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Abstract: This study aims at quantifying spatio-temporal dgies of monthly mean daily
incident photosynthetically active radiation (PAR)er a vast and complex terrain such as
Turkey. The spatial interpolation method of uniatrgriging, and the combination of
multiple linear regression (MLR) models and mapehlg techniques were implemented to
generate surface maps of PAR with a grid resolutibB00 x 500 m as a function of five
geographical and 14 climatic variables. Performaofcihe geostatistical and MLR models
was compared using mean prediction error (MPE)t-mo@an-square prediction error
(RMSPE), average standard prediction error (ASE¢amstandardized prediction error
(MSPE), root-mean-square standardized predictioror e(RMSSPE), and adjusted
coefficient of determinationF{Zadj). The best-fit MLR- and universal kriging-genechte
models of monthly mean daily PAR were validatedgaan independent 37-year observed
dataset of 35 climate stations derived from 16@icgta across Turkey by the Jackknifing
method. The spatial variability patterns of monthdgan daily incident PAR were more
accurately reflected in the surface maps createthbyMLR-based models than in those
created by the universal kriging method, in patécufor spring (May) and autumn
(November). The MLR-based spatial interpolationoalyms of PAR described in this
study indicated the significance of the multifacamproach to understanding and mapping
spatio-temporal dynamics of PAR for a complex iercver meso-scales.

Keywords. Universal kriging, multiple regression models, PARatio-temporal modeling,
map algebra.
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1. Introduction

The spatial and temporal patterns of photosyntaiyiactive radiation (PAR) (400-700 nm) are a
necessary input for modeling ecosystem processdsasievapotranspiration, net primary productivity
(NPP), and sequestration of carbon (C) and nitrqhBnn vegetation and soils [1,2]. The availalilit
and intensity of PAR intercepted and absorbed byopies is strongly linked to rates at which
atmospheric carbon dioxide (GQs converted into plant organic matter and cycedong natural
sources and sinks such as the oceans, soils, tiegetand atmosphere [3-5]. Possible effects of
increased atmospheric GOn the global climate, and the net imbalance betwibe sources and sinks
of CO,, known as the “missing carbon” sink, generater@dts in improving knowledge of spatio-
temporal patterns of PAR [6,7].

PAR is not routinely measured, and therefore, oéistimated from measurements of global solar
radiation (SR) in climate stations. Worldwide intigations to predict PAR from routinely measured
SR showed that the ratio of PAR to SR mainly fabéwveen 0.45 and 0.50 in the northern and southern
hemispheres [8,9]. However, availability of longrte SR measurements is generally restricted to
locations of meteorological stations as well asnipuntainous topography. Consideration of spatial
heterogeneity at the landscape scale necessitheesudes of multiple regression analysis, and
geostatistical interpolation methods such as kgigand co-kriging to estimate spatial and temporal
variations in SR and/or PAR [26-29].

The objective of this study was to model spatiogeral dynamics of monthly mean daily incident
PAR over a large and complex terrain such as Tunkeiyng best generic and month-specific multiple
linear regression (MLR) models as well as the gdissical interpolation method of universal kriging
with and without best MLR models and validate thedels with the Jackknifing method, based on a
geo-referenced dataset of SR measured between a&@682004 from 160 climate stations across
Turkey.

2. Materialsand M ethods

2.1. Primary Motivation

The primary motivation for the present work is tlsgiatio-temporal dynamics of PAR are an
essential input for the development of biogeochahmwodels to simulate ecosystem processes such as
NPP, C and N cycles, and @8ources and sinks in a given scale of space are ihe dynamics of
PAR and canopy (land cover) determine the net amoiabsorbed PAR in that only a fraction of
PAR is absorbed by the canopy, known as absorb&l (RRAR), and used for C{assimilation. The
APAR can be estimated as follows:

APAR = PAR. — PAR« — PAR + PARs (1)

where PAR. refers to the amount of PAR incident at the tophef canopy; PAR is the amount of
PAR;. reflected from the top of the canopy; PAR the amount of PAR transmitted through the
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canopy to the soil; PARis the amount of PAReflected from the soil and absorbed by the canopy
Eq. (1) can be simplified into the following expsem:

