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Abstract: Awkward postures are a significant contributor to work-related musculoskeletal
disorders (WRMSDs), which represent great social and economic burdens. Various pos-
ture assessment tools assess WRMSD risk but fall short in providing an elucidating risk
breakdown to expedite the typical time-consuming ergonomic assessments. Quantifying,
automating, but also complementing posture risk assessment become crucial. Thus, we
developed a framework for a holistic posture assessment, able to, through inertial data,
quantify the ergonomic risk and also qualitatively identify the posture leading to it, using
Deep Learning. This innovatively enabled the generation of a report in a graphical user in-
terface (GUI), where the ergonomic score is intuitively associated with the postures adopted,
empowering workers to learn which are the riskiest postures, and helping ergonomists
and managers to redesign critical work tasks. The continuous posture assessment also
considered the previous postures’ impact on joint stress through a kinematic wear model.
As use case, thirteen subjects replicated harvesting and bricklaying, work tasks of the two
activity sectors most affected by WRMSDs, agriculture and construction, and a posture
assessment was conducted. Three ergonomists evaluated this report, considering it very
useful in improving ergonomic assessments’ effectiveness, expeditiousness, and ease of
use, with the information easily understandable and reachable.

Keywords: deep learning; ergonomic risk assessment; inertial-based posture recognition;
posture monitoring; work-related musculoskeletal disorders

1. Introduction
Musculoskeletal disorders (MSDs) represent 60% of the work-related health problems

in the European Union [1]. The sixth wave of the European Working Conditions Survey
revealed that, in 2015, 54% of the Portuguese working population suffered from one or
more MSDs in the previous 12 months [1]. Despite the economy’s advances towards
automation, many jobs still consist of risky and physically demanding tasks [2]. Working in
regular or sustained awkward postures constitutes a risk factor for developing work-related
musculoskeletal disorder (WRMSDs) [3]. Their consequences are associated with work-
limiting pain that decreases psychological health, job satisfaction, and productivity, and it
may lead to worker absenteeism or even early retirement [1,3]. MSDs were responsible for
60% of permanent work incapacity [4] and, in 2015, 53% of the workers with WRMSDs
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reported work absences [1]. The total costs of WRMSDs are estimated at up to 2% of the
gross domestic product of the European Union (EUR 240 billion) [4].

Agriculture and construction are the leading activity sectors in WRMSDs’ reports,
with prevalences up to, respectively, 60% (for backache) and 54% (for upper limbs) [1].
Regarding the agriculture sector, harvesting workers reported a WRMSDs’ prevalence of
86% during one year [5]. In 2015, among the construction sector’s workers, excessive effort
from lifting and lowering caused 30% of the WRMSDs, while pushing, pulling, holding,
carrying, and catching were responsible for 37% [6]. Particularly, bricklayers spend 93% of
their working time bending, twisting, and performing repetitive motions [6].

Taking proper preventive measures can lower the risk of WRMSDs. Indeed, MSDs
have proven to be less frequent when an ergonomic risk analysis that leads to the adoption
of interventions is conducted [7].

There are a variety of tools available for WRMSDs’ risk assessment. The most used
ones are based on observation, conducted by an expert. However, most ergonomic tools are
based on sampled snapshot assessments of the postures sustained by the worker through-
out their work shift. These methods are very time-consuming, depend on the ergonomist’s
experience, and disregard the impact of previous postures on the actual risk [8]. Further-
more, since typical ergonomic assessment tools are based on the ergonomists’ observations,
they were designed to be practical and easy to apply, resulting in simple methods that,
by themselves, do not convey an explanatory risk analysis. For an objective and reliable
ergonomic assessment, sensor-based measurements are required [3]. Nonetheless, these
direct methods can acquire a substantial amount of data, and providing too much informa-
tion can make the analysis cumbersome. Intuitive and expeditious manners are required to
display sensor-based information.

