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Abstract: The development of smart sensors involves the design of reconfigurable systems 

capable of working with different input sensors. Reconfigurable systems ideally should 

spend the least possible amount of time in their calibration. An autocalibration algorithm 

for intelligent sensors should be able to fix major problems such as offset, variation of gain 

and lack of linearity, as accurately as possible. This paper describes a new autocalibration 

methodology for nonlinear intelligent sensors based on artificial neural networks, ANN. 

The methodology involves analysis of several network topologies and training algorithms. 

The proposed method was compared against the piecewise and polynomial linearization 

methods. Method comparison was achieved using different number of calibration points, 

and several nonlinear levels of the input signal. This paper also shows that the proposed 

method turned out to have a better overall accuracy than the other two methods. Besides, 

experimentation results and analysis of the complete study, the paper describes the 

implementation of the ANN in a microcontroller unit, MCU. In order to illustrate the 

method capability to build autocalibration and reconfigurable systems, a temperature 

measurement system was designed and tested. The proposed method is an improvement 
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over the classic autocalibration methodologies, because it impacts on the design process of 

intelligent sensors, autocalibration methodologies and their associated factors, like time 

and cost. 

 

Keywords: intelligent sensors, reconfigurable systems, autocalibration, linearization, 

artificial neural network. 

 

 
1. Introduction 

 

In order to design intelligent sensors for measurement systems with improved features a simple 

reconfiguration process for the main hardware will be required in order to measure different variables 

by just replacing the sensor element, building reconfigurable systems. Reconfigurable systems, ideally 

should spend the least possible amount of time in their calibration. An autocalibration algorithm for 

intelligent sensors should be able to fix major problems such as offset, variation of gain and lack of 

linearity, all characteristic of degradation, as accurately as possible.  

The linearization of output signal sensors and the calibration process are the major items that are 

involved in defining the features of an intelligent sensor, for example, the capability to be used or 

applied to different variables, calibration time and accuracy. 

The subject of linearization has been considered in different forms and stages, basically from the 

designs of circuits with MOS technologies [1]. Cases studied included the use of analog to digital 

converters to solve nonlinearities at the same time that the conversion is made [2-3]. In digital to 

analog type R-2R converters have also proved to be necessary to improve the linear response [4]. Other 

work has focused on improving the nonlinear response of specific sensors, like the thermistor [5] and 

the Hall effect current sensors [6]. Numerical methods have been developed using modern technologies 

capable of computing linearization algorthms [7, 8]. Also, ROM memories are used to save data tables 

and to solve the linearization problem [9,10]. Nowadays neural networks have been used for 

linearization [11-14]. Neural networks can be used to identify the transfer function response curve of 

the sensors [15]. Recently, neural networks have been used to linearize amplifiers [16] or specific 

sensors responses [17]. 

The calibration method stage is important for two important aspects: first to define the features of 

the measurement system and second, the maintenance costs of measurement systems. The costs 

associated with the maintenance of measurement systems from 70's to now have been discussed [18-

21], and these documents indicate that the companies have to spend more money applied to pay for 

quality services due to calibration problems. 

A wide application area of neural networks is in recognition of patterns in the analysis of signals 

from sensors [22,23]. The self-calibration concept is approached from different stages, for example in 

the fabrication of integrated circuits [24] or in signal transmissions [25]. In [26] the improvement of 

the adaptive network-based fuzzy inference system (ANFIS) technique was shown and in [27] a radial 

bases function RBF neural network for pyroelectric sensor array calibration was presented; in both 

works a complex process training and a PC are required, so they cannot easily be implemented on DSP 
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or small processors. A neural network for electromagnetic flow meter sensor calibration is described in 

[28], but only simulated results are presented, the neural network selection is not clear, large quantities 

of data are used for training and the capability of the method is not evaluated. Back propagation 

artificial neural networking was used in the data analysis shown in [29]. A neural network for 

linearization of the response of a pressure sensor is shown in [30,31], but only simulated results are 

presented and the neural network selection, the training process, the comparison with other methods 

and the method capability are not clear. 

