Sensors 2007, 7, 1509-1529

SENSOIS

ISSN 1424-8220
© 2007 by MDPI
www.mdpi.org/sensors

Full Paper

Self-Calibration and Optimal Response in Intelligemh Sensors
Design Based on Artificial Neural Networks

José Riveral?’, Mariano Carrillo %, Mario Chacén?, Gilberto Herrera 2 and
Gilberto Bojorquez *

! Division de Estudios de Posgrado e Investigac@rirtituto Tecnolégico de Chihuahua. Ave.
Tecnoldgico No. 2909, Chihuahua Chih. México 3130¢l; (614) 413 7474; Fax. (614) 413 5187,
E-mail:{jrivera,mcarrillo,mchacon,gbojorquez }@iitluhua.edu.mx

2 Divisién de Estudios de Posgrado de la Facultadgenieria de la Universidad Auténoma de
Querétaro.Cerro de las Campanas S/N. Col. Las Qamp&8antiago de Querétaro Qro. México
76010; Tel. (442) 192 12 00 Fax; (442) 192 12 @0 @305; E-mail: gherrera@uag.mx

* Author to whom correspondence should be addredsadail: jrivera@itchihuahua.edu.mx

Received: 1 June 2007 / Accepted: 10 August 2007 / Published: 16 August 2007

Abstract: The development of smart sensors involves the dexigeconfigurable systems
capable of working with different input sensors.cB#igurable systems ideally should
spend the least possible amount of time in thdibredion. An autocalibration algorithm
for intelligent sensors should be able to fix magowblems such as offset, variation of gain
and lack of linearity, as accurately as possiblas paper describes a new autocalibration
methodology for nonlinear intelligent sensors basadartificial neural networks, ANN.
The methodology involves analysis of several nekwopologies and training algorithms.
The proposed method was compared against the psxamnd polynomial linearization
methods. Method comparison was achieved usingrédiffenumber of calibration points,
and several nonlinear levels of the input signdiisTpaper also shows that the proposed
method turned out to have a better overall accutlaay the other two methods. Besides,
experimentation results and analysis of the corapkudy, the paper describes the
implementation of the ANN in a microcontroller ynMCU. In order to illustrate the
method capability to build autocalibration and mfggurable systems, a temperature
measurement system was designed and tested. Thesptb method is an improvement
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over the classic autocalibration methodologiesabse it impacts on the design process of
intelligent sensors, autocalibration methodologaesl their associated factors, like time
and cost.

Keywords: intelligent sensors, reconfigurable systems, alitoedion, linearization,
artificial neural network.

1. Introduction

In order to design intelligent sensors for measemnsystems with improved features a simple
reconfiguration process for the main hardware ballrequired in order to measure different variables
by just replacing the sensor element, building négorable systems. Reconfigurable systems, ideally
should spend the least possible amount of timéeir tcalibration. An autocalibration algorithm for
intelligent sensors should be able to fix majorbbens such as offset, variation of gain and lack of
linearity, all characteristic of degradation, asuaately as possible.

The linearization of output signal sensors anddhlération process are the major items that are
involved in defining the features of an intelligesgnsor, for example, the capability to be used or
applied to different variables, calibration timedaccuracy.

The subject of linearization has been consideredifferent forms and stages, basically from the
designs of circuits with MOS technologies [1]. Gastudied included the use of analog to digital
converters to solve nonlinearities at the same tina the conversion is made [2-3]. In digital to
analog type R-2R converters have also proved teebessary to improve the linear response [4]. Other
work has focused on improving the nonlinear respafsspecific sensors, like the thermistor [5] and
the Hall effect current sensors [6]. Numerical noethhave been developed using modern technologies
capable of computing linearization algorthms [7,Ako0, ROM memories are used to save data tables
and to solve the linearization problem [9,10]. Ndasgs neural networks have been used for
linearization [11-14]. Neural networks can be useddentify the transfer function response curve of
the sensors [15]. Recently, neural networks hawn hesed to linearize amplifiers [16] or specific
sensors responses [17].

The calibration method stage is important for twportant aspects: first to define the features of
the measurement system and second, the mainteraste of measurement systems. The costs
associated with the maintenance of measuremergnggsrom 70's to now have been discussed [18-
21], and these documents indicate that the compdrage to spend more money applied to pay for
quality services due to calibration problems.

