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Abstract: Energy consumption is a critical constraint in \Wass sensor networks.
Focusing on the energy efficiency problem of wisslesensor networks, this paper
proposes a method of prediction-based dynamic gmeagpagement. A particle filter was
introduced to predict a target state, which wagpsEtbto awaken wireless sensor nodes
so that their sleep time was prolonged. With th&trifiuted computing capability of
nodes, an optimization approach of distributed geragorithm and simulated annealing
was proposed to minimize the energy consumptiomeasurement. Considering the
application of target tracking, we implemented ¢argosition prediction, node sleep
scheduling and optimal sensing node selection. Mae a routing scheme of
forwarding nodes was presented to achieve extraggnsonservation. Experimental
results of target tracking verified that energyeadincy is enhanced by prediction-based
dynamic energy management.
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1. Introduction

Wireless sensor networks (WSNSs) utilize a large Imemof intelligent micro-sensor nodes with
sensing, processing and wireless communicatingbdépes to implement complicated tasks in the
specific sensing area. With the strict energy can#ls of wireless sensor nodes, dynamic energy
management has become a challenging issue thatomasidressed in WSNs. To treat the problem of
energy efficiency, it is easy to envision that agrtenergy optimization mechanisms may be applkcabl
In particular, the dynamic energy management achite has been proposed in [1]. The awaken
scheme has been carefully discussed at the proteeel [2]. As energy consumption of WSNs is
application-oriented, energy management of specigplications, such as target tracking, should be
studied. However, very little has been done forcdge applications and therefore none of these
methods make use of the information about the tastse, which contains rich hints for a more
reasonable sleeping and sensing scheduling of ndks optimization performance may be enhanced
by making use of distributed computing capability.

Considering the energy efficiency of measurementWiBNs, we present a prediction-based
dynamic energy management method, which takes ndide time and communication energy
consumption into account. First, particle filtePFJ, which can estimate non-linear and non-Gaussian
dynamic processes, could be directly applied torttve-linear system model, while other traditional
methods, such as extended Kalman filter (EKF), brayg serious model errors [3,4]. To solve the no-
linear problem of target state prediction, PF igpkyed here. Then, idle time is estimated and epsle
schedule is designed for each node so that anycsdbecome a sensing candidate on time. Moreover,
we perform in advance reasonable optimization efstnsing process. Since communication energy is
a critical aspect of energy consumption, distriduggenetic algorithm and simulated annealing
(DGASA) are presented to optimize communicationrgneonsumption in WSNs, which assigns
computation task to a number of nodes to booshamptimization ability. In the application to tatg
tracking, target position is predicted by PF andenselection optimization is achieved by DGASA. A
routing scheme with forwarding nodes is studiedeal. Energy consumption is analyzed during target
tracking and efficiency of prediction-based dynaemnergy management is demonstrated.

The remainder of this paper is organized as follo@8sction 2 discusses collaborative sensing
model and energy consumption model in WSNs. Ini@e@, our prediction-based dynamic energy
management mechanism is presented, where we desmiteral potential awakening mechanisms,
target prediction with PF and energy optimizatiothiDGASA. We have studied the target tracking
application with prediction-based dynamic energynagement in Section 4. Section 5 provides
prediction and optimization results during the gaure of target tracking, and analyzes the network
energy consumption with optimized node selectiopleging dynamic energy management. Finally,
our conclusions are presented in Section 6.

2. Basic Models

Let us assume that wireless sensor nodes are @elptagdomly in the WSN region with the same
sensing rangesensing and sensing period of WSN . A sink node is located in the center of the
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region to collect the data through the network amaintain the information of node positions and
communication paths [5,6]. Wireless sensor nodesdansely placed, so that a number of nodes can
potentially make simultaneous observations. Thisallow a collaborative sensing model and energy
consumption model to be introduced.