Most of the available literature related to autocalibration methods depends on several experiments 

to determine its performance. This approach impacts the time and cost of a reconfigurable system. This 

paper describes a new autocalibration methodology for nonlinear intelligent sensors based on artificial 

neural networks, ANN. The methodology involves analysis of several network topologies and training 

algorithms [32-34]. The artificial neural network was tested with different levels of nonlinear input 

signals. The proposed method was compared against the piecewise [35] and polynomial linearization 

methods [36] using simulation software. The comparison was achieved using different numbers of 

calibration points, and several nonlinear levels of the input signal. The proposed method turned out to 

have a better overall accuracy than the other two methods.  

Besides complete experimental details, results and analysis of the complete study, the paper 

describes the implementation of the ANN in a microcontroller unit, MCU. In order to illustrate the 

method capability to build autocalibration and reconfigurable systems a temperature measurement 

system was designed. The system is based on a thermistor, which presents one of the worst nonlinearity 

behaviors, and is also found in many real world applications because of its low cost.  

One important point that needs clarification before proceeding relates to the meaning of the term 

calibration. In this paper, calibration is used in the sense of [3, 8, 9, 15, 22-25, 28, 30, 35, 36, 40]. In 

these works, calibration is mainly concerned with the process of removing systematic errors and it is 

not in accordance with the meaning defined in the Metrology and the International Vocabulary of Basic 

and General Terms in Metrology (VIM), ISO VIM [42-45]. In addition, in this paper the phrase “self-

calibration of intelligent sensor” or “autocalibration” has the meaning of “self-adjustment of 

measurement system” according to VIM [44]. 

The paper structure will be as follows: the basic system design considerations are presented in 

Section 2. The ANN design, training algorithm and simulation are described in Section 3. An ANN of 

temperature measurement system implementation on MCU is shown in Section 4. The tests and results 

are described on Section 5. The evaluation results are given in Section 6. Finally, the conclusions are in 

Section 7. 

 

2. Basic System Design Considerations. 
 

Prior to any ANN design some considerations are necessary. The output electrical signal x' of any 

sensor in response to the input variable v', which will be measured is defined by: 

 
' ( ')x f v=        (1) 
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In most of the cases the input and output variables have different scales and they are normalized in 

the range of [0,1] to simplify their manipulation. This can be obtained by the following equations: 

 

 min

max min

' '

' '

v v
v

v v

−=
−

 (2) 

 

 min

max min

' '

' '

x x
x

x x

−=
−

 (3) 

 

The desired output signal is a straight line with unit slope. This will be the target in the calibration 

process and will be the reference signal defined by: 

 

 t v=  (4) 

 

Finally, a relative metric error can be used to determine how linear is the output signal y of the 

ANN obtained by: 

 
 r y tε = −  (5) 

 

Another way to corroborate the method is by using the least mean square error MSE, expressed by 

 

 ( )
2

1

1 N

mse n n
n

y t
N

ε
=

= −∑  (6) 

 

In the next section where the ANN design for self-calibration of intelligent sensors will be 

described, the input signal to the ANN will be the x term from equation (3). 

 

3. Artificial Neural Network Design to Self-Calibration of Intelligent Sensors. 
 

This section describes the ANN design to be used in a Self-Calibration of intelligent sensors. The 

training algorithm and simulation are also described. 

 

3.1. Artificial Neural Network Design. 

 

Several topologies of ANN like a multiplayer perceptron MLP and radial basis function RBF were 

evaluated. Multilayer perceptron (MLP) neural networks with sufficiently abundant nonlinear units in a 

single hidden layer have been established as universal function approximators. Some work has been 

performed to show the relationship between RBF networks and MLPs. since both types of networks are 

capable of universation approximation capabilities [37, 38]. 

Although, it is known that RBF are good function approximation systems, the MLP was selected 

because is simpler than RBF and furthermore, the RBF network is computationally demanding [26, 27, 
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39]. Besides, in other works, the relationship between RBF networks and MLPs has been studied. 

Mainly, if we assume that an MLP is a universal approximator, then it may approximate an RBF 

network and vice versa. It has also been showed that in problems with normalized inputs, MLPs work 

like RBF networks with irregular basis functions [38]. 

 Consequently for our proposal the most appropriate ANN to be implemented was a feed forward 

MLP with four neurons in the first layer and a logarithmic activation function. The second layer is a 

single neuron with a linear activation function. The architecture of the ANN is shown in Figure 1. 

