
Sensors 2007, 7, 730-742

sensors
ISSN 1424-8220
© 2007 by MDPI

http://www.mdpi.org/sensors

Full Research Paper

Optimized Self Organized Sensor Networks

Sungyun Park 1, Kwangcheol Shin 1, Ajith Abraham 2 and SangYong Han 1,*

1 School of Computer Science and Engineering, Chung-Ang University 221, Heukseok-dong,

Dongjak-gu, Seoul 156-756, Korea; E-mail: mouse500@ec.cse.cau.ac.kr kcshin@ec.cse.cau.ac.kr

hansy@cau.ac.kr
2 Center of Excellence for Quantifiable Quality of Service (Q2S), Norwegian University of Science and

Technology, Norway; E-mail: ajith.abraham@ieee.org

* Author to whom correspondence should be addressed. hansy@cau.ac.kr

Received: 26 April 2007 / Accepted: 30 May 2007 / Published: 31 May 2007

Abstract: Wireless sensor networks are composed of a huge number of sensor nodes, which

have limited resources - energy, memory and computation power. Energies are directly

related to the lifetime of sensor network. If sensor nodes can be grouped to clusters, cluster

member sensor nodes only need to communicate with cluster center (head) and this leads to

energy conservation of the member sensors. So, how to compose clusters with minimal

number of cluster heads, while including each node in a cluster is an important research

issue. We propose a new advanced optimization algorithm for sensor network clustering.

Using the proposed optimization algorithm, redundant cluster heads are eliminated, and

unnecessarily overlapped clusters are merged. Optimization algorithm can be used as a

clustering algorithm by itself and also manage the dynamic changes like node addition or

die-out, while the network is even on the working state. We tested the proposed method as a

clustering algorithm and compared it with two other recent sensor network clustering

algorithms, Algorithm for Cluster Establishment (ACE) and Self Organizing Sensor network

algorithm (SOS). The experiments results not only illustrate that the proposed algorithm

could result in clusters with smaller number of cluster heads than others with any density of

sensor networks, but also that the performance is more stable, which is also verified through

repeated experiments.

Keywords: Optimization of clustering algorithm, Self Organizing Sensor algorithm,

Intelligent Clustering, Wireless Sensor Network

Sensors 2007, 7

731

731

1. Introduction

1.1 Related Research

From the mid 1990’s, wireless sensor networks have been developed rapidly along with the growing

development of micro devices of low-cost and wireless communication technology [1,2]. Sensor

networks are usually composed of hundreds to myriads of sensor nodes, which appear to be sprinkled

randomly by a car or airplane. Each node is equipped with a sensor to capture interesting information

in certain area and a communication module to report it to the destination. They typically utilize

intermittent wireless communication. Therefore, sensor networks should be well-formed to relay

information to destination. Clustering is a fundamental mechanism to design scalable sensor network

protocols. The purpose of clustering is to divide the network by some disjoint clusters. Through

clustering, we can reduce routing table sizes, redundancy of exchanged messages, energy consumption

and extend a network’s lifetime [3]. By introducing the conventional clustering approach to the sensor

networks, it provides a unique challenge due to the fact that cluster-heads, which are communication

centers by default, tend to be heavily utilized and thus drained of their battery power rapidly.

Algorithm for Cluster Establishment (ACE) [4] clusters the sensor network within a constant

number of iterations using the node degree as the main parameter. Self Organizing Sensor network

(SOS) [3] illustrates that ACE performance relies on two parameters, which are usually manually

adjusted according to the size and shape of a sensor network and they eliminate the use of manual

parameters of ACE by selecting the primary head node and extend it to form other clusters. However,

SOS has a structural weakness in sparsely distributed networks because it always needs linker node to

form other clusters.

In the literature, besides ACE and SOS, there are some related works on forming and managing

clusters for sensor networks. LEACH [5] rotates the role of a cluster head randomly and periodically

over all the nodes to prevent early dying of cluster heads. Guru et al. [6] consider energy minimization

of the network as a cost function to form clusters.