2.1. Collaborative Sensing Model

Let us assume that each wireless sensor node odngar bearing angle estimates of the target in
the sensing range [7]. For the time instarthe target is located aXi{getYiarger) and detected by
nodes, where > 2. Each nodg placed atX,y;), can acquire the angle:

g = arctan e +V, (1)

X~ RKarge
Wherey; is direction finding (DF) error, which is zero-nmaGaussian distributed with constant
variancesy?.
DF lines of these nodes can't intersect at a compuamt due to DF error. Therefore, the non-linear
least square estimation is adopted for target ilmeatvith the nodes sensing collaboratively [8].thla
representation for measurement equation nddes is:

Y =CX +V (2)
where
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where§ (i=1---,n) is the estimation of .
Sincen > 2, the least square solution gfexist. According to least-square criteria, chogsas an
estimation ofX to minimizeJ(Xx):
J(X)=VV = (Y -CX)" (Y -CX) (3)

We can acquirex,s =(C'C)'C"Y as the least square estimationxof Defining the estimation of
(Xaget, Year) @S Xiage , then it can be obtained in an iterative mannek@g = X% + X*, where Xx®
and X% denote the estimation of and (e, yia) in thek-th iteration, respectively.

The estimation error covariance matrix is defined a
— 2 T -1 _ 2 qxx qu
cov(X,5)=0,” C'C)" =0, 4)
Ay Gy
We can findq, =0,’/0,?, q, =q, = po,0,/0,/ andq, =0,’/0,?, whereg,’ is the variance of error
distribution on X-axis,s,” is the variance of error distribution on Y-axisdan is the correlation
coefficient. The associated quadratic form of tbgaciance matrix defines an ellipse depicting the
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distribution of error in this two-dimensional casgemimajor axisg, , semiminor axisg, and
semimajor axis azimuth of the error ellipse are [9]:

0 =0,\[[a. +a, + (g, -q,) +4q,71/2 (5)
0, = 0,6, +a, ~ (G, —0,)7 +40,1/2 (6)
tan2 = 2, /6, -0, ) (7

Collaborative sensing accuracy is defined by theresllipse.
2.2. Energy Consumption Model

Let us assume that each wireless sensor node tmdissensing, processing, memory and
communication components. With multiple power modhsse modules can support different levels
of power consumption and functionality. Accordingdach node can have a set of sleep states based
on various combinations of module power statesach statey, has power consumptid?y, and the
transition time from active state and back is gitegnyx andz,k, respectively, where = tgx = tyx. AS
shown in Table 1, we define five states; “Tx” afk" denotes “Transmit” and “Receive” respectively.
And the extra power consumption of radio moduledata transmission between wireless sensor node
i andj is calculated as [10]:

Wo, = apr+a,dr (8)
wherer denotes the data ratey denotes the path loss index, denotes the electronics energy
expended in transmitting one bit of data> O is a constant related to the radio energy, dyndenotes

the distance between the two nodes. If we defige |z, - 7q| as the transition time between stgfe
andsy, then energy consumption due to state transi@gonbe calculated as:

t
Eoa :(Pp _Rn)g;_q (9)

wherep andq are indices of node state referred in transition.

Table 1. Hardware configuration, power consumption and lagen
threshold of each sleep state

State S S S S S
CPU Active Active Idle Sleep  Sleep
Memory  Active Active  Sleep  Sleep  Sleep
Sensor On On On On Off
Radio TX, Rx Rx Rx Off Off
R(mw) 450+ y, 450 270 200 10
7ic(ms) 0 0 15 20 50
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3. Principle of Prediction-based Dynamic Energy Management
3.1. Potential Awakening Mechanisms

According to the mentioned energy consumption masleral potential awakening mechanisms
can be implemented on each wireless sensor node:

(1) Event-driven orsz: As shown in Figure 1(a), when there is no targehe sensing range, the
node keeps its state an Once any target moves into the range, the semsodule will generate an
interrupt to awaken the node to stateNode will go back to statg after sensing and transmitting.

(2) Awakening periodically tg;: The node can go to the deepest sleep staad is periodically
awakened to stat by the timer, as shown in Figure 1(b). If therany target inside the sensing range,
the node will complete measurement and communitatien go back to stagg Otherwise, the node
will directly go back to state.

(3) Awakening periodically tg,: This works similarly to the approach of awakenpegiodically to
states;, but the state to which node is awakened peritigisas,. Figure 1(c) shows that the node can
respond to incoming messages, and expect the dmek Wwave tasks in that period. All the nodes are
set back to state by the announcement of the sink node.