A wide application area of neural networks is inagnition of patterns in the analysis of signals
from sensors [22,23]. The self-calibration condsppproached from different stages, for example in
the fabrication of integrated circuits [24] or igsal transmissions [25]. In [26] the improvemefit o
the adaptive network-based fuzzy inference sys&NF(S) technique was shown and in [27] a radial
bases function RBF neural network for pyroelectgmsor array calibration was presented; in both
works a complex process training and a PC are meduso they cannot easily be implemented on DSP



Sensors 2007, 7 1511

or small processors. A neural network for electrgnadic flow meter sensor calibration is described i
[28], but only simulated results are presentedniheral network selection is not clear, large gitiest

of data are used for training and the capabilitythef method is not evaluated. Back propagation
artificial neural networking was used in the datalgsis shown in [29]. A neural network for
linearization of the response of a pressure sesssinown in [30,31], but only simulated results are
presented and the neural network selection, theiitgaprocess, the comparison with other methods
and the method capability are not clear.

Most of the available literature related to autdration methods depends on several experiments
to determine its performance. This approach impéetdsime and cost of a reconfigurable system. This
paper describes a new autocalibration methodologydnlinear intelligent sensors based on artificia
neural networks, ANN. The methodology involves gsial of several network topologies and training
algorithms [32-34]. The artificial neural networkasvtested with different levels of nonlinear input
signals. The proposed method was compared agamgii¢cewise [35] and polynomial linearization
methods [36] using simulation software. The congmariwas achieved using different numbers of
calibration points, and several nonlinear levelshef input signal. The proposed method turned @ut t
have a better overall accuracy than the other twithaus.

Besides complete experimental details, results amalysis of the complete study, the paper
describes the implementation of the ANN in a miordeoller unit, MCU. In order to illustrate the
method capability to build autocalibration and mfogurable systems a temperature measurement
system was designed. The system is based on aist@rmvhich presents one of the worst nonlinearity
behaviors, and is also found in many real worldiappons because of its low cost.

One important point that needs clarification befpreceeding relates to the meaning of the term
calibration. In this paper, calibration is usedhe sense of [3, 8, 9, 15, 22-25, 28, 30, 35, 8§,
these works, calibration is mainly concerned with process of removing systematic errors and it is
not in accordance with the meaning defined in tregrdogy and the International Vocabulary of Basic
and General Terms in Metrology (VIM), ISO VIM [4B} In addition, in this paper the phrase “self-
calibration of intelligent sensor” or “autocalibi@at” has the meaning of “self-adjustment of
measurement system” according to VIM [44].

The paper structure will be as follows: the bagisteam design considerations are presented in
Section 2. The ANN design, training algorithm anmddation are described in Section 3. An ANN of
temperature measurement system implementation od MGhown in Section 4. The tests and results
are described on Section 5. The evaluation reatdtgiven in Section 6. Finally, the conclusiorsiar
Section 7.

2. Basic System Design Considerations.

Prior to any ANN design some considerations aresgary. The output electrical sigalof any
sensor in response to the input variabjevhich will be measured is defined by:

x'=f(v) (1)
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In most of the cases the input and output variabteg different scales and they are normalized in
the range of [0,1] to simplify their manipulatiofhis can be obtained by the following equations:

V-V .
v Vo 2)
V max_ V min
X = IX_—XmI'n 3)
X max_ X min

The desired output signal is a straight line witlit gslope. This will be the target in the caliboati
process and will be the reference signal defined by

t=v 4)

Finally, a relative metric error can be used toedeine how linear is the output signabf the
ANN obtained by:

£ =y-t (5)

Another way to corroborate the method is by usihegléast mean square error MSE, expressed by

_13 ey
‘grme_NZ(yn tn) (6)

n=1

In the next section where the ANN design for salflbration of intelligent sensors will be
described, the input signal to the ANN will be theerm from equation (3).