Every job consists of a series of tasks with a certain goal [9], whose accomplishment
requires a series of postures. By decomposing the work tasks into postures, a more detailed
risk assessment is possible. For example, one can determine the critical points that need to
be modified in the task [9] and can assess each posture class separately, providing greater
comprehensibility and allowing the improvement in ergonomics [9], while considering pro-
ductivity and the task goal. Withal, determining those postures’ occurrences is challenging
since a manual recording, by the worker or the ergonomist, of the sequence of postures
is neither practical nor feasible. Lately, automated posture recognition has been gaining
importance in context-aware systems in several domains, such as health and ambient
assisted living [10]. These methods facilitate continuous monitoring and can be a solution.
Artificial Intelligence (AI) solutions are more appropriate than other automated approaches
(e.g., finite-state machines) for activity or posture recognition, due to the considerable com-
plexity associated with the number of body segments involved and intra- and inter-subject
variability. AI models encompass traditional Machine Learning (ML) algorithms, which
primarily depend on domain knowledge to wisely design features [11,12]. Deep Learning
(DL) is a type of ML, in which features are automatically extracted in multiple layers of
the learning models, deep neural networks, fed with raw input data [13]. Particularly, DL
approaches have become more used, and they have outperformed ML in many applications,
overcoming the ML’s limitation of handcrafted feature extraction [13,14]. Furthermore, DL’s
ability to automatically learn high-level and meaningful features from high-dimensional
data leads to high recognition rates, making it particularly suitable for learning complex
patterns from data in intricate tasks like posture recognition.

Considering all this, there is a need for a holistic digital tool that facilitates ergonomists’
work and workers’ understanding of the posture risk, empowering them with a detailed,
comprehensive, and understandable risk analysis. Hence, this manuscript aims to develop
a framework that objectively assesses and quantifies the ergonomics of workers’ postures.
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It expeditiously provides information about the ergonomic risk the worker is exposed
to and the impact of the postures’ accumulation. This information can be used by the
workers, managers, and ergonomists to identify the risk source and possibly redesign tasks
or re-educate postural habits, and, thus, prevent musculoskeletal disorders. The identifica-
tion of the postures responsible for increasing the ergonomic risk takes advantage of DL
models, due to their ability to recognise human movements continuously and automatically,
without the need to manually define the movement features.

This study aims to answer the following research questions:

1. How can the accumulation of postural ergonomics risk over time be quantified?
2. How can ergonomic risk be associated with the specific postures that lead to it?
3. Can an ergonomic assessment tool be simultaneously easy to use and comprehensive

for end users?

The main contributions of this work are:

1. The automation, using wearable sensors, of two ergonomic tools, one for agriculture
and physically hazardous works.

2. The delineation of posture risk levels through an ergonomic index that takes into
account the impact of previous postures on the actual ergonomic risk.

3. The identification of which postures lead to the highest ergonomic risk in the ad-
dressed activity sectors, based on the collected inertial data, by combining the posture
recognition outputs with the computed ergonomic scores.

4. An easy-to-use graphical user interface (GUI) that presents an intuitive and compre-
hensive posture assessment, validated by ergonomists.

The paper is organised as follows: Section 2 explores how the previous literature
studies implemented systems for posture assessment based on Inertial Measurement Units
(IMUs); Section 3 proposes the overall framework for a holistic ergonomic assessment;
Section 4 describes the methodology used to acquire and process the inertial data; Section 5
presents the results; Section 6 discusses them; and Section 7 summarises the main conclu-
sions and prospects future work.

2. Literature Review
The existing methods for conducting ergonomic assessments are outlined in Section 2.1,

whereas more focused research on wearable-based solutions for this purpose is presented
in Section 2.2.

2.1. Ergonomic Risk Assessment Methods

In WRMSDs’ risk assessment, there are three main categories of methods for evaluat-
ing exposure to risk factors that lead to these injuries, which are presented in ascending
precision and invasiveness as follows: self-reports, observational studies, and direct mea-
surements. Self-reports collect data regarding exposure to physical and psychosocial factors
and are based on interviews and questionnaires, in which workers are asked to estimate the
prevalence of postures or the frequency of movements. Despite being straightforward to
apply, their exclusive use may lack precision since workers’ perceptions are subjective and
sometimes unreliable [3,15,16]. Hence, self-reports are frequently accompanied by other
methods that provide more concrete data [16].