(4) Prediction-based dynamic awakening: As shownFigure 1(d), we present a dynamic
awakening mechanism which adopts the approach akeming to stats, and take node idle time into
account as well. The PF algorithm to be introduadt perform the prediction of target state. Each
node use predicted target state to estimate idle $io that it can keep statan as manyrfqe) periods
as possible and minimize energy consumption.

Figure 1. Comparison of awakening mechanisms: (a) Event-drores;; (b) Awakening
periodically tos;; (c) Awakening periodically ts,; (d) Prediction-based dynamic

awakening.
State State
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3.2. Target prediction by Particle Filter

PF is a sequential importance sampling method wiichased on Monte Carlo simulation and
Bayesian sampling estimation theories and evolvenh fthe Bootstrap nonlinear filtering algorithm
[11]. Here, we use PF to draw prior information @ibthe target state, which means the property of
target for measurement. For example, we usually fadsition information as the target state in targe
tracking applications. With the time inddx we define variablek to describe the target state and
accordingly the variablg can be obtained after observation.

In Bayesian sampling estimation theory, the paslmliensityp(xk|y1_k) can be inferred from the
prior densityp(X« | Y1 k1)
p(Yk |Xk) p(xk |y1;k—1) (10)

PV [ Yasr)

P(% V) =

wherep(yi [Yuci) = [ (%% ) PO Yaeer)e s PO Yiscr) = [ P0% [Xer) POl Vo) X -
PF then uses the Monte Carlo simulation method pjoraximate the posterior density by
particles with the associated weight

p(xk—l|yl:k—1) = gaf«p—( X1~ X1i<— 1) (11)

For solving the difficulty of sample from the paste density function, the sequential importance
sampling method is used, which samples from a knoeasy-to-sample, proposal distribution
a(Xox | yix) , Wherexox is the historical state variables ayd is the corresponding observation. The
recursive estimate for the importance weights ofigiai can then be derived as follows:

RIS LICYL o
A% [%ourr Vi)

And then the estimated target state can be appeatthbyx, = ZN:aijk :

3.3. Energy optimization by Distributed Genetic Algorithm and Smulated Annealing

With a predicted target state and awakening meshgnive can assume that there &kg,
candidate nodes for sensing in certain sensin@geAs wireless sensor node transfer data to aehiev
collaborative sensing, we can design a highly ieffic and low complexity algorithm to optimize
communication energy consumption.

To make use of the distributed computing capabityVVSNs, we present a distributed hybrid
algorithm. This algorithm is implemented on a numbg& nodes which work together to enhance
optimization of performance. Meanwhile, the advgataof two kinds of optimization method, GA and
SA, are combined to get a global optimal solution.

Given an optimization problem, GA encodes the patamns concerned into finite bit strings, each
of which presents a possible solution to the pmobland then works with a set of strings, called the
population, using reproduction, crossover and nartabperators in a random way but based on the
iterative evolution of the fitness function. On ttder hand, SA start at an initial random solutitate,
and a sequence of iterations is generated. A pation mechanism is applied, which transforms the
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current state into a next state selected from #ighborhood of the current state. If this neighbgri
state has a lower cost, the neighboring statecspded as the current state. If this neighboriatedtas
a higher cost, the neighboring state is acceptéd avcertain probability determined by the accegan
criterion.

GA can retain useful redundant information abouatwhhas learned from previous searches by its
representation in individual solutions in the p@tian. Critical components of past good solutioas ¢
be captured, and can be combined together viaaresso form high quality solutions. SA retains
only one solution in the space and exploratiomistéd to the immediate neighborhood. However, SA
possesses a formal proof of convergence to theabtmtimal, which GA does not [12]. Therefore, to
combine the two methods offers good potential fiiaming an optimum solution.

Figure 2 presents the framework of DGASA. Assignéith the population of solutions from GA,
each available node in current period runs SA fepecified time. Then solutions of SA will perform
crossover and modulation to generate a new populatf GA. An optimal solution for energy
consumption is obtained by iteration.

Figure 2. Flow chart of distributed genetic algorithm and siated annealing.