APAR =f x PAR (2)

wheref refers to APAR/PAR fraction that changes non-linearly with leaf anedex which can be
approximated from the normalized different vegetatindex (NDVI), an expression for chlorophyll
related photosynthetic activity obtained by thehtextogy of remote sensing [10-12]. APAR can be
linked to the quantification of NPP based on thpraach of light use efficiency (LUE) by Monteith
[13,14], and Kumar and Monteith [15] as follows:

NPPr=0.45 x LUE x APAR x GSL x RF 3)

where NPP refers to total net primary productivity (g C’nyr?); LUET (g DM MJ?Y) is light use
efficiency of APAR into total dry matter (DM) of alkeground and belowground biomass; GSL is the
length of growing season period (in days); and RFeduction factors caused by growth-limiting
environmental conditions such as soil productivitymate factors, herbivory, and diseases. Theevalu
of 0.45 is a conversion coefficient for C conteat pnit DM biomass [30].

2.2. Study Region

Turkey (latitudes: 36—42°N, longitudes: 26—45°E)asated where Asia, Europe, and the Middle
East meet and has a total area of about 780,595 with an average altitude of 1250 m. Air
temperature ranges from 45°C in July in the soteea region to -30°C in February in the eastern
regions, with a mean annual temperature of aro&i@.1Annual precipitation varies between 258 mm
in the central and southeastern regions and 2220mtire northeastern Black Sea coast, with mean
annual precipitation of around 634 mm. Annual paapetranspiration reaches 2400 mm in the
southeastern region and declines to 624 mm indk&m region, with mean annual evapotranspiration
of 1280 mm.

2.3. Climate Data

Climate data used in this study were obtained fid@fl meteorological stations across Turkey for
the 37-year period of 1968 to 2004 [31]. The clenddtaset included global solar radiation (SR, MJ m
2 day"), day length § h), mean, minimum and maximum air temperatureTgl, and Tay, °C) and
relative humidity (RH, RKHi» and RHKhax %), cloudiness (CLD, %), potential evapotrandpra(ET,
mm), precipitation (PPT, mm), and soil temperat{réo 5 cm in depth) (ST °C). The fraction of
incident PAR in incoming SR was assumed to be (14818]. Monthly mean daily extraterrestrial
solar radiation on a horizontal surfad,(MJ m? day'), and monthly maximum possible sunshine
duration &, h) were derived based on Duffie and Beckman §sfpllows:

H, _ 24, o f [cosﬁ cosdsinw, +——w, sinA sind} (4)
o 180
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wherel  is the solar constant (1367 W3n f is the eccentricity correction factot; is the latitude of
the site;d is the solar declination; and, is the mean sunrise hour angle for a given monke

eccentricity correction factor, solar declinatiand sunrise hour angle were calculated using the
following Equations, respectively [19]:

f=1+ 0.03:{00{ 360”)} (5)
365

5= 23.455in{w} (6)
365
w, = cos™*(- tanA tand) (7)

wheren is the number of day of year starting from firtJanuary. For a given month, the maximum
possible sunshine duratids,) was calculated using the following Equation [19]:

S, =—w (8)

2.4. Mapping Geographical and Climate Variables

Digital elevation model (DEM) was constructed frani:250,000 scale topographic map of Turkey
(Turkish General Command of Mapping 2005), projg@dtethe Universal Transverse Mercator (UTM)
coordinates of the World Geographic System (WGHAL#d re-sampled to a grid size of 500 m,
using ArcGIS 9.1 [20]. Explanatory geographicaliables of latitude (Lat, decimal degree), longitude
(Lon, decimal degree), distance to sea (DtS, ny,aspect (Asp, compass degree) were derived from
the 500-m resolution DEM data. The implementatibkr@ing necessitates the calculation of a semi-
variogram model that defines variance as functiotisiance, and direction as follows [21]:

1 N (h) B 2
y(h)—m;[zm 4 x+ b (9)

wherey(h) is the semi-variance of varialieas a function of both lag distance or separatistadce
(h); N(h) is the number of observation pairs of points s&ea byh used in each summation; ar(el)
is the random variable at locatign