Krishnan and David Starobinski [7] used a message-efficient clustering, in which nodes allocate

local “growth budgets” to neighbors. The algorithm produce clusters of bounded size and low

diameter, using significantly fewer messages than the earlier, commonly used, expanding ring

approach. They also presented a new randomized methodology for designing the timers of cluster

initiators. This methodology provides a probabilistic guarantee that initiators will not interfere with

each other.

Liu and Lin [8] introduce a re-clustering strategy and a redirection scheme for cluster-based wireless

sensor networks in order to address the power-conserving issues in such networks, while maintaining

the merits of a clustering approach. Based on a practical energy model, their simulation results show

that the improved clustering method can obtain a longer lifetime when compared with the conventional

clustering method.

When sensor nodes are organized in clusters, they could use either single hop or multi-hop mode of

communication to send their data to their respective cluster heads. Mhatre and Rosenberg [9] presented

a systematic cost-based analysis of both the modes, and provided guidelines to decide, which mode

should be used for given settings. They also proposed a hybrid communication mode, which is a

Sensors 2007, 7

732

732

combination of single hop and multi-hop modes, and which is more cost-effective than either of the

two modes.

Younis et al. [10] present a novel approach for energy-aware management of sensor networks that

maximizes the lifetime of the sensors while achieving acceptable performance for sensed data delivery.

The approach is to set routes dynamically and arbitrate medium access in order to minimize energy

consumption and maximize sensor life. The approach calls for network clustering and assigns a less-

energy-constrained gateway node that acts as a cluster manager. Based on energy usage at every sensor

node and changes in the mission and the environment, the gateway sets routes for sensor data, monitors

latency throughout the cluster, and arbitrates medium access among sensors.

Pan et al. [11] considered a generic two-tiered wireless sensor network (WSN) consisting of sensor

clusters deployed around strategic locations, and base-stations (BSs) whose locations are relatively

flexible. Within a sensor cluster, there are many small sensor nodes (SNs) that capture, encode, and

transmit relevant information from a designated area, and there is at least one application node (AN)

that receives raw data from these SNs, creates a comprehensive local-view, and forwards the composite

bit-stream toward a BS. Their research focus on the topology control process for ANs and BSs, which

constitute the upper tier of two-tiered WSNs. By proposing algorithmic approaches to locate BSs

optimally, they maximized the topological network lifetime of WSNs deterministically, even when the

initial energy provisioning for ANs is no longer always proportional to their average bit-stream rate. By

studying intrinsic properties of WSNs, authors established the upper and lower bounds of maximal

topological lifetime, which enable a quick assessment of energy provisioning feasibility and topology

control necessity.

In this paper, we propose a clustering optimization algorithm which can optimize the number of

cluster heads produced by clustering algorithms like SOS or ACE. Suggested optimization algorithm

also can work as a clustering algorithm itself and it can manage the dynamic changes like die out or

addition of sensor nodes. Test results illustrate that the proposed algorithm can compose clusters with

smallest number of heads regardless density of sensor network over SOS and ACE.

1.2 The Clustering Problem in Sensor Network

Clustering problem in sensor networks can be defined as follows: Let us assume that nodes are

randomly dispersed in a field. At the end of clustering process, each node belongs to one cluster

exactly and be able to communicate with the cluster head directly via a single hop [12]. Each cluster

consists of a single cluster head and a bunch of member nodes as illustrated in Figure 1. The purpose of

the clustering algorithm is to form the smallest number of clusters that makes all nodes of network to

belong to one cluster. Minimizing the number of cluster head nodes would not only provide an

efficient cover of the whole network but also minimizes the cluster overlaps. This reduces the amount

of channel contention between clusters, and also improves the efficiency of algorithms that executes at

the level of the cluster-head nodes [3,4].

Rest of the paper is organized as follows. In Section 2 the proposed optimization algorithm is

illustrated. Experimental results are presented in Section 3 and some Conclusions are also provided

towards the end.

Sensors 2007, 7

733

733

Figure 1. Clustering in a sensor network

2. Optimization Algorithm for Sensor Network Clustering

In this Section, we introduce the optimization processes for the clustered results of ACE and SOS,

sensor network clustering algorithm, and we extend the optimization notions to dynamic changes of a

sensor network like nodes die out or an addition and then we explain the proposed optimization

algorithm, which can work as a clustering algorithm.