The number of neurons, number of layers, activation functions, training algorithm and the 

computation requirements are the major characteristics considered during the design. These features 

were determined under the restriction of archiving the least output error and simplest ANN structure to 

be implemented in a small MCU. 

 

Figure 1. Architecture of the artificial neural network. 
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The output of the ANN is defined by: 

 

 ( )2 1 1 2
1( ) ,    1 to 4i i iy Purelin w Logsig w x b b i = + + =   (7) 

 

where x  is the normalized output sensor signal, the weights are represented by the vector w , b is the 
bias and y is the linearized or autocalibrated signal. 

 

3.2. Training Algorithm. 

 

Currently many variations of backpropagation training algorithms are available. The Adaptive 

Linear Neuron ADALINE and the Least Mean Square LMS were first presented in the late 50´s, they 

are very frequently used in adaptive filtering applications. Echo cancellers using the LMS algorithm are 

currently employed on many long distance telephone lines. Backpropagation is an approximate steepest 
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descent algorithm that minimizes mean square error, the difference between LMS and backpropagation 

is in the manner in which the derivatives is calculated. Backpropagation is a generalization of the LMS 

algorithm that can be used for multilayer networks. One of major problems with backpropagation has 

been the long training times needed. The backpropagation process is too slow for most practical 

applications and it is not feasible to use the basic backpropagation algorithm for real problems, because 

it can take weeks to train a network, even on a large computer. Since the backpropagation algorithm 

was first popularized, there has been considerable work on methods to accelerate the convergence. 

Another important factor in the backpropagation algorithm is the learning rate. Depending on the value 

of the learning rate the ANN may or may not oscillate. On this item several experiments have been 

made leading to selection of the appropriate learning rate [32]. Reducing the probability of oscillation 

of the ANN is a trade-off with respect to the training speed. Therefore, this situation needs to be faced 

with faster algorithms. Research on faster algorithms falls roughly into two categories: 1) the 

development of heuristic techniques. These heuristic techniques include such ideas as varying learning 

rates, using momentum and rescaling variables; 2) another category of research has focused on 

standard numerical optimization techniques. The conjugate gradient algorithm and the Levenberg 

Marquardt algorithm have been very successfully applied to the training of MLP [32]. 

The Levenberg Marquardt algorithm is a variation of Newton´s method and uses the 

backpropagation procedure. Levenberg Marquardt Backpropagation (LMBP) was designed for 

minimizing functions that are sums of squares of other nonlinear functions. This is very well suited to 

neural network training where the performance index is the mean squared error. The LMBP is the 

fastest algorithm that we have tested for training multiplayer networks of moderate size, even though it 

requires a matrix inversion at each iteration. It is remarkable that the LMBP is always able to reduce 

the sum of squares at each iteration [32].  

Looking for a training algorithm with the best features of training time, minimum error with 

practical application we decided to evaluate backpropagation, backpropagation with momentum and 

the LMBP algorithms. Table 1 summarizes the results of this evaluation. As can be observed in the 

table, the Lenvenberg-Marquardt algorithm has a faster convergence time and also the lowest error. 

Besides, this method works extremely well in practice, and is considered the most efficient algorithm 

for training median sized ANN [32,34]. 

 

Table 1. Training algorithms evaluation. 

Algorithm No. Cycles  Mean Square Error MSE 

Backpropagation 500 0.0576 

Backpropagation Momentum 500 0.0372 

Lenvenberg-Marquardt 22 1.986e-16 

 
Next, the Lenvenberg-Marquardt algorithm for our particular application is described. Assuming N 

calibration points we define the input sensor signal nv , the output sensor signal nx  and its desired nt , 

with normalized values equations (2-4) as: 

 
 { } { } { }1 1 1 1 1 1, , , , , ,..., , ,N N Nv x t v x t v x t  (8) 
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The iterations of the Levemberg Marquardt algorithm to autocalibration of intelligent sensors for 

k cycles can be summarized as follows [32]: 

Step 1: Present all the N calibration points and compute the sum of MSE with equation (6). 

