Russia. It contains many different 

ground targets such as forest, cropland, bare ground and mountain. Without denoising, the 

interferometric phase is corrupted by heavy noise and lots of residue points exist. 

 

6.2. Amplitude vs. phase relationship 

 

Though the coherence parameter has no direct link to the phase, it is usually regarded as a quality 

descriptor of phase information. Though other parameters such as the phase derivative variance and the 

maximum phase gradient can also be used to measure phase quality [10], the coherence is more widely 

accepted in SAR interferometry. In (3), the coherence seems to be independent of the amplitude. 

However, since lower amplitudes always correspond to lower SNR, uncorrelated noises will dominate 

the value of the coherence. Therefore, weak signals lead to low coherence. 

Now we use the coherence-amplitude map to demonstrate the relationship between the amplitude 

and the phase of complex signals. 10,000 samples with same scattering characteristics are used to draw 

the 2-dimensional histogram between coherence and amplitude. Figure 1 shows the forest case as an 

example. Both the coherence and amplitude have 128 gray levels.  

From the distribution we conclude that in most cases, the coherence of weak signals is low, and 

large amplitudes in general correspond to large coherence. Therefore, a larger amplitude implies a 

more reliable phase. Another experiment in [9] also verifies this relationship. 

 
Figure 1. The relationship between the coherence and amplitude. It is a 2-D histogram of 

the coherence and amplitude in a forest area (10,000 samples).  
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6.3. Vegetation and bare ground 

 

The scattering mechanism of the vegetation is very complicated due to its multiple components such 

as leaves, branches, trunks and the underlying ground. According to the vegetation scattering model 

based on physical properties, the total response of the vegetation is composed of the volume scattering 

(random or oriented) and the ground scattering (with or without the trunk) [11] [12]. Moreover, due to 

the repeat-pass interferometry mode, the temporal decorrelation can not be neglected, especially in the 

vegetation-covered area. Therefore, improving the phase quality is necessary for topography retrieval. 
Figure 2(a) shows the HHs  of the test area (1,000×1,000 pixels), which includes several different 

kinds of targets, such as forest (F), road (R), bare ground (BG) and cropland (C). The corresponding 

optical image from Google Earth with the same resolution is given as Figure 2(b). 

To demonstrate the effectiveness of the proposed method, two areas in white frame A and frame B 

containing typical targets are enlarged and processed. 

 

Figure 2. (a) The amplitude image in HH channel of the vegetation and bare ground test 

area. The typical targets in Frame A and B are forest and bare ground, cropland, 

respectively. (b) The corresponding optical image from Google Earth. F, R, GB and C 

indicate forest, road, bare ground and cropland, respectively. 

     
(a)                                                                            (b) 

 

The enlarged version of frame A is shown in Figure 3(a). The ground is mostly covered by forest 

with three roads through it. The black area is the bare ground. With noise and the effect of 

decorrelation, the phase noise in HH channel is so heavy that all details of the terrain are submerged 

(Figure 3(b)). The averages of lower amplitudes of the selected area in HH, HV and VV channels are 

0.3604, 0.1401, and 0.2578, respectively. Using the proposed method, the average of lower amplitude 
of the fused image pair is improved to 0.4768 and the amplitude of 1η  in (13) is shown in Figure 3(c). 

It is obviously “whiter” than the amplitude of HH channel. The fused phase in (21), using 3× 3 
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window, is shown in Figure 3(d). Noise is removed obviously and the phase fringes can be clearly 

observed. 99.76% residue points are removed. The improved phase between the forest area and the 

bare ground has no obviously boundary. It implies that the phases in the forest area can be regarded as 

those of the underlying topography, since the phase in the bare ground definitely corresponds to the 

topography. 

 

Figure 3. (a) The amplitude in HH channel of the enlarged area from Frame A in Figure 

2(a). (b) The phase in HH channel. (c) The amplitude obtained by the AO method in the 

ML case. (d) The phase obtained by the AO method in the ML case. (e) The coherence 

obtained by the CO2 method in the ML case. (f) The phase obtained by the CO2 method in 

the ML case. 