2.1 Dismiss and Merge Processes for Cluster Optimization

Once a sensor network is divided into disjoint clusters by the clustering algorithm, we apply the

proposed optimization processes, which consists of dismiss and merge. ‘Dismiss’ is for removing

redundant head node and ‘Merge’ is used in overlapped area of several clusters. Figure 2 shows simple

examples of the situation which can be optimized. In the case of Figure 2 (a), the number of clusters

can be reduced if node ‘A’ gives up its head position since all member nodes of node ‘A’ can be a

member of other clusters including ‘A’ itself. Actually cluster of head node ‘A’ is redundant. In case of

Figure 2 (b), we observe that two clusters can be merged into one. If node ‘A’ becomes a head node, all

the members of head node ‘B’ and ‘C’, including ‘B’ and ‘C’ themselves also, can be members of new

cluster ‘A’ or other existing clusters. These are the two basic cases we can reduce the number of cluster

heads.

(a) (b)

 Figure 2. Example of the cases can be optimized

Sensors 2007, 7

734

734

2.2 Details in Dismiss and Merge Processes

Dismiss and merge are the basic operations of cluster optimization. This Section deals with the

details of the processes in terms of interactions among nodes.

The process of eliminating redundant cluster heads, namely dismiss process, starts from a head node.

A head node (for example, node ‘A’ in Figure 2(a)), which is triggered by its local random clock,

broadcasts investigation message to its all members. The message is like this: “Is it all right if I give up

being a head of you?” Members that receive the message from their head node examine their

circumstances (Figure 3(a)). They figure out any head nodes in their communication range except the

current head node. If they find at least one or more other head nodes, it means that they can be a

member of other clusters instead of the current cluster head. Then the nodes send ‘OK’ message to the

current head node. Otherwise send ‘NOT OK’. The current head node decides based on the replies of

its members. Only in the case that all replies are ‘OK’, the current head node confirms dismissal of its

cluster. If the current head node sends a confirmation message to all member nodes, member nodes

start to send join message to one of other clusters which they can join (Figure 3(b)).

 (a) (b)

Figure 3. Example of ‘Dismiss’ process

The process of merging two clusters starts from a member node of a cluster. The member node ‘A’

triggered by its local random clock searches head nodes in its communication range (Figure 4(a)). If the

member node ‘A’ recognizes that more than one head nodes exist except its head, it starts the process

of investigation for merging. First, the member node chooses two head nodes including its current head

node and sends a message like this: “Is it possible for me to be a head node instead of you two?” Two

head nodes, which receive the message, also broadcast investigation message to their members with its

ID and the ID of node ‘A’ which want to be a new head (Figure 4(b)). Member node that receives the

investigation message replies back whether it can be a member node of the node which want to a new

head or any head nodes in its communication range except current head node to be undesignated. This

investigation process is the same as that of dismissal but with providing a ID of node which want to be

a new head. Two head nodes gather replies from their member nodes and send it to the node ‘A’, which

initially starts the process (Figure 4(c)). Node ‘A’ makes a decision. If all gathered replies from the two

heads are ‘OK’ then the node ‘A’ changes its status to head and sends confirmation messages of

merging to two head nodes, which will send the confirmation message of dismissal to its member

nodes and change its status as a member of ‘A’. Finally the member nodes which receive confirmation

Sensors 2007, 7

735

735

message change their head to newly elected head ‘A’ or any head node in its communication range

(Figure 4(d)).

(b) (d)

Figure 4. Example of ‘Merge’ process

2.3 Managing a Node Timer

These two processes start by local timer event. The timer’s value is set by random, so nodes in

network wake up in random sequence just after network is activated. Timer event of a node makes one

of two processes start according to the node’s state, head or member. Each node’s timer is activated at

initialization time. Once a node’s timer is triggered, the timer is not reset until the node receives a

message about membership change from other node. Membership change message occurs during the

following 5 cases:

- a node’s state changes from a member node to a head node

- a node’s state changes from a head node to a member node

- a node changes its head node

- a node is being initialized.