Step 2: Determine the Jacobian matrix by: 

 

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 2 2 2 2
1 2 3 4 1 2 3 4 1 2 3 4 1

2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 2 2 2 2 2
1 2 3 4 1 2 3 4 1 2 3 4 1( )

w w w w b b b b w w w w b

w w w w b b b b w w w w bJ p

ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂=
M M M M M M M M M M M M M

1 1 1 1 1 1 1 1 2 2 2 2 2
1 2 3 4 1 2 3 4 1 2 3 4 1

N N N N N N N N N N N N N

w w w w b b b b w w w w b

ε ε ε ε ε ε ε ε ε ε ε ε ε

 
 
 
 
 
 
 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (9) 

 

where ε is the error relative for each calibration point computed from the equation (6) 

 
Step 3: Now compute the variation or delta of  ANN parameters, kp∆ : 

 
1

( ) ( ) ( ) ( )T T
k k k k k kp J p J p I J p pµ ε

−
 ∆ = +      (10) 

 
Where the learning factor is represented bykµ , I is the identity matrix and  the ( )kJ p  is the Jacobian 

matrix evaluated with the ANN parameters kp . 

 

Step 4: Recompute the sum of squared errors with the update parameters, equation (6), step 1 for the 

update of parameters: 

 
 1

T T
k k kp p p+ = + ∆  (11) 

 
For this case: If the result of MSE is smaller than computed in the step 1, 1, ,k mse k mseε ε+ < , then 

evaluate 1kµ + as 1
k

k c

µµ + = , c  is a constant value, and continue with the step 2. If the sum of squares is 

not reduced, 1, ,k mse k mseε ε+ > , evaluate kµ as 1k kcµ µ+ =  and go to the step 2. All this will be repeated 

until the desired error or ́k s  cycles are reached. Note that the initial values of µ and c are the key to 

the right convergence, the recommend values are µ =0.01 and c =5. Figure 2 shows the flow chart of 

the LBMP algorithm. 

 

3.3 Simulation to Evaluation and Results Comparison. 

 

The ANN training was made with five to eight calibration points using the function 1
v

x e τ
−

= − , 

normalized with the equations (3) and (4). τ represents the percentage of the nolinearity of x. The 
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artificial neural network was tested with different level of nonlinear input signals. The proposed 

method was compared against the piecewise [35] and polynomial linearization methods [36] using 

simulation software. Figure 3 illustrates the results of the comparison of the ANN, piecewise and 

polynomial methods. Each figure shows the performance of these methods for different calibration 

points regarding different levels of input nonlinearity, from 10% to 65%.  

 

Figure 2. Flow chart of the LMBP algorithm. 
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The performance is given in maximum percentage of nonlinearity output error, MPNOE. In Figure 

3 it can be noted that the proposed method with ANN turned out to have a better overall accuracy than 

the other two methods. The ANN always presents the minimum MPNOE considering the 1% of 

MPNOE, maximum acceptable value of practical applications. For example, with five calibration 

points and supplying a signal of a 20% of relative nonlinearity, the piecewise method has an error 

above 1%, the polynomial has an error around 0.71% and the proposed method has an error of 0.17 %. 

The performance of the ANN was obtained using the same initial conditions for all cases. Another 

advantage of ANN method is that with five calibration points a signal below 33% of the maximum 

nonlinearity error can be fixed, to yield a performance in the output of less than 1% maximum error of 

nonlinearity. Using eight calibration points even signals with 56% of maximum error of nonlinearity 

can be fixed or linearized. The implementation of the ANN method on a MCU using a thermistor will 

be described in the next section. 

 

Figure 3. Performance of the ANN to self-calibration. a) With five calibration points, b) 

with six calibration points c) with seven calibration points and 

d) with eight calibration points. 
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Figure 3. Cont. 
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Figure 3. Cont. 
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4. Temperature Intelligent Sensor Design using ANN on a Small MCU. 
 
Temperature measurement systems are widely used in almost any process. A thermistor as 

temperature sensor was selected in the construction of a measurement system, Figure 4. Thermistors, 

besides having a diversity of applications, can be found in a great variety of types, sizes and 

characteristics.  

 
Figure 4. Structure of temperature measurement system. 
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In this case, the major characteristic that will be analyzed is the β coefficient, a fundamental 

characteristic used to describe its nonlinearity error. For example, values of β=3100 to β=4500 

generate nonlinearity relative errors ranging from 41.07% to 51.34%. It is clear that in the practical 
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cases, the sensor is incorporated into a circuit to perform the temperature to voltage conversion. For 

example, it can be found in a voltage divider or a Wheatstone bridge. In our design we used a 

thermistor with features of 4500 10%β = ± , Ro=10000 ohms to 25 oC, and assembled on a voltage 

divider to build a measurement system in the range from 0 to 100 oC as shown in Figure 4. 