Observational methods depend on an observer and may be field-based or video-based,
i.e., based on video recordings analysed offline by an expert. Field-based approaches are
mostly used for static or repetitive jobs and typically rely on checklists [15,16]. Several
observational assessment tools can be found, e.g., the Ovako Working Posture Analysing
System (OWAS) [17], Postural Loading Upper Body Assessment (LUBA) [18], Rapid Upper
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Limb Assessment (RULA) [19], Rapid Entire Body Assessment (REBA) [20], Ergonomic
Assessment Worksheet (EAWS) [21], NIOSH Lifting Equation [22], or Quick Exposure
Check [23]. Despite being widely used, these methods also have the drawback of intra-
and inter-observer variability [15]. In turn, video-based approaches are targeted to posture
assessment in dynamic activities and empower more detailed evaluations since they include
dedicated software to analyse the data objectively. Yet, these are not very convenient, they
are time-consuming, require highly specialised staff, and their cost is higher than that of
field-based methods [15].

Replacing observations with objective direct measurements, i.e., with sensors, can
bring more accuracy and reproducibility to this analysis [2]. Motion Capture (MoCap)
systems record movements and insert them in a 3D model of human kinematics [15,24].
Postures, defined by the body segments’ position and angular movement, can be tracked
using marker-based methods, which attach optical, sonic, or electromagnetic markers to
specific points of the body [15]. Optical MoCap systems, using either active (light-emitting
LED) or passive (reflective) markers, like Vicon or Qualisys [24,25], are typically more
accurate but are more suitable for laboratory-simulated scenarios. More recently, markerless
technology, such as Microsoft Kinect, which integrates depth cameras and computer vision
algorithms, has emerged in kinematic analysis. However, camera-based methods require
constrained environments, highly depend on camera positions and light conditions, may
suffer from occlusion [26,27] (which is likely to happen in dynamic tasks) and suffer from
privacy issues since they record images [28]. In turn, inertial MoCap systems, such as Xsens
or Synertial, are not affected by these problems [3,26]. Both vision-based methods and
wearable inertial sensors are effective in ergonomic assessment tools; however, the best
trade-off between accuracy and portability of the latter makes them very attractive for
estimating body segments’ orientation and joint angles [29]. Nevertheless, these inertial
MoCap systems, which are designed for generalised use (e.g., biomechanical analysis,
rehabilitation, and game development), can still be quite expensive. Moreover, advances
in wearable technology and the scientific community have been driving the development
of more cost-effective wearable solutions based on IMUs [3,26]. For providing rigorous
kinematic evaluations to manage and prevent WRMSDs and improving the knowledge of
the underlying human motions [3], this study relies on wearable inertial MoCap systems.

2.2. Inertial-Based Posture Assessment Systems

Research has been conducted on the automation of ergonomic risk assessment methods
using IMU-based systems. For instance, Ref. [30] applied RULA’s joint angle thresholds to
IMUs’ and goniometers’ data in real time to perform the ergonomic assessment and provide
visual and auditory feedback. Another study [26] complemented RULA in the sagittal
plane with LUBA in the coronal plane and embedded the hardware in a smart vest capable
of providing vibrotactile feedback. Both manuscripts revealed that biofeedback enabled
an overall reduction of the time spent at high ergonomic risk levels, as well as increased
posture self-awareness, suggesting that posture monitoring systems are a valuable tool for
assisting the ergonomic analysis of hazardous work tasks.