Explanatory climate variables were spatially intésped from the 160 meteorological stations as
required by the best MLR models of PAR selectedefach month. The generation of digital surface
maps of PAR was based on the prediction methodhiokrsal kriging, with a grid resolution of 500 m
x 500 m. The total area of Turkey 780,595%kmanslates into 3 182 222 cells each 500 x 506 m i
size. The semi-variogram models provide estimatethilag size, range, nugget, and partial sill. The
range &) corresponds to the distance at which the semogeam reaches its asymptote and beyond
which there is little or no spatial dependence. Silledefines the asymptotic height of the variogram
(i.e,, general or maximum variance in the data) andsists) of nuggetc) and partial sill ¢). The
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partial sill is the spatially correlated componeiitthe variance as a measure of the strength of the
spatial dependence, while the nugget is the spatiatorrelated component of the variance plus what
is spatially correlated below the level of the mnim lag size as a measure of the inherent or non-
spatial variation (including measurement errors)e Tegree of spatial dependence for PAR was
calculated as the ratio of the nugg®) (o the sill €, + c) (N:S, expressed as percentage) and classified
distinctly as strongly spatially dependent when kafo was< 25%; moderately spatially dependent
when 25% < N:S ratio < 75%; and weakly spatiallpetedent when N:S ratie 75%.

2.5. Spatio-temporal Modeling of Monthly Mean Daiigident PAR

Selection of best MLR models of monthly mean dailgident PAR was based on the lowest
Mallows’s C, value of the best subset procedure [32], the Isighelue of adjusted coefficient of
determination Rzadj,), and significantP values (<0.05) for all the explanatory variabl&kse entire
dataset from the 160 meteorological stations wasdamly partitioned into the datasets of
parameterization (125 stations, 88%) and valida{@® stations, 22%) according to the Jackknifing
method [33]. Based on the parameterization datasettypes of MLR models were constructed to
predict monthly mean daily PAR—(1) a generic MLRdabwith the explanatory variable of months
being coded as 1 to 12, respectively; and (2) mepttific MLR models—using the following
expression:

y =50+ fixa+ Boxo + Paxaxe ... foXn + € (10)

wherey refers to the response variable of PAR;is estimate of the intercepf, is regression
coefficients (slopes) of the explanatory variablgss the explanatory variablesix, is an interaction
term ande is random error term.

Spatio-temporal modeling was conducted using (&)itierpolation method of universal kriging,
and (2) the combination of the MLR models and migplara techniques available in ArcGIS 9.1. Map
algebra refers to an approach to the handling stieradatasets which treats spatial data layers as
variables so as to be processed using mathematmshtors [34]. All spherical semi-variogram
models of universal kriging were best fit to theRPAataset by adjusting lag sizes in order to oliteen
highest possible values of coefficient of deterrtiora(R?) of spatial one-leave-out cross-validations,
with number of lags = 12 and neighbors to include being held constant. The final spatial variailit
maps of monthly mean daily incident PAR were geteerdor each month using map algebra tool of
ArcGIS 9.1, as expressed in Eq (10). First, the ¢oatlon of the MLR models and map algebra
techniques was realized by generating raster majpdl the explanatory geographical and climatic
variables of the best MLR models, as explainedentin 2.4. Second, coefficient valugs)(of the
explanatory variables were multiplied by correspogdraster maps of the explanatory variables.
Finally, intercept values) of the best MLR models were added to the regut@aster maps.

2.5. Statistical Analyses

Data used in the study were statistically analyzsidg Minitab 13.20 (Minitab Inc., PA, USA) and
ArcGIS 9.1 [20]. Exploratory data and quality coht@moalyses of the climate dataset were performed
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using (1) histogram plot; (2) QQ plot; (3) Anderddarling test for normality; (4) trend analyses for
global trend; (5) variogram surface for anisotrofdarectional influences) or isotropic (having the
same variation in each direction) features; andiéjan’s Index for spatial autocorrelation. Peatson
correlation matrix was applied to a total of 19iahles (five geographical and 14 climatic variaples
order to quantify strength and direction of thatieinships among the variables.