3. Artificial Neural Network Design to Self-Calibration of Intelligent Sensors.

This section describes the ANN design to be usel $elf-Calibration of intelligent sensors. The
training algorithm and simulation are also desatibe

3.1. Artificial Neural Network Design.

Several topologies of ANN like a multiplayer pertep MLP and radial basis function RBF were
evaluated. Multilayer perceptron (MLP) neural netikgowith sufficiently abundant nonlinear units in a
single hidden layer have been established as wwaiv@unction approximators. Some work has been
performed to show the relationship between RBF agtsvand MLPs. since both types of networks are
capable of universation approximation capabilifgg 38].

Although, it is known that RBF are good functiorpegximation systems, the MLP was selected
because is simpler than RBF and furthermore, thE RBwork is computationally demanding [26, 27,
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39]. Besides, in other works, the relationship leetww RBF networks and MLPs has been studied.
Mainly, if we assume that an MLP is a universal ragpnator, then it may approximate an RBF
network and vice versa. It has also been showeddrith@oblems with normalized inputs, MLPs work
like RBF networks with irregular basis function8]3

Consequently for our proposal the most appropidi® to be implemented was a feed forward
MLP with four neurons in the first layer and a lagamic activation function. The second layer is a
single neuron with a linear activation function.eTdrchitecture of the ANN is shown in Figure 1.

The number of neurons, number of layers, activationctions, training algorithm and the
computation requirements are the major charadtsisbnsidered during the design. These features
were determined under the restriction of archiuimg least output error and simplest ANN structore t
be implemented in a small MCU.

Figure 1. Architecture of the artificial neural network.

>
>
>
>
The output of the ANN is defined by:
y=Purelin[wf(Logsig(vvﬁx+ql))+bf], i=1to 4 7)

where x is the normalized output sensor signal, the wsiginé represented by the vectoy bis the
bias andy is the linearized or autocalibrated signal.

3.2. Training Algorithm.

Currently many variations of backpropagation tmagnialgorithms are available. The Adaptive
Linear Neuron ADALINE and the Least Mean Square Li&e first presented in the late 50°s, they
are very frequently used in adaptive filtering aggtions. Echo cancellers using the LMS algorithm a
currently employed on many long distance telepHmes. Backpropagation is an approximate steepest
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descent algorithm that minimizes mean square dherdifference between LMS and backpropagation
is in the manner in which the derivatives is caltedl. Backpropagation is a generalization of theSLM
algorithm that can be used for multilayer netwoi®se of major problems with backpropagation has
been the long training times needed. The backpetdjmag process is too slow for most practical
applications and it is not feasible to use thedbackpropagation algorithm for real problems, bheea

it can take weeks to train a network, even on gelaomputer. Since the backpropagation algorithm
was first popularized, there has been considerabldk on methods to accelerate the convergence.
Another important factor in the backpropagatioroatyym is the learning rate. Depending on the value
of the learning rate the ANN may or may not ostalleOn this item several experiments have been
made leading to selection of the appropriate legrnate [32]. Reducing the probability of osciltati

of the ANN is a trade-off with respect to the tiagnspeed. Therefore, this situation needs to bedfa
with faster algorithms. Research on faster algorghfalls roughly into two categories: 1) the
development of heuristic techniques. These hearisthniques include such ideas as varying learning
rates, using momentum and rescaling variables; ndthar category of research has focused on
standard numerical optimization techniques. Thejugate gradient algorithm and the Levenberg
Marquardt algorithm have been very successfullyiegpo the training of MLP [32].

The Levenberg Marquardt algorithm is a variation Mewton’s method and uses the
backpropagation procedure. Levenberg Marquardt @agagation (LMBP) was designed for
minimizing functions that are sums of squares bepnhonlinear functions. This is very well suited t
neural network training where the performance indexhe mean squared error. The LMBP is the
fastest algorithm that we have tested for traimmgtiplayer networks of moderate size, even thoiigh
requires a matrix inversion at each iterationsltemarkable that the LMBP is always able to reduce
the sum of squares at each iteration [32].

Looking for a training algorithm with the best fesds of training time, minimum error with
practical application we decided to evaluate bamagation, backpropagation with momentum and
the LMBP algorithms. Table 1 summarizes the respfitthis evaluation. As can be observed in the
table, the Lenvenberg-Marquardt algorithm has &efasonvergence time and also the lowest error.
Besides, this method works extremely well in p@gtiand is considered the most efficient algorithm
for training median sized ANN [32,34].