However, these systems’ outcomes are not self-explanatory, as they do not indicate
which types of posture conveyed the highest ergonomic risk. One study [31] also imple-
mented a joint angle-based finite-state machine but combined the states to define overall
postures. Nonetheless, this angle-based approach has limited complexity and general-
isation. A hidden Markov model for posture recognition based on the EAWS method
was implemented by [32], considering four taxonomy levels. However, this tool does not
convey a measure of the risk. In [33], the authors carried out an ergonomic assessment
by posture class using a hybrid model of a Convolutional Neural Network (CNN) with
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Long Short-Term Memory (LSTM), but no global score was provided, as postures were not
classified based on body segments’ orientation.

Furthermore, none of these studies took into account the cumulative impact that pre-
vious postures have on the current ergonomic risk, as already pointed out in our previous
literature review [34]. The kinematic wear model proposed by [35] tackled this, for a task al-
location framework, by distinguishing wear and recovery phases, during which a joint kine-
matic wear index increases as a result of the accumulation of non-neutral postures and de-
creases with neutral ones, respectively, simulating the RC circuit charging–discharging.

Hence, there is a need to deconstruct the common simplistic posture assessments
by breaking the risk into parts, i.e., into the different posture classes, so that the users
can have a measure of how risky each posture is. It is also necessary to show workers
the actual posture risk, which, unlike what current snapshot tools consider, is affected by
previous postures.

3. Proposed System Overview
The conceptual design of the proposed system for posture assessment is shown in

Figure 1.

Figure 1. Conceptual design of the system.

The inertial data are the primary input for the proposed system’s various modules,
which are outlined below.

3.1. Posture Recognition

The posture recognition module aims to recognise the subject’s posture, among those
identified as relevant to the addressed activities, using a neural network whose input is
raw acceleration and angular velocity data. The postures considered relevant to recognise,
represented in Figure 2, are those from our previous works [36,37] and are shared by both
agriculture and construction workers as follows: standing, reaching, stooping, squatting,
kneeling, lifting/lowering, carrying, and others.

Several DL architectures and hyperparameters were tested and studied in our previous
work [37], using the dataset acquired by the team [38]. The model with the best test metrics
(F1-score of 94.33% and accuracy of 95.29%, for an inference time of 0.29 ms per window),
a hybrid CNN-Transformer with learnable fusion, was selected to be used in the present
study. The architecture comprises two 2D and three 1D convolutional layers, 128 filters
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in the first layer, doubling with each layer, a kernel size of 5, eight encoder layers with
16 attention heads, and an embedding size of 128. The model uses 1 s windows without
overlap as input and was trained with a learning rate of 10−4 and a batch size of 64 [37].

(a) (b) (c) (d)

(e) (f) (g)

Figure 2. Identified typical postures to be recognised. (a) Standing; (b) reaching; (c) stooping; (d) squat-
ting; (e) kneeling; (f) lifting/lowering; (g) carrying.

3.2. Ergonomic Assessment

The ergonomic assessment module aims to continuously quantify the user’s posture
according to its deviation from the ideal neutral one, where all body segments are nearly
aligned with gravity. Its inputs are the joint angles, and the outputs are the ergonomic risk
levels, which reflect how far the user’s posture is from the ideal one. The assessed joints
are the back, shoulders, and elbows, since the back and upper limbs are the most affected
body parts by WRMSDs [1]. Two distinct ergonomic assessment methods were adapted
as criteria for this assessment: Agricultural Whole-Body Assessment (AWBA) and LUBA.
The users can select in the GUI which one to apply depending on their preference, since
both consider different aspects and provide distinct insights about the user’s ergonomics,
as will be detailed in Section 5.2.