       
(a)                                      (b)                                       (c) 

       
(d)                                      (e)                                       (f) 

 
To make a comparison, the phase result by the coherence optimization (CO2) method is also 

calculated and shown in Figure 3(f). The coherence is optimized close to 1 (shown in Figure 3(e), the 

white and the black colors mean 1 and 0, respectively) and many noises in the forested area are 

removed. However, the phase of the bare ground is still noisy, which is not in accordance with the “flat 

property” of the bare ground as shown in the optical image. 

Table 1 lists more comparisons between the amplitude optimization (AO) method and the coherence 

optimization (CO2) method. It includes the average of lower amplitude, the mean coherence, and the 

residue point number in both the single-look (SL) and multi-look (ML) cases. 
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Table 1. The comparisons of average lower amplitude, average coherence and residue 

point number among the original HH/HV/VV channel data and the fused data processed by 

the AO and CO2 method in both the single-look and multi-look cases in Figure 3(a). 

 Lower Amplitude Coherence Residue point number 

HH 0.3604 0.7843 8331 

HV 0.1401 0.7077 12033 

VV 0.2578 0.7450 10279 

AO in SL 0.4768 0.8523 1699 

CO2 in SL 0.2795 0.8858 1889 

AO in ML -------- 0.8228 20 

CO2 in ML -------- 0.9634 173 

 

Figure 4(a) shows the enlarged area of Frame B. Most parts of the ground are covered by low-

vegetation like the crop and grass. The parallel straight lines are possible ridges of field. The dihedral 

angle between the ridge and the ground leads to strong responded signals. The phase in HH channel 

[Figure 4(b)] is so noisy that it yields 6,550 residue points as shown in Figure 4(c) (black points). The 

improved phase by the proposed AO method and the CO2 method are given in Figure 4(d) and (f), 

respectively. Obviously, the phase improved by the AO method has the better quality with less noise. 

99.63% residue points are removed successfully as shown in Figure 4(e), demonstrating the 

effectiveness of the proposed approach. 

 
Figure 4. (a) The amplitude in HH channel of the enlarged area from Frame B in Figure 

2(a). (b) The phase in HH channel. (c) The residue map in HH channel. (d) The phase 

obtained by the AO method in the ML case. (e) The residue map of the phase obtained by 

the AO method in the ML case. (f) The phase obtained by the CO2 method in the ML case. 

       
(a)                                      (b)                                       (c) 

       
(d)                                      (e)                                       (f) 
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6.4. Mountain  

 

Phase unwrapping (PU) is the key step of digital elevation model (DEM) generation. The main 

difficulties of phase unwrapping are from noise and steep topography. Both the factors lead to the 

existence of huge amount of residue points. For path following based PU methods, branch cuts are 

used to balance the charge of the positive and negative residue points. In the case that a large numbers 

of dense residue points exist, several branch cuts based algorithms [13, 14] do not work.  

 
Figure 5. (a) The amplitude image in HH channel of mountain test area. (b) The 

corresponding optical image from Google Earth. (c) The phase in HH channel. (d) The 

phase obtained by the AO method in the ML case. 

     
(a)                                                                                  (b) 

     
(c)                                                                                  (d) 

 
Though Buckland [15] proposed an algorithm based on the Hungarian algorithm from integer 

programming and declared the algorithm enables one to unwrap unfiltered speckle-interferometry 
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phase maps at high point densities (0.1 points per pixel), the computation efficiency should be 

considered. It will take a long time to solve a large wrapped phase map with heavy noise. So it is 

significant to improve the phase quality before phase unwrapping. 

Figure 5(a) shows a test area containing a mountainous area. The corresponding optical image is 

shown in Figure 5(b), which is also from Google Earth. The topography is not steep. The 

interferometric phase in HH channel is displayed in Figure 5(c). With 1,000×1,000 pixels, the phase 

map after flat-removal corresponds to 95,329 residue points, so the density of residue points is close to 

0.1 sources per pixel. Though a reasonable result may be figured out by the algorithm in [15], it is 

time-costly and the unwrapped phase is still noisy. 