- a node is going to die out

Through this random timer we expect that nodes wake up in random sequence, but one node can

receive other investigation messages before the previous process ends. In this case the node which

received two investigation messages should cancel the second one. Nodes, which receive cancel

message, reactivate its timer in order to redoing the process later.

2.4 Using Optimization Algorithm as Clustering Algorithm

So far we have discussed about the proposed algorithm, which works for optimizing the sensor

network already clustered. However, ours can also work as clustering algorithm by setting all nodes as

head in network’s initial time and activates their timers as shown in Figure 5(a). If node A wakes up

first, it operates ‘Dismiss’ process as following our optimization algorithm and finally it changes its

status as member of node B (Figure 5(b)(c)). Like this way, the network can be clustered and optimized

gradually by operating ‘Dismiss’ and ‘Merge’ processes without using other clustering algorithm.

(a) (c)

Sensors 2007, 7

736

736

 (a) (b) (c)

Figure 5. Example of using optimization algorithm as clustering algorithm

We define messages to communicate among nodes in Table 1 for the processes mentioned so far

and Table 2 illustrates the pseudo code of our optimization algorithm executed in each node.

Table 1. Messages and their role among nodes.

Message Description

SurveyForDismiss[oldHeads,newHeads] Survey a chance of dismissal

Dismiss[oldHeads,newHeads] Announce the confirmation of dismissal

SurveyForMerge[oldHEADs,newHEADs] Survey a chance of merging

Merge[oldHEADs,newHEADs] Announce the confirmation of merging

Join[nodeID] Enroll to head node as member with nodeID

Activate activate receiver’s timer

* oldHeads : heads to be undesignated, newHeads : nodes to be designated as head

Table 2. Pseudo codes of optimization processes at each node

procedure Initialize

 myID := (unique ID) myHead := myID MEMBERS := {myID}

 broadcast Activate message to all nodes in communication range

procedure Finalize

 broadcast Activate message to all nodes in communication range

procedure MessageHandler

 TIMEOUT : // this is sent by local timer when timed out

 if my status is head node

 send SurveyForDismiss[{myID},{}] messages to MEMBERS

 wait for all replies

 if all replies are ‘OK’

 send Dismiss[{myID},{}] message to MEMBERS

 MEMBERS := {}

if my status is member node

Sensors 2007, 7

737

737

 Head1 := myHead

 Head2 := select the nearest head node in my communication range except myHead

 if Head2 is not empty

 send SurveyForMerge [{Head1’s ID, Head2’s ID}, {myID}] to Head1 and Head2

 wait for all replies

 if all replies are ‘OK’

 myHead := myID

 MEMBERS := {myID}

send Merge [{Head1’s ID, Head2’s ID}, {myID}] to Head1 and Head2

broadcast Activate to all node in communication range

SurveyForDismiss[oldHeads, newHeads] :

newHeads := search head nodes within my communication range in real heads or newHeads but not oldHeads

 if newHeads is empty

 reply NOT_OK

 else reply OK

Dismiss[oldHeads, newHeads] :

newHeads := search head nodes within my communication range in real heads or newHeads but not oldHeads

 myHead := select the nearest HEAD node from newHeads

 send Join[myID] to myHead

 broadcast Activate message to all nodes in communication range

SurveyForMerge[oldHeads, newHeads] :

send SurveyForDismiss[oldHeads, newHeads] to MEMBERS

wait for all reply

if all replies are ‘OK’

 reply ‘OK’

else reply ‘NOT_OK’

Merge[oldHeads, newHeads] : send Dismiss[oldHeads, newHEADs] to MEMBERS but not to newHeads

Join[newMemberID] : Add newMemberID to MEMBERS

 Activate : activate timer with random time value

2.5 Supporting Abilities for Dynamic Changes in Sensor Networks

The proposed optimization algorithm can support dynamic changes, which can occur in real

situation like nodes die out or during addition of new nodes.

Nodes may die and disappear from network due to some reasons such as energy depletion or system

failure. In this case, the node broadcasts membership change message of its die out to the nodes in its

communication range and correspondingly each node, which receives the message, activates its local

timer and it will re-optimize the network soon.