The AWBA tool [39] combines Agricultural Upper-Limb Assessment (AULA) [40],
which considers the three upper-body joints mentioned above to provide a risk level,
and Agricultural Lower-Limb Assessment (ALLA) [41]. They were specifically developed
for assessing commonly assumed postures in agricultural work (one of our use cases),
concerning the sagittal plane (flexion/extension) alone. Their risk level classification was
developed based on electromyography (EMG), heart rate, and self-reported discomfort.
Both AULA and ALLA were demonstrated to be appropriate for estimating risky body
postures that frequently occur in agricultural tasks, showing better agreement with expert
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evaluation than other evaluation tools, namely, REBA, RULA, and OWAS [40–43]. AWBA
will also be used for the construction case, since both sectors share the most typical postures.
As AULA and ALLA were primarily conceived as observational methods, these two tools
provide loose angles instead of ranges; therefore, we partitioned the joint angles into
ranges, using thresholds set at the values halfway between the angles provided. The lower-
limbs’ ergonomic assessment requires the posture recognition module’s output, as ALLA
distinguishes kneeling posture as a different category and assigns it a distinct risk level
without resorting to the knee angle.

For the ergonomic analysis of postures, in this work, a finite-state machine was
implemented to discretise the angles of the monitored joints (back, shoulders, elbows,
and knees), acquired by the sensors, into a state (score/risk level). Tables 1 and 2 indicate
the values of the finite-state machine for the upper body and lower limbs, respectively,
inspired by AULA and ALLA. Table 3 illustrates how the overall risk level is obtained.

Table 1. Finite-state machine for the ergonomic assessment based on the AULA method.

Joint Flexion/Extension Angle Range (◦)
Back Shoulder Elbow

Level

α ≤ 22.5

β ≤ 22.5

Any

1
22.5 < β ≤ 72.5 2
72,5 < β ≤ 105 3

β > 105 4

22.5 < α ≤ 72.5
β ≤ 72.5

γ ≤ 22.5 2
γ > 22.5 3

β > 72.5 Any 3
α > 72.5 Any 2

Note: For clarity, the colours green, yellow, orange, and red are associated with each risk level, from 1 to 4,
in ascending order.

Table 2. Finite-state machine for the ergonomic assessment based on the ALLA method.

Posture Knee Flexion/Extension Angle Range (◦) Level

Standing/squatting

δ ≤ 15 2
15 < δ ≤ 45 3

45 < δ ≤ 135 4
δ > 135 3

Kneeling Any 3
Note: Risk level 1 is not present, as ALLA assigns it only to sitting postures, which were not within the scope of
this work.

Table 3. AWBA rules.

AULA Level
1 2 3 4

ALLA
1 1 2 3 3

level
2 2 2 3 4
3 3 3 3 4
4 3 4 4 4

In order to obtain a more specific analysis for the back, shoulders, and elbows, an-
other ergonomic method was adopted as well. Furthermore, to provide a more complete
assessment, it was decided to assess multiple back and shoulder motion types, namely,
flexion/extension, lateral bending, and axial rotation for the back, and flexion/extension
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and abduction/adduction for the shoulders. Although RULA is the most employed er-
gonomic method, it oversimplifies the assessment for planes other than the sagittal. In turn,
LUBA [18] appeared as the most suitable for this purpose, by providing angular thresholds
for several upper-body joint motions, including the ones mentioned, and giving each an
ergonomic score.

The finite-state machine for the LUBA-based ergonomic assessment is detailed in
Table 4.

Table 4. Finite-state machine for the ergonomic assessment based on the LUBA method.

Joint Joint Motion Angle Range (◦) Score

Back

Flexion (+)/extension (−)

α f e ≤ −30 15
−30 < α f e ≤ -20 8
−20 < α f e ≤ -10 4
−10 < α f e ≤ 30 1
30 < α f e ≤ 60 3
60 < α f e ≤ 90 6

α f e > 90 12

Lateral bending

|αlb| ≤ 10 1
10 < |αlb| ≤ 20 4
20 < |αlb| ≤ 30 9

|αlb| > 30 13

Axial rotation
|αar| ≤ 20 1

20 < |αar| ≤ 60 3
|αar| > 60 10

Shoulder

Flexion (+)/extension (−)

β f e ≤ −60 10
−60 < β f e ≤ −45 6
−45 < β f e ≤ −20 3
−20 < β f e ≤ 45 1
45 < β f e ≤ 90 3
90 < β f e ≤ 150 6