 

Figure 6. The unwrapped phase 3-D illustration corresponding to Figure 5(d). 

 
 

Fusing the information from each polarimetric channel, the average of lower amplitude of the image 

pair is enhanced from 0.3250 (in HH), 0.1310 (in HV) and 0.2831 (in VV) to 0.4574. The fused phase 

is shown in Figure 5(d). 99.96% residue points are removed. Using typical PU algorithms, the 

unwrapped phase can be obtained fast and accurately. The 3-D illustration is displayed in Figure 6. 

From Figure 5(d), the topography becomes clearer and the detailed information is preserved well. 

The CO2 method can be used to enhance the phase quality well in most mountainous areas with 

moderate and strong signals. But in flat ground area with weak signals, the fused phases still 

correspond to lots of residue points. Please pay attention to the area in the white frame in Figure 5(a) 

that the amplitudes of the right half pixels are low. The improved phases obtained by the proposed AO 

method and the CO2 method are shown in Figure 7(a) and (b), respectively. Corresponding to the area 

with low amplitude, lots of residue points exist in the right half of Figure 7(d) and the phase in Figure 

7(b) is noisy. 
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Figure 7. (a) The phase obtained by the AO method, which corresponds to the area from 

the frame in Figure 5(a). (b) The phase obtained by the CO2 method. (c) The residue map 

of the phase obtained by the AO method. (d) The residue map of the phase obtained by the 

CO2 method. All of them are in the ML case. 

    
(a)                                   (b)                                    (c)                                    (d) 

 

Based on the signal amplitude optimization, the phase result corresponds to very few residue points 

in both strong signal areas and weak signal areas shown in Figure 7(c). It demonstrates the robustness 

of the proposed method. 

To demonstrate the denoising ability of the AO method further, we add some noise to the original 

PolInSAR data in the white frame in Figure 5(a) for simulation. In each pixel, let 
T

HH, HV, VV,, 2 , , 1,2i i i is s s i = = s , then the covariance matrix by each antenna, [ ] H
i i i=C s s , is 

calculated. According to the noise statistics in [16], the simulated complex noise vector in  has 

complex Gaussian distribution [ ]( )0, iN m C , where m  is a scalar between 0 and 1. The residue point 

number (before flat-removal) is used to measure the performance of both the methods. m  can be 

regarded as an indicator of the added noise intensity.  

 

Figure 8. (a) The comparison of the removed residue point numbers obtained by the AO 

and CO2 methods at different simulated noise level m  (in the ML case). The test area is 

from the frame in Figure 5(a). (b) The corresponding residue point removal rates. 

 
(a)                                                                               (b) 
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Figure 8 illustrates the denoising performance of the AO and CO2 methods when m  increases from 

0 to 1. When the noise is comparatively weak, e.g., 0.3m≤ , more than 99% residue points are 

removed by the AO method. Even in the strong noise case, e.g., 0.8m≥  (shown in Figure 9(a)), the 

noise can be reduced effectively and the spatial distribution of the remained residue points is close to 

uniform (Figure 9(b)), regardless of strong signal area (mountain) or weak area (bare ground). On the 

other hand, using the CO2 method, the remained residue points concentrate in bare ground area (Figure 

9(c)). It may be difficult to unwrap the phase with such dense residue points. For example, in the case 

of 1m= , the average density of residue points is 0.135 points per pixel by the CO2 method (Figure 

9(c)). Most existing PU methods do not work in such an extreme situation. Using the AO method, the 

average density can be reduced to 0.049 points per pixel (Figure 9(b)). Then the unwrapped phase can 

be obtained by several noise-immune methods. 

 
Figure 9. (a) The residue point map in HH channel with strong noise ( 1m= ). (b) The 

residue point map of the phase obtained by the AO method in the ML case. (c) The residue 

point map of the phase obtained by the CO2 method in the ML case. 