Table 1 Training algorithms evaluation.

Algorithm No. Cycles Mean Square Error MSE
Backpropagation 500 0.0576
Backpropagation Momentum 500 0.0372
Lenvenberg-Marquardt 22 1.986e-16

Next, the Lenvenberg-Marquardt algorithm for ourtigalar application is described. AssumiNg
calibration points we define the input sensor digna the output sensor signa| and its desired, ,
with normalized values equations (2-4) as:

{vi,x th {vaxotd vy Xt (8)
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The iterations of the Levemberg Marquardt algorittarautocalibration of intelligent sensors for
k cycles can be summarized as follows [32]:

Step 1 Present all theN calibration points and compute the sum of MSE wijnation (6).

Step 2 Determine the Jacobian matrix by:

og, 0& 0& 0& 0&, 0&, 0, 0&, 0&, 0&, 0&, 0&, O0¢,

W ow. ow: owl ob' bl bl dbl ow’ ow?2 ow’ w2 b’
os, 0&, o0&, 0&, 0¢, 0, 0&, 0, 08, 0, 0, 0, O0f,

J(p)=| 0w i owi ow: ob’ abl abl bl ow2 ow2 ow2 ow> b2  (9)

dg, 0&, 0&, 0¢&, 0&, 0&, 0&, 0&, 0&, 0¢&, 0&, 0&, 0&
ow, ow, ow; odw, odb; ob, odb; db, ow; ow; ow; ow} db}

4

where gis the error relative for each calibration pointnguted from the equation (6)

Step 3 Now compute the variation or delta of ANN paraengtAp, :

8p =[IT(P)I(P) +41 T 3T (RIE(R) (10)

Where the learning factor is representegspyl is the identity matrix and thé&(p,) is the Jacobian
matrix evaluated with the ANN parametgps.

Step 4 Recompute the sum of squared errors with the epoltameters, equation (6), step 1 for the
update of parameters:

Pt = P + 0P (11)

For this case: If the result of MSE is smaller tlmmputed in the step k,,; . <& .. then
evaluatey,,, as (4., :ﬂ, c is a constant value, and continue with the stdptBe sum of squares is
c

not reducedg, ., . > & e, €Valuatey, as 4, = y4.c and go to the step 2. All this will be repeated
until the desired error dt’s cycles are reached. Note that the initial valueg/and care the key to
the right convergence, the recommend valuesua¥8.01 andc=5. Figure 2 shows the flow chart of

the LBMP algorithm.

3.3 Smulation to Evaluation and Results Comparison.

)

The ANN training was made with five to eight caéibon points using the function=1-e 7,
normalized with the equations (3) and (dyepresents the percentage of the nolinearitx.ofhe
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artificial neural network was tested with differeleivel of nonlinear input signals. The proposed
method was compared against the piecewise [35]pamghomial linearization methods [36] using
simulation software. Figure 3 illustrates the reswf the comparison of the ANN, piecewise and
polynomial methods. Each figure shows the perfogeaof these methods for different calibration
points regarding different levels of input nonlinga from 10% to 65%.

Figure 2. Flow chart of the LMBP algorithm.
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The performance is given in maximum percentageoofinearity output error, MPNOE. In Figure
3 it can be noted that the proposed method with AtNed out to have a better overall accuracy than
the other two methods. The ANN always presentsntii@mum MPNOE considering the 1% of
MPNOE, maximum acceptable value of practical agplons. For example, with five calibration
points and supplying a signal of a 20% of relativalinearity, the piecewise method has an error
above 1%, the polynomial has an error around 0.@félthe proposed method has an error of 0.17 %.
The performance of the ANN was obtained using #maes initial conditions for all cases. Another
advantage of ANN method is that with five caliboatipoints a signal below 33% of the maximum
nonlinearity error can be fixed, to yield a perfamoe in the output of less than 1% maximum error of
nonlinearity. Using eight calibration points evagnals with 56% of maximum error of nonlinearity
can be fixed or linearized. The implementationtef ANN method on a MCU using a thermistor will
be described in the next section.