Figure 5 illustrates the characteristics of x, the input signal to the ANN. This signal is the response 

the sensor to the temperature and the values are normalized in the ranges of [0,1].  
 

Figure 5. Characteristics of input signal x to the ANN. 
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In Figure 5a the signal simulated as was described in Section 3.3, the signal evaluated with the 

equation characteristic of a thermistor using nominal values, the response of thermistor real obtained 

from a practical test and the ideal response t (a straight line) can be observed. Figure 5b shows the 

percentage of nolinearity of this signal x, evaluated according to equation (5). In this figure all the error 

signals are shown: simulated signal, theorical thermistor response, and the real thermistor response. 

From Figure 5b, the similarity of the three signals can be easily appreciated. Taking into consideration 

just the parameter β and its 10% ±  tolerance, the real signal is under this limits and our proposal 

methodology is acceptable.  
The major features of the MCU for the physical implementation are: eight bit words, eight bits 

analog to digital converter ADC, a 20 MHz clock and 3 Kbytes of RAM. Equation (7) and the training 

algorithm described in Section 3.2 were programmed using C language. Next the ANN implementation 

and its training for autocalibration and to linearize the signal x in intelligent sensor will be described. 

The iterations of the Levemberg Marquardt backpropagation algorithm assuming five calibration 

points was programmed as follows: 
The input calibration signal was ' [0,23,50,76,100]v = , temperature in oC. Using the equation (2-3) 

the values normalized to the vectors x, y and t were calculated, to obtain the vectors of equation (8): 

 

[ ] [ ] [ ]0,0.23,0.5,0.76,1   0,0.3483,0.6983,0.9001,1  and  0,0.23,0.5,0.76,1v x t= = =  

The initial values for weights and bias were taken from the simulation described in Section 3.3, 

with the values of: 

 

[ ]
[ ]

[ ]
[ ]

1

2T

1

2

0.3272, 0.1746, -0.1867, 0.7257

-0.5883, -0.1363, 0.1139, 0.0592

1,1,1,1

1

Tw

w

b

b

=

=

=

=

 

 

Step 1: Using the equations (10) and (12) the output signal of the ANN y from equation (7) is 

computed. The evaluation of the error equation (5) and the MSE with equation (6) is computed. 

 

( )2 1 1 2( ) ,    1 to 5n jy Purelin w Logsig w x b b n = + + =   

 
[ ]0.5968,0.5837,0.5708,0.5636,0.5601y =  

[ ]1

1,

-0.5968   -0.3537   -0.0708    0.1964    0.4399

0.3791mse

ε
ε

=
=

 

 

Step 2: The Jacobian matrix is computed. In this example the size of the Jacobian matrix according 

to equation (17) and five calibration points will be 5 x 13, defined as: 
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1 2 3 4 1 2 3 4 1 2 3 4 1

2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 2 2 2 2 2
1 2 3 4 1 2 3 4 1 2 3 4 1

3 3
1 1
1 2

w w w w b b b b w w w w b

w w w w b b b b w w w w b

J
w w

ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂

=
∂ ∂

3 3 3 3 3 3 3 3 3 3 3
1 1 1 1 1 1 2 2 2 2 2
3 4 1 2 3 4 1 2 3 4 1

4 4 4 4 4 4 4 4 4 4 4 4 4
1 1 1 1 1 1 1 1 2 2 2 2 2
1 2 3 4 1 2 3 4 1 2 3 4 1

5 5 5 5 5
1 1 1 1
1 2 3 4 1

w w b b b b w w w w b

w w w w b b b b w w w w b

w w w w b

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

5 5 5 5 5 5 5 5
1 1 1 1 2 2 2 2 2

2 3 4 1 2 3 4 1b b b w w w w b

ε ε ε ε ε ε ε ε

 
 
 
 
 
 
 
 
 
 
 
 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (12) 

 

 