Assign Perform SA on nodel Time
task up
Generate Perform SA on node2 Cr ossover Select Output
N, solutionsf— & | thebest the best
randomly : Mutation | [N, solution solution
Perform SA on nodeN

4. Prediction-based Dynamic Energy Management in Target Tracking
4.1. Target Model

In target tracking applications, we discuss a Mehtarget which moves randomly in a two-
dimensional sensing field with a maximum speggk and a maximum accelerati@. [13]. For
surveillance purposes, reliable detection shouldptided and the position information of target
should be reported according to a specified sernsanigd.

To improve the tracking performance of the manedungetarget, the acceleration inputs must be
considered in the system model, so we use the matiotarget model which was constructed by Duh
[14]. It can compensate the maneuver bias diremtigt it does not have to assume anpriori
knowledge of the maneuver target. This process medgven by:

X (k+1) = FX (k) +GU (k) +GV (k) {13
E{V(k)v(j)T} =Q(k)J, ka:{é ::i (14)
The observation model is:
Z(k+1) = HX (k+1)+W(k+1 (15)

E{w(k)w(i)'} =R(K)q, (16)
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wherek is time index,X (k) =[x(k), x(k), y(k), y(k)]" is the state vector representing the relativetioos
and velocities of the target in the two-dimensidang, Z(k) is the radar measurement vector,
U (k) =[ux(k),uy(k)]" is the input vector consisting of the acceleratemmponents in the x and y
directions and/(k) andW(k) are the process noise and measurement noiseséqiiences are assumed
to be uncorrelated white Gaussian noise sequertbezetfo means and the variance matri@ég and
R(K), respectively.

In Equations (13) and (14¥, is the model state transition matr@(k) is the coupling matrix for
maneuver inputL3,(k) is the process noise input matrix ahds the model output matrix. The related
matrices are given by:

TZ
1T 00 - 0 100
01 0O T 0 010
F= G1:G2: H=
00 1T OT2 0 01
0 0 0 1 2 0 0O
0 T

whereT is the sampling time interval. With this targetadet the prediction result of PF is the target
position at the next sensing instant.

4.2. Seep Scheduling

When there is no target in the region of WSN, ty&esn is on standby in case of any target gets
into it. Any wireless sensor node could be senth® deepest sleep state. However, it should be
awakened on time when target comes around. Theschvedule the sleep time as the following two
phases:

(1) Setup phase: Initializing the network, we assuhat no target is in the region. The minimum
time for a target getting into the sensing rangeawfh node can be estimated according to the shorte
distance to the WSN boundaty;, and the maximum velocity of targétx:

tin = (oo~ Teen sing)/vmax (17)
For the possible target position at the next sgnsistant, the neighboring nodes should be sent to
states, so they became sensing candidates and get reddyawakened. Accordingly, the idle time is
calculated as:
tige = Ly — At (18)

Then the number of idle periods is:
= { floor (t,, /At) t,, = At (19)
1 t o <At
wherefloor is rounding function.
Thus, wireless sensor nodes that are close to 8 Woundary will be awakened periodically. We
define these nodes as boundary nodes, and thes @tfeedefined as inner nodes.
(2) Tracking phase: Once a target enters the regiok node announces the prediction of target
current position Xarger Yiarget) OVEr the network. All the nodes in statewill receive the message and
estimate the idle time according to its coordin&teg):

tidle' = (dtargaj - rsen sing)/Vmax_At (20)
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For any new target that may possibly enter theoreggach node should still be ready for sensing
aftertige, SO in this case the number of idle periods isuwdated as:

, tge 21,
nid|e — r‘kdle' |d|e, idle (21)
floor (tye /At)  tge <tige

Respectivelynige andn’ige are used to schedule the state transition of nodédsese two phases.
The sleep time of nodes is prolonged as much aslpesvithout missing any events.

4.3. Communication Scheduling

Let us assume that a group of wireless sensor nodés neighborhood of the target are supposed
to gather the acquired data and transmit it towk sode during each sensing period. Each nodeein th
sensing group signals with the same transmissiarepdhen the sink node can obtain the sequence of
the distance to each node according to the recesigeadl power. As shown in Figure 3(a), the packet
forwarded from far to near. Each node combinedats into the packet, and finally the nearest node
sends the packet to the sink node.