Comparison of observed versus predicted PAR vak#ssperformed using the valuesRffor all
the generic and month-specific MLR models. The \ailah dataset from 35 stations was randomly so
selected as to be spatially representative for dbweventionally-accepted seven climate zones of
Turkey. The values dRzadj were used to compare the performance of the geaad month-specific
MLR models based on the parameterization dataseis f135 stations. Performance of the
geostatistical models without the MLR models waseased and compared using the following six
statistics of spatial one-leave-out cross-validatil) mean prediction error (MPE); (2) root-mean-
square prediction error (RMSPE); (3) average stahgdeediction error (ASE); (4) mean standardized
prediction error (MSPE); (5) root-mean-square stedidad prediction error (RMSSPE); and @)as
follows:

MPE:%;(ZW - Zpk) (11)
1 2
RMSPE= \/ﬁé(zok - 2,) (12)
ASE = %ZN:a(k) (13)
_1g (Zok— Zpk)

MSPE= N ;—U(k) (14)
113 (Zok_zpk) 2

RMSSPE= W;[Tk)} (15)

wherezy is the observed value at locatikirg, is the predicted value kitthrough the universal kriging
method;N is the number of pairs of observed and predicdes; and (k) is the prediction standard
error for locatiork.

The MPE and MSPE values indicate the degree ofibiasodel prediction and should be close to
zero. The RMSPE and ASE values reveal the precisfoprediction and should be equal to one
another, with ASE > and < RMSPE showing overesimnaand underestimation, respectively. The
RMSSPE compares the error variance with krigingavene and should be close to unity, with the
RMSSPE values > and < unity indicating underesimnaand overestimation, respectively.

3. Results and Discussion

Mean values of the 37-year climate dataset obsefroed 160 stations for 14 variables in Turkey
are presented in Table 1. Elevations of the 16bsgranged from 0 to 2296 m with a mean value of
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710 m and displayed a spatial distribution of 30200 m, 36% > 100 an<l 1000 m, 26% > 1000 and
< 1500 m, and 8% > 1500 ard2296 m. Monthly mean daily incident PAR over Twrkearied
between 2.8 and 10.8 MJnday" in December and July, respectively. PAR data skiotve normal
(Gaussian) distribution. Pearson’s correlation madf 14 climatic and five geographical variables
revealed that PAR was negatively correlated withDCIRH, PPT, RHRi,, RHnax and Lat and
positively correlated withH,, S, S STs, Tmax T, ET, Tnin, DtS, Elev, and Lon in decreasing order of
correlation coefficientR) value significantly (Table 2).

Best generic and month-specific MLR models of iead PAR, and the composition of their
explanatory variables are presented in Table 3. bdw generic MLR model accounted for 94% of
variation in monthly mean daily incident PAR, whilee best month-specific MLR models hﬁﬂdj_
values ranging from 33% in July to 77% in Janud@y<(0.001). Most frequently found explanatory
variables of the 12 best month-specific MLR modetre ‘H,.(9%)"(92%), “Ho” (58%), elevation
(42%), and aspect (42%). According to the bestgeaad five month-specific MLR models, regional
topographic influence can be seen as an increaBARat a rate of 0.3 to 0.5 MJndlay” for every
1000-m increase in elevation. Similarly, the fivessbmonth-specific MLR models indicated that aspect
(expressed in compass degrees relative to noréhdlockwise direction) had a significant effect on
PAR at a rate of 0.08 to 0.15 MJ’rday™ per 106.

Comparison of observed versus predicted PAR vahegsaled that the generic MLR model
performed better than the month-specific MLR modetsthe six months of March, May, June, July,
October, and November. Validatidkf values ranged from 28% for June to 74% for Decerabe
from 13% for June to 77% for December based ongdrweric and month-specific MLR models,
respectively (Table 3). Surface maps of incidentRPfar each month were generated using the
combination of raster maps created for the exptagatariables used in the MLR models and map
algebra techniques. Spatial variability maps of Pade presented for February, May, August and
November in Figure 1 as months representative ofewrj spring, summer, and autumn, respectively.