Figure 3. Performance of the ANN to self-calibration. a)tkMiive calibration points, b)
with six calibration points c¢) with seven calibmtipoints and
d) with eight calibration points.
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Figure 3. Cont.

Perfomance with eight calibration points
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4. Temperature Intelligent Sensor Design using ANNn a Small MCU.
Temperature measurement systems are widely usealmiost any process. A thermistor as
temperature sensor was selected in the construcfianmeasurement system, Figure 4. Thermistors,
besides having a diversity of applications, canfiend in a great variety of types, sizes and

characteristics.

Figure 4. Structure of temperature measurement system.

8 bits
RM Analog to AEIES:SAl\ﬁL
X | Digital Converterf—y| y
—P NETWORK

v(m)

0Calo0C

MCU

In this case, the major characteristic that will d®alyzed is thes coefficient, a fundamental
characteristic used to describe its nonlinearityorerFor example, values g#=3100 to (=4500
generate nonlinearity relative errors ranging fréin07% to 51.34%. It is clear that in the practical
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cases, the sensor is incorporated into a circugetdorm the temperature to voltage conversion. For
example, it can be found in a voltage divider oWaeatstone bridge. In our design we used a
thermistor with features of =4500+ 10%, R,=10000 ohms to 25C, and assembled on a voltage
divider to build a measurement system in the rdraya 0 to 100°C as shown in Figure 4.

Figure 5 illustrates the characteristicsxpthe input signal to the ANN. This signal is tlesponse
the sensor to the temperature and the values amatiped in the ranges of [0,1].

Figure 5. Characteristics of input signalto the ANN.
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In Figure 5a the signal simulated as was describeBlection 3.3, the signal evaluated with the
equation characteristic of a thermistor using nahiralues, the response of thermistor real obtained
from a practical test and the ideal respohga straight line) can be observed. Figure 5b shih&s
percentage of nolinearity of this signalevaluated according to equation (5). In thisegall the error
signals are shown: simulated signal, theoricalntigior response, and the real thermistor response.
From Figure 5b, the similarity of the three signeds be easily appreciated. Taking into considemati
just the parametef and its£10% tolerance, the real signal is under this limitsl aur proposal
methodology is acceptable.

The major features of the MCU for the physical iempéntation are: eight bit words, eight bits
analog to digital converter ADC, a 20 MHz clock éh#&bytes of RAM. Equation (7) and the training
algorithm described in Section 3.2 were programuomdg C language. Next the ANN implementation
and its training for autocalibration and to linearthe signak in intelligent sensor will be described.

The iterations of the Levemberg Marquardt backpgagian algorithm assuming five calibration
points was programmed as follows:

The input calibration signal was =0, 23,50, 76,10C, temperature ifiC. Using the equation (2-3)

the values normalized to the vectary andt were calculated, to obtain the vectors of equain

v=[0,0.23,0.5,0.76]1x=[ 0,0.3483,0.6983,0B00andt=[ 0,0.23,0.5,0.7¢

The initial values for weights and bias were takem the simulation described in Section 3.3,
with the values of:

w' =[0.3272, 0.1746, -0.1867, 0.745
w*' =[-0.5883, -0.1363, 0.1139, 0.0!
b'=[1,1,1

b =1

Step 1 Using the equations (10) and (12) the outputaigri the ANNYy from equation (7) is
computed. The evaluation of the error equatiora(t) the MSE with equation (6) is computed.

y, = Purelin[wz(Logsig(vlej +b1))+b2], n=1to ¢t

y =[0.5968,0.5837,0.5708,0.5636,0.5F
g =[-0.5968 -0.3537 -0.0708 0.1968.4399
& me =0.3791