1

             0             0             0             0

    0.0381     0.0091    -0.0080    -0.0036

( )     0.0720     0.0176    -0.0166    -0.0061

    0.0894     0.0223    -0.0217  

    0.0975     0.0246    -0.0242

J p =

    0.1157     0.0268    -0.0224    -0.0116

    0.1095     0.0260    -0.0231    -0.0102

    0.1031     0.0253    -0.0237    -0.0088

  -0.0072     0.0993     0.0248    -0.0241  

   -0.0076     0.0975     0.0246    -0.0242

   -0.7311    -0.7311    -0.7311    -0.7311

   -0.7529    -0.7428    -0.7181    -0.7778

   -0.7736    -0.7543    -0.7047    -0.8186

  -0.0080    -0.7849    -0.7608    -0.6968  

   -0.0076    -0.7904    -0.7640    -0.6928

   -1

   -1

   -1

  -0.8393    -1

   -0.8489    -1

 
 
 
 
 
 
  

 

 
Step 3: Solve the equation (10) to get kp∆ , for the first iteration for 1k = , 1 0.01µ = and 5c =  the 

result is: 

 

[
]

1 -2.3307 -0.5974 0.6054 0.1711 0.5757  0.0839  

                  0.0211-0.1123 0.6563 0.0195 -1.7367 2.0186 -1.0764

Tp∆ =
 

 

 

Step 4: Recompute the sum of squared errors with the update parameters, equation (6), step 1. For 

this case: 

 

1 2 1 1
T T

kp p p p+ = = + ∆  

 
If the result of MSE is smaller than computed in the step 1, 2, 1,mse mseε ε< , then evaluate 2µ as 

1
2 c

µµ = , and continue with step 2. If the sum of squares error is not reduced, 2, 1,mse mseε ε> , evaluate 

µ as 2 1cµ µ=  and go to step 2. All this will be repeated until the desired error or ́k s  cycles are 

reached. The process above described was repeated for k=500 or 500 cycles and final parameters are: 

 

[
]

500 -3.3221 0.3498 2.1249 -12.3130 4.1837 1.3087  

                  1.1658 15.0081 -1.7460 1.3760 1.3712  2.5059

Tp =
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The MSE was: 
   -16

500, 2.6767x10mseε =  

 

Then the ANN model from equation (7) is: 

 

  

 

1.7460 3.3221 4.1837

1.3760 0.3498 1.3087
2.0969

1.3712 2.1249 1.1658

2.5059 12.3130 15.0081

T

y Purelin Logsig x

   − −     
        
        = + +        
           − −        

 (13) 

 

5. Tests and results. 
 

The performance of the ANN was compared against a Honeywell temperature meter number 

UDC3000 with a type K -29 to 538 oC (–20 to 1000 oF) range thermocouple with an accuracy of 

± 0.02%, taking 50 measurements from a range of 0 to 100 oC in steps of 2 oC using an oven system to 

change the temperature. The results are shown in Figure 6. The ANN output signal y compared with 

the target straight line can be seen in Figure 6a. In order to visualize better the error between the ANN 

output and the target straight line the percentage of relative error of nolinearity computed with equation 

(5) is shown in Figure 6b. In summary, Figure 6b shows the difference between the ideal output and the 

output provided by the ANN. It can also be observed that the maximum percentage of relative 

nonlinearity error is approximately 0.7%, below 1% as was predicted from simulation and was 

illustrated in Figure 3a with five calibration points. 

 
Figure 6. ANN performance with five calibration points. a) Output ANN signal.   b) 

ANN output relative error. 
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Figure 6. Cont. 
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Important evaluations were made considering the computational work that is required in the 

physical implementation of each method described above. First, the number of operations required for 

each method using a software tool to program the MCU were counted, as well as the computation time 

required was predicted This process was made for N=5, 6, 7 and 8 calibration points, and the results are 

shown in the Table 2. 

 

Table 2. Autocalibration methods. Their number of operations required and their computation time.  

 

A similar process was carried out to evaluate the computational work and the training time. The 

computational time for one cycle of the ANN training is showed in Table 3, considering MCU clocks 

of 20 Mhz and 40 Mhz. 