Also nodes can be added to network. Because added nodes initialize themselves as a head node at

their initializing time, these nodes declare themselves as head nodes and trigger membership change

messages. All nodes which receive the message execute the optimization process, and the network will

converge to its optimized state again. Figure 6 depicts that the newly added node can give effects to

Sensors 2007, 7

738

738

change cluster head by merge process. These automatic optimizations in cases of deletion or addition

of a node mean that our algorithm also works to maintain optimized state even during network’s

working time

Figure 6. New added node can change cluster head.

2.6 Reducing Message Exchanges using Cache

The proposed optimization algorithm exchanges lots of messages due to the survey process.

Exchanging message consumes energy of the sensor node. Energy problem is critical for a tiny sensor

node. So we need to minimize the number of message changes even in clustering and optimization

processes. We suggest a caching scheme to reduce the message exchanges. The optimization process

we propose is divided into two phases, survey and execution. In survey phase, a node investigates other

nodes in its communication range whether they can rejoin to other clusters and decides whether to

execute dismiss or merge process based on the replies from them. In execution phase, based on the

result of survey phase the optimization process is actually done. We can use the cache scheme in the

survey phase when a change does not occur. If there is no membership change of all the nodes in a

node’s communication range, the node can cache the membership information of each node in its range.

Fortunately, we know the membership changes of nodes in range from their notifications, because

nodes report their membership change to all the nodes in communication range as we mentioned before.

Nodes cache the membership information until the next notification of the nodes. With cache, nodes

can save energy for survey phase. Figure 7 shows the energy consumption details during clustering

process of our algorithm. It represents the average number of transmitted messages at one node during

survey and execution phase. As experimental result shows, lots of energy in survey phase can be saved

by the cache strategy.

Sensors 2007, 7

739

739

0

50

100

150

200

250

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Communication distance of a node

T
h

e
 n

u
m

b
e

r
o

f
 t

ra
n

sm
itt

e
d

 m
e

ss
a

g
e

Execution Phase Survey Phase(non-cacheable)Survey Phase(cacheable)

Figure 7. The average number of message exchanges of a node for clustering a network.

3. Experimental Results

3.1 Results of Clustering Algorithms

For the experiments, we randomly spread out 2500 sensor nodes in 500x500 rectangle area and the

communication range of each node is adjusted from 4 to 100. We also implemented the SOS and ACE

algorithms to compare with the proposed approach. All the three algorithms were run 250 times by

randomly changing the position of each node and the average value is computed. Figure 8 shows the

detailed clustering results. It is noticed that SOS algorithm depicts poor performance for small

communication ranges (4~16). In other words, SOS cannot work efficiently when nodes are distributed

sparsely (Figure 9 also illustrates this). For communication ranges within 18~80, SOS has

improvements compared to ACE. For denser distribution of nodes (82~100), SOS shows slightly better

results than SOS. The proposed algorithm has better overall performance when compared to SOS and

ACE.

0

0.5

1

1.5

2

2.5

3

3.5

4

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 10
0

Communication distance

T
he

 n
u

m
b

er
 o

f c
lu

st
er

s(
lo

gg
ed

).
.

By optimization SOS ACE

Figure 8. Performance results of three clustering algorithms.

Sensors 2007, 7

740

740

(a) By optimization (613 cluster heads) (b) SOS (1386 cluster heads)

Figure 9. Clustering results of the proposed algorithm and SOS approach. (Distance is 12)

3.2 Stability of Clustering Algorithms

Figure 10 shows the variance of the number of clusters for 250 experiment trials. The small variance

value of an algorithm means that it gives uniform results regardless of the network’s density. SOS

shows a high variance with small communication ranges, which means SOS is not stabilized with

sparse node distribution. In most of areas, the proposed algorithm shows more stabilized results than

others.