Step 2 The Jacobian matrix is computed. In this examipdesize of the Jacobian matrix according
to equation (17) and five calibration points widl b x 13, defined as:
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de, 0& 0& 0& 0&, 0&, 0&, 0, 0&, 0&, 0&, 0&, 0¢f,
oW ow, ow: ow. ob! bl abl abl ow’ ow2 ow2 dw’ ob >
os, o0&, o0&, 0&, 0&, 0, 0, 08, 0, 0&, 0, 0, 0€,
ow, ow, ow. ow, 0b; o0b; dbl db; aw; dw: ow’ ow. db;
0g, 0& 0& 0& 0&, 0, 0&, 0&, 0&, 0&, 0&, 0, 0f,
ow, ow, ow; ow, 0db’ ob; db; db, ow’ ow> ow’: ow; db/
og, 0d&, o0&, 0d¢, d¢, 0t, 0&, 0&, 0, O0c, 0&, 0&, O0&,
ow, ow, ow. ow, 0b; o0b; dbl db; aw; dw’ ow’ ow. db;
0s, 0&; 0&;, 0&;, 0&;, 08 08 0& 0& 0&; 0, 0&, 0&,
ow, ow, ow, odw, ob; ob, odb; ob, owS ow,; ow; ow; b/

(12)

0 0 0 0 0 0ms8 024 006731 Q731 0731 Q7EH
008l 00kl 008 -00Balcs 00 0031 0a@RAND 048 07481 Q77A
Jp= 007D 0076 0066 -000dD1ElL 0053 0037 00B7HB 08 Q07 0813
0B% 0B 02 06EB 048 00408 080 08B -QEB8B
0®BA 06 02006 S 06 0042006 0% 060 0EBED -

Step 3 Solve the equation (10) to gap,, for the first iteration foik =1, 4 =0.0landc=5 the

result is:

Ap] =[-2.3307 -0.5974 0.6054 0.1711 0.5757 0.0839
0.0211-0.1123 0.6568195 -1.7367 2.0186 -1.07F

Step 4 Recompute the sum of squared errors with the epo@tameters, equation (6), step 1. For
this case:

Pess = P, = Py +Ap;

If the result of MSE is smaller than computed in #tep 1,¢, . <&, .., then evaluatg, as

_H
,Uz_?l

pas i, =pc and go to step 2. All this will be repeated uriie desired error ok’s cycles are

, and continue with step 2. If the sum of squaresrés not reduceds, .. > ¢, , evaluate

reached. The process above described was repeatetbfid or 500 cycles and final parameters are:

Pl =[-3.3221 0.3498 2.1249 -12.3130 4.1833087
1.1658 15.0081 -1.7468760 1.3712 2.505
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The MSE was:

£ =2.6767x10°

500/mse

Then the ANN model from equation (7) is:

~1.7460] -3.322 4.183
. : 0.3498 1.308
y = Purelin Logsig X+ +2.0969 (13)
1.3712 2.1249 1.165
-2.5059 -12.313 15.00

5. Tests and results.

The performance of the ANN was compared against aeideell temperature meter number
UDC3000 with a type K -29 to 53% (-20 to 1000°PF) range thermocouple with an accuracy of
+0.02%, taking 50 measurements from a range ofl®@SC in steps of 2C using an oven system to
change the temperature. The results are shown urd=i§y The ANN output signgl compared with
the target straight line can be seen in Figurdrbarder to visualize better the error betweenANN
output and the target straight line the percentdigelative error of nolinearity computed with etjoa
(5) is shown in Figure 6b. In summary, Figure 6bvehthe difference between the ideal output and the
output provided by the ANN. It can also be observiedt the maximum percentage of relative
nonlinearity error is approximately 0.7%, below 18 was predicted from simulation and was
illustrated in Figure 3a with five calibration ptsn

Figure 6. ANN performance with five calibration points. a) {put ANN signal. b)
ANN output relative error.
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Figure 6. Cont.
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Important evaluations were made considering the peaational work that is required in the
physical implementation of each method describexv@bFirst, the number of operations required for
each method using a software tool to program théJM@re counted, as well as the computation time
required was predicted This process was madi$&; 6, 7 and 8 calibration points, and the resariés
shown in the Table 2.

Table 2. Autocalibration methods. Their number of operatimepuired and their computation time.

Operation number Time in microsecondsi(s)
Method
N=5 N=6 N=7 N=8 N=5 N=6 N=7 N=8
Piecewise 80 102 112 128 4915 5898 6881 7556
Polinomial 101 162 245 352 5609 8778 12974 18287
ANN 28 3523

A similar process was carried out to evaluate thmputational work and the training time. The
computational time for one cycle of the ANN traigirs showed in Table 3, considering MCU clocks
of 20 Mhz and 40 Mhz.