 

   
 (a)                                      (b)                                      (c) 

 
7. Conclusions 

 

A novel interferometric phase improvement method has been proposed. The key point is to 

maximize the amplitude of the signals based on the relationship between the amplitude and the phase 

of a complex signal. In the single look case, the improved phase is equivalent to the average of 

information in each polarimetric channel with different weights which are proportional to the 

amplitude in each channel. 

In the proposed method, we used one normalized complex vector instead of two, because the 

correlation information between both the interferometric channels is important, and the proposed 

method did not optimize the coherence directly. In one-vector case, the correlation information is used 
more sufficiently, contained in the eigenvectors of matrix H H

1 1 2 2−k k k k . Considering two-vector case, 

1w  and 2w  can be figured out as the normalized version of 1k  and 2k , respectively, with the only 

constraint (12). More correlation information leads to better result. 

Using the PolInSAR data, the performance of phase improvement has been demonstrated. In the 

multi-look case, more than 99% residue points caused by moderate noise can be removed by the 
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proposed method in both strong and weak signal areas. The detailed information of topography is 

observed more clearly, which makes phase unwrapping becomes easier and faster. 

Appendix A: Solution of the Amplitude Optimization Model 
 

In Case II, from (17), it can be derived that 

( )H H H
1 1 2 2 0− =w k k k k w  (A1)  

If 1 2c=k k  (c  is an arbitrary complex number except zero), the case can be categorized into Case I. 

If 1 2c≠k k , let [ ]A  denote matrix H H
1 1 2 2−k k k k , then the rank of [ ]A  is equal to 2. Moreover, [ ]A  is 

an indefinite matrix. So it has three eigenvalues 1 0λ > , 2 0λ <  and 3 0λ = , and the corresponding 

eigenvectors are 1v , 2v  and 3v , respectively. 

If 3=w v , it completely meets (A1) due to 3 0λ = . But the space spanned by 1k  and 2k , i.e., 

{ }1 2,Span k k , is equivalent to { }1 2,Span v v . Since 3v  is orthogonalized to both 1v  and 2v , then 
H H

1 2 0= =w k w k . It does not satisfy the goal of (14). 

Thus, w  can be expressed as the linear combination of 1v  and 2v  

( )1 2β α= +w v v  (A2)  

where α  is a complex coefficient and β  is a real normalized coefficient. Substituting (A2) into (A1), 

( ) ( ) ( )( )

( ) ( )
HH H H 2 H H

1 1 2 2 1 2 1 1 1 2 2 2 1 2

2 22 H H H H 2 4 4
1 1 1 1 1 2 2 2 2 2 1 2 1 2 2 2|| || || || 0

β α λ λ α

β α λ λ β α λ λ

− = + + +

= + = + =

w k k k k w v v v v v v v v

v v v v v v v v v v
 (A3)  

So 

2
2 2 2 2

2
1 1 1 1

|| ||

|| ||

λ λα
λ λ

= − = −v
v

 (A4)  

Substituting (A2) into H H
1 1w k k w , 

 

( ) ( )
( )( )

HH H 2 H
1 1 1 2 1 1 1 2

*2 222 H H H H H H
1 1 2 1 1 1 2 1 1 1 2 1

β α α

β α α α

= + +

= + + +

w k k w v v k k v v

v k v k k v v k k v v k
 (A5)  

 
According to the Cauchy inequality, the maximum of (A5) corresponds to H H

1 1 1 2dα = v k k v , where d  

is an nonnegative real number. So the argument of α  is 

( ) ( )H H
1 1 1 2arg argα = v k k v  (A6)  

After substituting (A4) and (A6) into (A2) and normalization, one finally obtains: 

( ) ( ){ }2 H H1 2 2
1 1 1 2

1 2 1

, exp jarg
|| ||

α λα
α λ

+= = − −
+

v v
w v k k v

v v
 (A7)  
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To determine how to choose ( )1w  and ( )2w , we define two functions ( )1f α  and ( )2f α  with only 

one variable α  

( )
( )