Let the sink node be denoted INode,. The set of nodes from near to far is denoted by
{Node|i=1,2,--,m}, SO the energy consumption metric can be calalkateording to Equation (8):

m-1
E :[m1+2a2di‘(i+1)”°][P (22)
i=0

whered;; is the distance betwe&iode andNodej, andP is the packet size.

However, the neighborhood of the target may bafay from the sink node, so it would require a
large amount of energy, even for the nearest n@ahsmitting the packet. Thus, we select a number of
nodes randomly from the inner nodes for packet &mdmg. These nodes are defined as forwarding
nodes. And the selection criterion is: each inratenselects a random number in [0,1]; if it exceseds
thresholdT, then it is selected to be forwarding node. ThiegholdT is defined as in [15]:

T= L (23)
1- p[r mod(1/p)]
where p is the percentage of forwarding nodesis the current period number, amebd is the
complementation operator. Each inner node shoutdddewhether it is forwarding node in every
period during its sleep time and it should wakeaiptates, on schedule as a forwarding node.
As shown in Figure 3(b), if the nearest node ingbesing group chooses a shortest path adopting
one of the forwarding nodes, then the energy copsommetric can be calculated as:
m-1 q
|

E'=[ma, + zazdi ,a+1)nO]DP +min[m
i=1 :

nayd °+d ) +a,ad,r]+AE (24)
r , , .

where4E denotes the extra energy consumption of the faiwgmode.
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Figure 3. Routing schemes for target tracking applicatiopn\éhout forwarding nodes;
(b) With forwarding nodes.

0O Sink node © Sensing node @ Forwardingnode O Sinknode © Sensing node
—» Scheduledpath A Target O Sleeping node —» Scheduled path A Target O Sleeping node

4.4. Node selection optimization

In this case, the optimization problem is selectngroup of nodes from the candidate sensing
nodes in order to minimize communication energyscomption. Let us assume that there BHre
candidate nodes for selection. The coding schemesdith possible solution of DGASA is described in
Figure 4. The-th code of the solution indicates whether itile candidate node is selected for sensing,
where “1” denotes node is selected while “0” deaatede is not selected. For example, Figure 4
shows that nodeand] are selected for sensing.

Figure 4. Coding scheme for distributed genetic algorithm sintlated annealing.

Node 1 2 .ee | eee J .ee N-1
wutlon 0 0 .ee 1 coe 1 .ee 0 0

Taking the semimajor axis of the error ellipse las metric of collaborative sensing error, we
assume that sensing error should be less Maim a target tracking application. Then the fithess
function of each possible solution is:

A+E, A> A (25)

Fitneﬁz{
A +E(E) A<A

whereA=g,, defined as the collaborative sensing error with possible solution, art, is a constant
which is larger than the upper bound of energy gomgion metricE(E’). Minimizing the fitness
function, the sensing accuracy is optimized fi@tce accuracy of application is satisfied, the gyer
consumption metric is optimized for energy effiagn
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5. Simulation Experiments

5.1. Smulation environment

Assume that the sensing field of WSN is 400 m x #Q0n which there are 256 wireless sensor

nodes equipped by peroelectric infra-red (PIR) senwith sensing ranggxsing = 60m and root mean
square (RMS) of DF error varianee = 2. We seta, =50nJ /b [] @, =100pJ /b /n? and n, =3 in the

energy consumption model. The sensing period iasét5 s, and then the sample period of PF is 0.5
accordingly. The performing time for node selectaptimization is set as 0.15s for all the following
simulations. According to Section 4.1, we geneegatmjectory of 120 points as shown in Figure 5, in
some part of which the target moves on its maxinagoeleratiora.x and maximum velocitymax for
generalization. Her@mx = 10m/$, Vimax = 40m/s, and sensing error threashja 0.6 m.

Figure5. Target trajectory in the sensing field of WSN.
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Simulations are performed using Opnet Modeler, Wisca simulation platform for communication
networks and distribution systems. The network nwa@ee established according to the proposed
energy management mechanism. We employed CSMA/GAeaBIAC protocol. The wireless channel
model was bpsk, data rate was 1 Mbps and simuldtioation was 60 seconds.