Surface maps of PAR were also derived from bespiiterical semvariogram models of universal
kriging for comparison with the MLR-based surfacaps. Universal kriging has been reported to be
most robust when variables with a strong geographiend or drift (anisotropy) such as PAR used in
this study are spatially interpolated [22-25]. Tirst order of trend removal was applied to satisfy
stationarity assumption (a homogeneous behavidh@structure of spatial correlation) prior toifit
of anisotropic spherical semi-variogram models. pbsitive Moran’s | values of 0.07 to 0.15 showed
the existence of a spatial autocorrelation (depecyein order for the robust geostatistical
interpolation of PAR to be implemente® € 0.01). Trend analysis revealed an overridingdren
PAR and elevation in the north-to-south and wesddast directions in Turkey, respectiveline global
trend in PAR may be associated with its latitudidependence with the northern parts receiving less
radiation than the southern parts of Turkey.
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Table 1. Mean (+SD) values of climate data observed at 160 climtions in Turkey.
PAR S S Ho T Tonin Tinax RH RHpn  RHmax CLD ET PPT STs
Month (MJ m? (h) (h) (MJ m? (°C) (°C) (°C) (%) (%) (%) (%) (mm) (mm) (°C)
day") day")

n 160 160 160 160 160 160 160 160 160 160 160 159 0 16 160
January  3.39.6 34408  95+0.13 1584.9 245 -9+7 13+5 7345 36+7 96+1 0.59+0.09 13+25 79+48  3+4
February 4.790.8 43408  10.5+0.07 21.040.8 345 -9+7  15+4 7145 3347  96+1 0.57+0.08 14 +27 67436  4+4
March 6.5.+0.9 55408  11.740.02 27.84.6 7+4  -5+5  20+4 6845 26+7  96+1 0.53+0.07 25436 64+27  8.+3
April 8.0+0.9 6.6+40.8  13.040.05 348403 12+3 0.3+4 26+3 65+6 24+6  96+1 0.52+0.07 70.+44 60+19 1443
May 9.6.+1.0 84409 1414011 39.74#0.1 1643 5+4 29+3 6348 2447 9442 0.42+0.08 119461  48+17 2043
June 1084.1  10.3#.1 14.7+0.14 41.74.04 2143 9+4 3343 57+10 2349  91+4 0.27+0.09 162484  30+18 2643
July 10.8+1.2  10.9+.3 14.4+40.13 40.640.03 2443 13+4 36+3 54+12 22+10 87+8 0.19+0.11 203+06 176+7 29+3
August 9.7 4.1 10.4+.2 13.440.08 36.740.2 24+3 12+4 35+3 55+12 23+10 88+8 0.19+0.11 188499 18423  29+3
September 8.1 %.0 89+1.1  12.240.02 30.3#.5 20+3 845 33+3 57411 2249 9245 0.22+0.10 134471 24427 2443
October 5.6 0.8 6.5+1.0  10.940.05 23.040.7 1443 245 2843 6447 24+8  96+1 0.38+0.09 78 +43 53+33 1643
November 3.7 9.6 46408  9.8+0.11 17.040.8 8+4  -3+5 21+3 7045 20+6  96+1 0.48+0.08 29425 73429  9.+3
December 2.8 6.5 30+40.8 9.3+0.14  1434.9 4+5 -7+6  15+4 7445 3646  96+1 0.59+0.08 14 +21 91453  4+4

PAR: photosynthetically active radiation; T: meantamperature; Ji,: minimum air temperature; i maximum air temperature; ET: potential evapotpaasion; PPT:
precipitation; CLD: cloudiness; RH: mean relativartidity; RH.;,: minimum relative humidity; Rk, maximum relative humidity; ki monthly mean daily extraterrestrial
solar radiation on a horizontal surface; S: dagtienS: maximum possible sunshine duration; and: Sdil temperature for a depth of 0 to 5 cm.