( )

2H2 2 22H H * H H H H H
1 2 1 1 2 2 1 2

2 2 22 2 * H H
1 2 1 1 2 2 1 2

2
H H
1 2

2 2 2

1 2

|| || || ||

, 1,2

ii i i i i i i

i

i i

f

i

α α α α
α

α α α α

α

α

+ + + +
= = =

+ + + +

+
= =

+

v v kw k v k v k k v v k k v v k

w v v v v v v v v

v k v k

v v

 (A8)  

Let 

( ) ( )

( )( ) ( )
( )

2
H H 2
1 2

2 2 2 2

1 2

2 2

22

d
d / d d / d

d

2 2
0

i iif z w u

x y

z w x y x z w u

x y

αα α α
α α

α α α

α α α α α

α

+ + +
= =

+ +

+ + − + +
= =

+

v k v k

v v
 (A9)  

then 

( )2
2 0wx xu zy wyα α+ − − =  (A10)  

The corresponding solution of α  is 

H
1

H
2

2
0

i

i

zy

wx
α = = >

v k

v k
 (A11)  

Because of the monotonicities of 1f  and 2f , there are three sub-cases as follows (schematically 

shown in Figure A1): 

 

1) If H H
1 1 2 1α < v k v k  and H H

1 2 2 2α < v k v k , a  is greater than b  and ( )1=w w ; 

 

2) If H H
1 1 2 1α > v k v k  and H H

1 2 2 2α > v k v k , b  is greater than a  and ( )1=w w ; 

 

3) Otherwise, ( )2=w w , 

 

where a  and b  are defined in (15). 

In conclusion, the final solution of the model is 

( )

( )

H H H H
1 1 1 2 1 1 1 22 2 2
H H H H

1 12 1 2 2 2 1 2 2

1

, if max , or min ,

, else

λ λ
λ λ

       − −       > <       =        



v k v k v k v k
w

v k v k v k v kw

w

 (A12)  
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Figure A1. The sketch map of the three sub-cases of the model solution in the second case. 

 
 
Appendix B: Proof of Equation (22) 

 
According to (22), ϕ  can be rewritten as 

( )H
2 1argϕ = k k  (B1)  

From (19) and (20), if ( )1=w w , then 

( )H
s 2 1arg mφ = k k  (B2)  

where m  is equal to 
2

1k  or 
2

2k . So sφ  and ϕ  are equivalent. If ( )2=w w , since 1v  is an eigenvector 

of the matrix H H
1 1 2 2−k k k k , i.e., ( )H H

1 1 2 2 1 1 1λ− =k k k k v v  then 

( )
2H

1 1H H H H H H H H H
1 1 2 1 1 2 2 1 1 1 1 2 1 1 1 2 1 2 12

1 2 2|| || 
λ

λ
− = ⇒ =

+
k v

v k k k k k k v v k k v v k k v k k
k

 (B3)  

and 

( )
H H

H H H H H H H H H2 1 1 1
2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 1 2 12

1 2 2|| || 
λ

λ
− = ⇒ =

+
v k k v

v k k k k k k v v k k v v k k v k k
k

 (B4)  

Similarly, 

2H
1 2H H H

2 1 2 2 2 12
2 2 2|| || λ

=
+
k v

v k k v k k
k

 (B5)  

and 

H H
H H H1 1 1 2
1 1 2 2 2 12

2 2 2|| || λ
=

+
v k k v

v k k v k k
k

 (B6)  

According to (A5), H H
1 2w k k w  can be written as  
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2 H H * H H H H H H
1 1 2 1 1 1 2 2 2 1 2 1 2 1 2 2H H

1 2 2

1 2

α α α
α

+ + +
=

+

v k k v v k k v v k k v v k k v
w k k w

v v
 (B7)  

Substituting (B3) ~ (B6) into (B7), we can simplify the formulation and obtain: 

2 22 H H H H H H H
1 1 1 1 1 2 2 1 1 1 1 2H H H2 1

1 2 2 12 2 2 2 2

1 2 2 2 1 2 2 2 1 22 2 2 2

l
    

α α α

λ λ λ λ α

 
 = + + + =
 + + + + +
 

k v v k k v v k k v k v k k
w k k w k k

k k k k v v
 (B8)  

where l  is a positive real number. So (20) can be rewritten as 

( )H
s 2 1arg lφ = k k  (B9)  

then sφ  and ϕ  are equivalent. 