5.2. Network simulations of dynamic energy management mechanism

First, we run simulation of WSN to analyze the gyeconserved by prediction-based dynamic
awakening mechanism separately. All the wireless@enodes available are used for detection in the
target vicinity. The awakening mechanisms are cogtpan Figure 6: (a) Event-driven basedsgn(b)
Awakening periodically tos;; (c) Awakening periodically tos,; (d) Prediction-based dynamic
awakening. We find that prediction-based dynamialeming mechanism obtains the lowest energy

consumption in both setup and tracking phases.
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Figure 6. Comparison of energy consumption in setup and imggkhase with different
awakening mechanisms.
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Prediction accuracy of PF is discussed and prababdinsity of position prediction error on X-axis
and Y-axis is shown in Figure 6. Moreover, the perfance of the proposed algorithm for node
selection optimization was evaluated. We analyzezl densing accuracy and energy consumption
during the tracking phase, with selected sensoe niedecting and reporting. In each sensing peRéd,
was employed to predict the target position at tlegt sensing instant, with which DGASA is
implemented to select the optimal wireless sensderin the vicinity for sensing in the next period.
GA and SA were also studied for comparison withshme coding scheme.

To prevent the influence of a target entering @adihg the sensing field, we studied the procedure
from 10 s to 50 s. Figure 8 shows the collaborasiesing error and energy consumption of GA, SA
and DGASA optimization. In Figure 8(a), the colladiive sensing error of GA and DGASA
optimization can satisfy the required sensing aoyrwhile part of SA optimization results excelee t
required sensing error. As shown in Figure 8(bgrgy consumption is compared during tracking, and
we can find that DGASA optimization gives the lowesnergy consumption, while energy
consumption of GA optimization is highest.

Figure 7. Probability density of position prediction error Braxis and Y-axis.

— X-axis
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Figure 8. GA, SA and DGASA optimization results: (a) Collaative sensing error; (b)
Energy consumption.
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A set of network simulations was also performedhia case that forwarding nodes are utilized in
communication. The effect of the forwarding nodecpatage (changing from 0% to 30%) on energy
conservation of DGASA optimization was examinedslaswn in Figure 8. It can be seen that we have
the most energy conservation with this percentagats10%.

Figure 9. Affect of forward
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ing node percentage on energy eoretion of DGASA optimization
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When the percentage of forwarding nodes is 10%, cthiaborative sensing error of DGASA
optimization is shown in Figure 10(a), which carisfg the required sensing accuracy. Energy
consumption of WSN during the tracking is presermeigure 10(b) .

Figure 10. DGASA optimization results with forwarding node pentage set as 10%: (a)
Collaborative sensing error; (b) Energy consumption
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Finally, we analyzed energy consumption and cormdenv ratio of dynamic energy management
approaches: dynamic awakening mechanism, nodetiseleptimization and forwarding node routing.
Compared to the case that each node keeps inafttilye state, total energy conservation of 90.9%6 ca
be achieved with all these approaches.

Table 2. Energy consumption and conservation of dynamicgneranagement approaches.

Dynamic awakening Nodeselection Forwarding Energy .
. o . . Conservation
mechanism optimization  noderouting consumption (J)
No No No 5020 -
Yes No No 668 86.7%
Yes Yes No 497 90.1%
Yes Yes Yes 455 90.9%

6. Conclusions

Focusing on the energy-efficiency problem in WSM& have proposed a dynamic energy
management mechanism based on target predictiolabGmtive sensing model and energy
consumption model is established, and PF is apptigatedict the target state. With the state of the
next sensing instant, each wireless sensor nodedate its idle time and schedule its sleep withou
loss of any event. Meanwhile, as the candidate s\dde sensing are known beforehand, we
accomplished the optimization of the sensing procegh DGASA, which uses the distributed
computing capability of WSNs so that energy consiimnpcan be minimized without degrading the
performance accuracy. Moreover, we have discudsedduting scheme for data reporting, and an
approach utilizing forwarding nodes is presentedaiaserve more communication energy. Simulations
of target tracking demonstrate that PF target ptidh-based dynamic awakening mechanism and
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DGASA energy management enhance energy efficienggifisantly in WSNs target tracking
application. The paper gives an adaptive dynamecggnmanagement framework for target monitoring
applications in WSNs and has presented detailsdiving the target tracking problem. The feasipilit
of prediction-based dynamic energy management méstha should be explored on a more practical
platform.
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