Besides, it is important to remark about the sensor resolution. The ADC determinates the sensor 

resolution and this is defined by: 1Resolution
2

FSR
n

E
−= , were FRSE  is the full range voltage scale and 

the number of bits of the ADC is n . In our example 5FRSE =  volts, then the sensor resolution is 19.6 

mV, that means, the temperature sensor is limited to detect temperature changes of 0.38 oC. In a case 

where this resolution might represent a problem in an specific application, the MCU can be changed 

Method 
Operation number Time in microseconds (sµ ) 

N=5 N=6 N=7 N=8 N=5 N=6 N=7 N=8 

Piecewise 80 102 112 128 4915 5898 6881 7556 

Polinomial 101 162 245 352 5609 8778 12974 18287 

ANN 28 3523 
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with 10 bits of ADC converter to improve the resolution to 4.9 mV  (0.09 oC). Another alternative is the 

use of an external ADC with more than 10 bits. 

 

Table 3. Time expense in the ANN training. 

Calibration points number 
Time expense in one cycle of training 

CLOCK of 20Mhz CLOCK of  40Mhz 

N=5 0.69s 0.36s 

N=6 0.74s 0.38s 

N=7 0.79s 0.40s 

N=8 0.84s 0.43s 

 

6. Evaluation of Results. 
 

The performance of the ANN method can be defined if we determine the deviation of the ANN 

output from a straight line, the ideal response, equation (5). The performance is obtained by using the 

collected data from section 5 (Figure 6) and the linear regression model [41] to evaluate and quantify 
the ANN output ̂y  as follows: 

 
 ŷ mv b= +  (14) 

 

Ideally, the value of m should be one and the value of b should be zero to obtain the best 

performance of the ANN. The term b represents the unpredicted or unexplained variation in the 

response variable; it is conventionally called the “error ” [41].  

The values of m and b were computed with the calibration data and using the least squares analysis 

[42,43]. The results where 1.0015 and –0.0281 oC respectively. Then it is clear that the error for m is 

1.5x10-3, the error for b is  –0.0281 oC. 
We made a readjustment in the ANN equation (7), to the value of 2

1b by adding the error value of –

0.0281 oC. The experiment of Section 5 was repeated and the new values for m and b where computed 

again. The results where of 1.0015 and –2.15x10-4 oC, respectively. 

The error regarding the best fitting line that was obtained with 1.0015m =  and 0.0281b =  is 

acceptable. From the mathematical point of view the readjustment made shows a decrease in the error 

of the b value, but from the practical point of view the nolinearity error was the same. Therefore, it was 

shown that with a single training process of the ANN was enough to obtain acceptable results. 

 

7. Conclusions 
 
In this paper a special methodology to design and evaluate an algorithm for autocalibration of 

intelligent sensors that can be used in the design of a measurement system with any sensor was 

described. 
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The major problems such as offset, variation of gain and nonlinearity in sensors can be solved by 

the ANN method. Most of the available literature related to autocalibration methods depends on 

several experiments to determine its performance. This process impacts on the time and cost of a 

reconfigurable system. This paper described a new autocalibration methodology for nonlinear 

intelligent sensors based on ANN. The artificial neural network was tested with different level of 

nonlinear input signals. The proposed method was compared against the piecewise and polynomial 

linearization methods. Method comparison was achieved using different number of calibration points, 

and several nonlinear levels of the input signal. The proposed method turned out to have a better 

overall accuracy than the other two methods. For example, for 20% relative nonlinearity the piecewise 

methods has an error above 1%, the polynomial one has an error around 0.71% and the proposed 

method has an error of 0.17 % using five calibration points in simulation results, as shown in Figure 

3a. 

The ANN method requires fewer operations than the other two methods and the number of 

operations does not increase if the number of calibration points increases. This can be observed in 

Table 2. A training process is required before the ANN method is used, as shown in Table 3, but this is 

not a problem because it will be executed each time that the sensor is under calibration or the first time 

when a new intelligent sensor is designed. The ANN method can be trained in the self MCU but for 

some cases the required computational time resources in the training process could be a disadvantage 

but this can be solve using a remote compute system. Thus, if the sensor is on a network, the training 

can be done using a computer and the ANN parameters sent to the sensor. 

Besides the major advantages which are that with a low number of calibration points the ANN 

method achieves better results than the piecewise and polynomial methods, as a consequence it 

requires less time and cost for its maintenance than any measurement system. 

In conclusion, the proposed method is an improvement over the classic autocalibration 

methodologies, because it impacts on design process of intelligent sensors, autocalibration 

methodologies and their associated factors, like time and cost. 
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