-0.5

0

0.5

1

1.5

2

2.5

3

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 10
0

Communication distance

V
a

ria
n

ce
 o

f
th

e
 n

u
m

b
e

r
o

f
cl

u
st

e
rs

(lo
g

g
e

d
)…

By optimization SOS ACE

Figure 10. Variance of the number of clusters

3.3 Execution Time of Clustering Algorithms

Figure 11 shows the average execution time of each algorithm for 250 experiment trials with 2500

nodes in 500x500 rectangle area. ACE shows best performance by completing it in constant time

regardless the size of networks. Our optimization method used as clustering algorithm takes the worst

execution time but in the case of applying ours as optimization method to the result of ACE, ours

shows much faster. Though our optimization method takes the worst time complexity in our simulating

Sensors 2007, 7

741

741

environment, but in real situation where each sensors work concurrently, we expect ours show better

execution time than this.

0

2

4

6

8

10

12

14

16

18

20

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 10
0

Communication distance

Ti
m

e(
se

cs
)

Optimization SOS ACE Optimization after ACE

Figure 11. Comparison of execution times

4. Conclusions
In this paper, we presented a new clustering algorithm for minimizing the number of cluster heads.

It is impossible to grasp the optimal number of clusters of a sensor network without exhausted search,

which is impractical. We introduce the methods which can merge unnecessarily overlapped clusters

and dismiss redundant cluster heads to get close the optimal number of clusters. Through experiments,

we illustrated the improvements of the proposed optimization algorithm. We compared it with two

recent algorithms, ACE and SOS. We also illustrated the clustering results and the stability of each

algorithm. From the results, it is evident that the proposed optimization algorithm works better and is

more stabilized than other two algorithms. We also suggested simple caching strategy to reduce the

number of message exchanges in survey process.

As future research, we plan to extent our optimization algorithm to take into account of the

residential energy of each node also, while selecting the cluster head.

Acknowledgements

This research was supported by the MIC (Ministry of Information and Communication), Korea,

under the Chung-Ang University HNRC-ITRC (Home Network Research Center) support program

supervised by the IITA (Institute of Information Technology Assessment).

References and Notes

1. Akyildiz, I. F.; Su, W.; Sankarsubramaniam, Y.; Cayirci, E. Wireless Sensor Networks : a survey.

Computer Networks 2002, 38, 393-422.

2. Kahn, J. M.; Katz, R. H.; Pister, K. S. Next Century Challenges : Mobile Networking for "Smart

Dust". Proceedings of Mobicom 1999, 271-278.

Sensors 2007, 7

742

742

3. Shin, K.; Abraham, A.; Han, S. Y. Self Organizing Sensor Networks Using Intelligent Clustering.

Lecture Notes in Computer Science 2006, 3983, 40-49.

4. Chan, H.; Perrig, A. ACE: An Emergent Algorithm for Highly Uniform Cluster Formation. In

2004 European Workshop on Sensor Networks 2004, 154-171.

5. Heinzelman, W.; Chandrakasan, A.; Balakrishnan, H. An Application Specific Protocol

Architecture for Wireless Microsensor Networks. IEEE Transactions on Wireless

Communications 2002, 1 (4), 660-670.

6. Guru, S. M.; Hsu, A.; Halgamuge, S.; Fernando, S. An Extended Growing Self-Organizing Map

for Selection of Clusters in Sensor Networks. International Journal of Distributed Sensor

Networks 2005, 1 (2), 227-243.

7. Krishnan, R.; Starobinski, D. Efficient clustering algorithms for self-organizing wireless sensor

networks. Ad Hoc Networks 2006, 4 (1), 36-59.

8. Liu, J. S.; Lin, C. H. R. Energy-efficiency clustering protocol in wireless sensor networks. Ad Hoc

Networks 2005, 3 (3), 371-388.

9. Mhatre, V.; Rosenberg, C. Design guidelines for wireless sensor networks: communication,

clustering and aggregation. Ad Hoc Networks, 2004, 2 (1), 45-63.

10. Younis, M.; Youssef, M.; Arisha, K. Energy-aware management for cluster-based sensor networks.

Computer Networks 2003, 43 (5), 649-668.

11. Pan, J.; Cai, L.; Hou, Y. T.; Shi, Y.; Shen, S. X. Optimal base-station locations in two-tiered

wireless sensor networks. IEEE Transactions on Mobile Computing, 2005, 4 (5), 458 – 473.

12. Younis, O.; Fahmy, S. Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid, Energy-

Efficient Approach. In Proceedings of IEEE INFOCOM 2004, 629-640.

© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