Besides, it is important to remark about the semssolution. The ADC determinates the sensor
EFSR

2n—1 ’
the number of bits of the ADC is. In our exampleE . =5 volts, then the sensor resolution is 19.6

resolution and this is defined biResolution= were E is the full range voltage scale and

mV, that means, the temperature sensor is limitedketect temperature changes of 0°88 In a case
where this resolution might represent a problemarninspecific application, the MCU can be changed
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with 10 bits of ADC converter to improve the redimno to 4.9mV (0.09°C). Another alternative is the
use of an external ADC with more than 10 bits.

Table 3 Time expense in the ANN training.

, , ) Time expense in one cycle of training
Calibration points number
CLOCK of 20Mhz CLOCK of 40Mhz
N=5 0.69s 0.36s
N=6 0.74s 0.38s
N=7 0.79s 0.40s
N=8 0.84s 0.43s

6. Evaluation of Results.

The performance of the ANN method can be defineddfdetermine the deviation of the ANN
output from a straight line, the ideal responseiaéiqn (5). The performance is obtained by usirg th

collected data from section 5 (Figure 6) and thedr regression model [41] to evaluate and quantify
the ANN outputy as follows:

J=mv+b (14)

Ideally, the value ofmshould be one and the value lopshould be zero to obtain the best
performance of the ANN. The terimrepresents the unpredicted or unexplained variaitiothe
response variable; it is conventionally called‘teeor” [41].

The values oimand b were computed with the calibration data and udiegléast squares analysis
[42,43]. The results where 1.0015 and —0.028Xespectively. Then it is clear that the error fiois
1.5x10°, the error forbis —0.0281°C.

We made a readjustment in the ANN equation (7)héovalue ofb? by adding the error value of —
0.0281°C. The experiment of Section 5 was repeated andehevalues fomand b where computed
again. The results where of 1.0015 and —2.13X00) respectively.

The error regarding the best fitting line that wastained withm=1.001% and b=0.0281 is
acceptable. From the mathematical point of viewrdeljustment made shows a decrease in the error
of the bvalue, but from the practical point of view the inelrity error was the same. Therefore, it was
shown that with a single training process of theNAMas enough to obtain acceptable results.

7. Conclusions
In this paper a special methodology to design araluate an algorithm for autocalibration of

intelligent sensors that can be used in the desfga measurement system with any sensor was
described.



Sensors 2007, 7 1526

The major problems such as offset, variation ohgaid nonlinearity in sensors can be solved by
the ANN method. Most of the available literaturdéated to autocalibration methods depends on
several experiments to determine its performantgs Pprocess impacts on the time and cost of a
reconfigurable system. This paper described a netocalibration methodology for nonlinear
intelligent sensors based on ANN. The artificiaura network was tested with different level of
nonlinear input signals. The proposed method waspaped against the piecewise and polynomial
linearization methods. Method comparison was aduaysing different number of calibration points,
and several nonlinear levels of the input signdle Pproposed method turned out to have a better
overall accuracy than the other two methods. Farmte, for 20% relative nonlinearity the piecewise
methods has an error above 1%, the polynomial @seam error around 0.71% and the proposed
method has an error of 0.17 % using five calibraf@ints in simulation results, as shown in Figure
3a.

The ANN method requires fewer operations than ttleerotwo methods and the number of
operations does not increase if the number of i@lidn points increases. This can be observed in
Table 2. A training process is required beforeANN method is used, as shown in Table 3, but this i
not a problem because it will be executed each tiraethe sensor is under calibration or the firse
when a new intelligent sensor is designed. The AN&thod can be trained in the self MCU but for
some cases the required computational time reseumcihe training process could be a disadvantage
but this can be solve using a remote compute systams, if the sensor is on a network, the training
can be done using a computer and the ANN paramstatgo the sensor.

Besides the major advantages which are that witwanumber of calibration points the ANN
method achieves better results than the piecewisk pmlynomial methods, as a consequence it
requires less time and cost for its maintenance #my measurement system.

In conclusion, the proposed method is an improvemever the classic autocalibration
methodologies, because it impacts on design proadssntelligent sensors, autocalibration
methodologies and their associated factors, like thnd cost.
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