The spherical semi-variogram model estimates ferl#ly size, range, nugget, and partial sill of arsal kriging, and their one-leave-out
cross-validation statistics are reported in Tabl@ 4rder to help to account for the spatially amah-spatially correlated components of the
variance. According to the N:S ratios, PAR was aered moderately spatially dependent for Febrag@o), January (55%), March (56%),
July (59%), October (63%), December (64%), Aug6584), and September (67%) and weakly spatially wiéget for November (77%), April
(81%), May (100%), and June (100%) in decreasiremrrespectively. The higher the N:S ratio is, ldrger the amount of non-spatially
correlated variation, or the error component igghHaugget effect may also be attributed to theawdity range of PAR shorter than the chosen
grid size of 500 x 500 m. There was no anisotropgent in the semi-variograms of PAR for May ande€u
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Table 2. Pearson’s correlation matrix of 19 variables obsérat 160 climate stations in Turkey.

3250

Lat Lon Elev DtS Asp S T Trmin Trnax RH RHuin RHmax CLD ET PPT ST S Ho
Lon -0.03
Elev -0.05* 0.63***
DtS -0.16***  0.67*** 0.79%**
Asp 0.13%** -0.01 -0.09** -0.06**
S -0.25%* -0.03 0.03 0.07** -0.02
T -0.18** -0.17%* -0.33%** -0.21**  0.02 0.88***
Tmin -0.16%** -0.19%** -0.44%** -0.29%**  0.06* 0.79*** 0.98***
Tmax -0.12%+* -0.17%* -0.27%* -0.18**  0.004 0.88*** 0.97%*  0.92%**
RH 0.33**= -0.21%* -0.26*** -0.37** 0.03 -0.75%*  -0.63** -0.53** -0.66***
RHmin ~ 0.37%* -0.10%** -0.23%** -0.25%*  0.10**  -0.59* * -0.49** -0.38*** -0.59** (.80***
RHmax ~ 0.19%** -0.20%** -0.11%** -0.26**  -0.01 -0.59%**  -0.55%* -0.49%* -0.51** (Q.75%*  (0.39%**
CLD 0.40%** 0.01 -0.02 -0.07**  0.02 -0.89**  -0.8%* -0.74** -0.80** 0.73**  0.56**  0.60***
ET -0.24%* -0.02 -0.09*** 0.02 0.002 0.79*=* 0.7  0.73%*  0.75***  -0.65*** -0.47** -0.63** -0.75 ***
PPT 0.001 -0.05* -0.27%+* -0.22** 0.01 -0.59%* B+  .0.28%*  -0.46** (0.49**  (0.35%*  (0.42%* (. 55%*  .0.43**
STs -0.17%* -0.12%** -0.25%** -0.15**  0.02 0.92*%*  (0.99**  (0.95%*  (0.97**  -0.65*** -0.49** -0.57** - 0.85%* (0.79**  -0.47**
S 0.001 0.001 0.001 0.001 0.001 0.86**  0.76**  0%9 0.78%*  -0.55%* -0.44** .0.43** -0.61*** 0.6 4**  -0.48** (0.81**
Ho -0.05* 0.002 0.003 0.009 -0.007 0.87*=*  0.76%* @**  0.78**  -0.57** -0.47** -0.43** -0.63*** 0 .65**  -0.48** (.81** 0.99***
PAR -0.17**  0.05* 0.12%*= 0.12*=+  0.01 0.92*=*  0.7B6***  0.67**  0.77**  -0.67** -0.54*= -0.51** -0. 72** 0.68**  -0.56*** (0.81** 0.94%** (.94

PAR: photosynthetically active radiation (MJ°rday?); Lat: latitude (decimal degree); Lon: longitudie¢imal degree); Elev: elevation (m); DtS: distatwesea (m); Asp: aspect (compass
degree); T: mean air temperatuP€), Tyin: Minimum air temperature@); Tn.e Mmaximum air temperature°Q); ET: potential evapotranspiration (mm); PPT:cipiation (mm); CLD:
cloudiness (%); RH: mean relative humidity (%); RHminimum relative humidity (%); Rkke maximum relative humidity (%); § monthly mean daily extraterrestrial solar radiaton a
horizontal surface (MJ tday"); S: day length (h); S maximum possible sunshine duration (h); and: $il temperature for a depth of 0 to 5 A@)( The signs “*, **, and **" denote
significance levels of P < 0.05, < 0.01, an@.001, respectively. No asterisk by the valuegcates no significance (P > 0.05).