 
Acknowledgements 
 

This work was supported by the National Natural Science Foundation of China (40571099). We 
acknowledge the manuscript revision of Yilun Alwyn Chen and Xinrong Yang. 

 
References and Notes 
 
1.  Lee, J.S.; Papathanassiou, K.P.; Ainsworth, T.L.; Grunes, M.R.; Reigber, A. A new technique for 

Noise Filtering of SAR Interferometric Phase Images. IEEE Trans. Geosci. Remote Sens. 1998, 

36, 1456-1465 

2. Candeias, A.L.B; Mura, J.C.; Dutra, L.V.; Moreira, J.R.; Santos, P.P. Interferogram phase noise 

reduction using morphological and modified median filters. Proc. IEEE IGARSS’95, Florence, 

July, 1995; pp. 166-168. 

3. Lee, J.S.; Ainsworth, T.L.; Grunes, M.R.; Goldstein, R.M. Noise filtering interferometric SAR 

images. Proc. SPIE European Symp., Rome, Italy, 1994; 2315, pp. 735–742. 

4. Yang, J.; Xiong T.; Peng, Y.N. A fuzzy approach to filtering interferometric SAR data. Int. J. 

Remote Sens. 2007, 28, 1375-1382. 

5. Trouve, E.; Caramma, M.; Maitre, H. Fringe detection in noisy complex interferograms. Appl. 

Optics 1996, 35, 3799-3806 

6. Cloude, S.R.; Papathanassiou, K.P. Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote 

Sens. 1998, 36, 1551-1565. 

7. Cloude, S.R.; Papathanassiou, K.P. Polarimetric optimisation in radar interferometry. Electron. 

Lett. 1997, 33, 1176-1178 

8. Colin, E.; Titin-schnaider, C.; Tabbara, W. Investigation on different interferometric coherence 

optimization methods. POLinSAR 03 Proceedings, Taulowe, France, 2003. 

9. Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci.  

Remote Sens. 2001, 39, 8-20 

10. Ghiglia, D.C.; Pritt, M.D. Two-dimensional phase unwrapping: theory, algorithms, and software. 

John Wiley & Sons: New York, 1998 



Sensors 2008, 8                            

 

 

7190

11. Treuhaft, R.N.; Siqueira, P.R. Vertical structure of vegetated land surfaces from interferometric 

and polarimetric radar. Radio Sci. 2000, 35, 141-177. 

12. Treuhaft, R.N.; Cloude, S.R. The structure of oriented vegetation from polarimetric interferometry. 

IEEE Trans. Geosci. Remote Sens. 1999, 37, 2620-2624 

13. Goldstein, R.; Zebker, H. A.; Werner, C. L. Satellite radar interferometry: Two dimensional phase 

unwrapping. Radio Sci. 1998, 23, 713-720. 

14. Cusack, R.; Huntley, J.M.; Goldrein, H.T. Improved noise-immune phase-unwrapping algorithm. 

Appl. Optics. 1995, 34, 781-789. 

15. Buckland, J.R.; Huntley, J.M.; Turner, S.R.E. Unwrapping noisy phase maps by use of a 

minimum-cost-matching algorithm. Appl. Optics. 1995, 34, 5100-5108. 

16. Lee, J.S.; Hoppel, K.W.; Mango, S.A.; Miller A.R. Intensity and Phase Statistics of Multilook 

Polarimetric and Interferometric SAR Imagery. IEEE Trans. Geosci. Remote Sens. 1994, 32, 

1017-1027. 

© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 

 
 