One-leave-out cross-validation statistics of thizensal kriging models of PAR hd&f values of 28% for May to 62% for November. Thet fac
that the MPE and MSPE values were close to zereate\the small degree of bias in the monthly mealy chodel predictions (Table 4). The
small RMSPE and ASE values indicate the precisibthe universal kriging predictions. The RMSSPEuesl were all close to unity, thus
comparing the error variance to kriging variancke Tact that the ASE values > the RMSPE valuestb@dRMSSPE values < unity shows a
slight indication of overestimation in the montihean daily incident PAR predictions (Table 4). &rtgular, the surface maps of PAR for the
winter and autumn seasons of January, Februargb@ctNovember, and December had relatively lowgsralidation errors.
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Table 3. Generic and month-specific multiple linear reg@sfMLR) models of monthly mean daily incident pbgynthetically active radiation
(PAR, MJ n¥ day”) derived from 125 climate stations and their \atiioh against an independent dataset of 35 clistat®ns across Turkey.

Daily Rag R (%)
PAR Intercept Coefficients of monthly explanatory variables : for
(%) validation
Lat Lon Elev Month DtS Asp T PPT CLD RH Ho Ho.(8S) Ho.PPT  H..RH ST (1) (2)
(1) Generic MLR model
3.53 -0.095 0.0005 -0.021 0.155 0.147 .394
(2) Month-specific MLR model

January -1.63 -0.066 0.234 0.292 -0.0001 765 718 725
February -3.67 0.0008 0.307 0.293 -0.0001 -0.125 732 589 687
March -19.7 0.045 -0.091 0.292 0.749 0.348 0.0%05 66.9 554 552
April -24.9 0.0003 0.0012 6.14 0.680 0.312 53.0 394 438
May -246 0.0015 5.72 6.260  0.154 35.5 .030 26.6
June 25.3 -0.393 0.000003 0.0015 3.84 @500 356 278 125
July -520 0.0004 13.0 0.085 33.1 36.92.33
August -39.4 0.0005 0.682 1.26 0.094 -0.018 424 403 415
September 3.2 0.0003 0.208 49.7 45.1534
October 6.19 0.0008 0.120 -0.24 0.142 H.00 0.009 -0.037 676 613 61.1
November 4.31 -0.055 -0.03 0.283 72.13.27 71.7
December  1.03 0.0004 -0.001 0.330 74ABA0 774

All the multiple linear regression (MLR) models aignificant atP < 0.001. All the coefficient values of the intgptéerms and explanatory variables are signifiedmt <
0.05.n = 1500 for the generic MLRy = 123 for February, April, and June; ang 125 for the rest. PAR: photosynthetically actradiation (MJ rif day'); Lat: latitude
(decimal degree); Lon: longitude (decimal degr&y: elevation (m); DtS: distance to sea (m); Asgpect (compass degree); T: mean air temperd@rm¢nth’); PPT:
precipitation (mm montf); CLD: cloudiness (% month; RH: mean relative humidity (% month H,: monthly mean daily extraterrestrial solar radiaton a horizontal
surface (MJ i day"); S day length (h)S,: maximum possible sunshine duration (h); and: $il temperature for a depth of 0 to 5 ci@ (nonth"). For the categorical
variable “month”, the months of January to Decembere designated as 1 to 12, respectiviélyalues based on validation of month-specific MLBdels for May and June
are significant aP < 0.01 andP < 0.05, respectively, with the rest being siguific atP < 0.001.R* values based on validation of generic MLR modelrfonths are

significant atP < 0.001.

Comparison of validatioR? values among the generic and month-specific MLBetanodels, and the universal kriging models rexktiat
the universal kriging model performed better forihthan the generic MLR model, for May than thenttespecific MLR model, and for June
than both generic and month-specific MLR modelsb{@s 3 and 4). For visual comparison, the four merdf February, May, August, and
November were selected as representatives of theenyispring, summer and autumn seasons, respgadtivigure 1). For each representative
month, spatial interpolations with the highest ealwf validationR® were chosen among the MLR-based and universalngrighodels.
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Figure 1. Comparison of spatial interpolation methods to mmeymthly mean daily incident
photosynthetically active radiation (PAR, MFmay') over Turkey: digital maps with a grid
resolution of 500 x 500 m of PAR in (a) Februagy,ay, (e) August and (g) November based on
universal kriging (see Table 4 for semi-variograimdels and spatial one-leave-out cross-validation
statistics) and in (b) February, (d) May, (f) Augaad (h) November based on multiple linear
regression (MLR) models (see Table 3 for MLR modaeid validation results).
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Table 4. Spherical semi-variogram models of universal kggio derive surface maps of monthly
mean daily incident photosynthetically active réidia (PAR, MJ nf day'), and their spatial one-

leave-out cross-validation statistics.
Variable  Anisotropy Moran’'s Lag Nugget Partial Range MPE RMSPE ASE MSPE RMSSPE R

Index size sill (%)
January Yes 0.15 0.42 0.148 0.122 4978 -0.003 30.44 0.486 -0.030 0.922 58.5
February  Yes 0.15 0.41 0.234 0.204 4859 -0.028 580.5 0.594 -0.053 0.949 56.3
March Yes 0.13 0.35 0.365 0.283 4,148 -0.063 0.690 0.756 -0.083 0.948 53.3
April Yes 0.11 0.84 0.544 0.126 9.956 -0.064 0.770 0.819 -0.078 0.945 42.5
May No 0.07 25 0.883 0 18.34 -0.061 0.950 1.002 .06® 0.953 27.5
June No 0.07 15 1.015 0 16.90 -0.096 0.990 1.07£€.091 0.934 28.6
July Yes 0.06 0.33 0.812 0.556 3.911 -0.069 1.048 .074 -0.066 0.987 29.2
August Yes 0.07 0.22 0.648 0.353 2.607 -0.070 0.915 0.994 -0.073 0.939 36.4
September  Yes 0.09 0.22 0.485 0.237 2.607 -0.0587920. 0.852 -0.072 0.943 43.4
October Yes 0.13 0.50 0.279 0.164 5.656 -0.041 4.58 0.630 -0.066 0.949 55.6
November Yes 0.15 14 0.173 0.052 16.47 -0.056 10.43 0.460 -0.122  0.938 62.2
December Yes 0.15 0.52 0.106 0.059 6.163 -0.031 640.3 0.377 -0.084 0.959 61.9

MPE: mean prediction error; RMSPE: root-mean-squmesgliction error; ASE: average standard predicéaor; MSPE:
mean standardized prediction error; RMSSPE: roatmsguare standardized prediction erifr;values based on one-
leave-out cross-validation are all significanPat 0.001; All semi-variograms were best fit usingnber of lags = 12 after
the first order of trend removal.

Monthly mean daily incident PAR values were 4.8.% MJ n¥ day'in February, 9.6 ©.7 MJ n¥
day* in May, 9.7 +0.8 MJ n¥ day" in August, and 3.7 ©.5 MJ n¥ day*in November for the digital
maps generated by universal kriging. For the diginaps generated by the best MLR models, monthly
mean daily incident PAR values were 4.9.6 MJ n¥ day' in February, 10.3 9.6 MJ n¥ day’ in
May, 10.0 +0.7 MJ n¥ day" in August, and 4.3 6.5 MJ n¥ day* in November. Visual interpretation
of the surface maps in Figure 1 showed that théiadpaariability patterns of monthly mean daily
incident PAR were more accurately reflected in sheface maps created by the MLR-based models

than in those created by the universal kriging methparticularly, for spring (May) and autumn
(November).

4. Conclusions

The research documents how multiple factors caeffo@ently incorporated into the generation of
surface maps over a vast and complex terrain angpares the MLR- and universal kriging-derived
models, based on an independent dataset of validafThe MLR-based spatial interpolation
algorithms of PAR described in this study appedwede useful, particularly, for complex terrains
influenced by multiple biogeoclimatic factors suak Turkey. Further adjustments through field
measurements, estimates by modeling, and remogngeare needed to predict the spatio-temporal
dynamics of PAR intercepted and absorbed by themanThe combination of MLR models and
spatial interpolation techniques as reported iis gtudy may assist in developing biogeochemical
models elucidating spatio-temporal dynamics ovesorecales.
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