β f e > 150 11

Abduction (+)/adduction (−)

βaa ≤ −30 8
−30 < βaa ≤ −10 2
−10 < βaa ≤ 30 1
30 < βaa ≤ 90 3

βaa > 90 7

Elbow Flexion (+)/extension (−)
γ f e ≤ 45 1

45 < γ f e ≤ 120 3
γ f e > 120 5

To provide a broader assessment that represents the overall ergonomic risk of the
task, besides each joint separately, the entire upper-body posture was also quantified,
with a global LUBA score that is the sum of each joint motion score when it is above 1 (the
minimum score), as expressed by Equation (1), as follows:

G =
n

∑
i=1

mi

∑
j=1

Sij (1)

where G is the global LUBA score, i is the joint (from Table 4), j the joint motion (also from
Table 4), n the number of joints involved (5), mj the number of joint motions studied in the
joint i (three motions for the back, two for each shoulder, and one for each elbow), and Sij

the corresponding LUBA score. The global score takes into account only one of the arms,
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and, since both are used in the considered activities, in this study, the global assessment
was performed using the arm with the highest sum of scores for the shoulder and elbow at
each time step. Therefore, the applied scale varies between 0 and 62.

Following the LUBA guidelines, four posture categories regarding the need for correc-
tive actions were defined, according to the calculated G score, as Table 5 clarifies.

Table 5. Posture categories regarding the need for corrective actions defined by the LUBA method.

Category Global Score Corrective Actions
I G ≤ 5 Not needed

II 5 < G ≤ 10 In the next regular check (immediate intervention
not needed)

III 10 < G ≤ 15 Redesigning workplaces or working methods soon
IV G > 15 Immediate

Note: For clarity, the colours green, yellow, orange, and red are associated with each category, from I to IV,
in ascending order.

3.3. Joint Wear Assessment

Despite the above-mentioned ergonomic scores providing an idea of the current risk,
they were primarily conceived for a discrete analysis. Indeed, one of the shortcomings
of typical ergonomic assessments is the disregard for the cumulative effect of previous
ergonomic risks, as if the past had no impact on the true ergonomic risk at each time step.
To address this, in this work, the kinematic wear index, introduced in [35] and inspired
by the RC circuit-like behaviour of muscle fatigue, is used to enable a more complete
and realistic assessment. Although this model neglects the effect of overloading forces,
it remembers the time previously spent in hazardous postures as well as the repetitions.
The kinematic wear index reflects not only the current postural risk but also the previous
ones, accumulating all these ergonomic scores, for each joint and motion type, when the
subject is in hazardous postures (wear phase)—representing the accumulation of stress in
the joints—and decreasing when in a neutral posture (recovery phase). It varies between 0
(the ergonomically ideal value) and 1 (the worst). In the present work, different than [35],
each type of joint motion is assessed—separately, since each joint motion is considered
independent—and its kinematic wear increases when the associated ergonomic score in
the current moment is above the minimum (wear phase), as expressed by Equation (2),
as follows:

Vij(t) = 1 − (1 − Vij(t0))e
−
∫ t

0
Sij(q(τ))

Cij
dτ

(2)

where Vij(t) ∈ [0, 1] represents the kinematic wear index of the joint i for the motion j
(from Table 4) at instant t; Vij(t0) is the kinematic wear index at the instant t0, where the
ergonomic score level ceased to be the minimum; q(τ) is the joint configuration; Sij(q(τ)) is
the ergonomic score associated with that angle, in this case, according to LUBA; and Cij

is the endurance capacity for that joint motion. On the other hand, when the joint is at
the minimum risk level, it is recovering, hence, the kinematic wear index, Vij, decreases as
defined in Equation (3), as follows:

Vij(t) = Vij(t0)e
−

rij
Cij

t
(3)

where Vij(t0) is the kinematic wear index at the instant t0, where the ergonomic score
became the minimum; and rij is the recovery rate associated with that joint motion.

The endurance capacity, Cij, is given by inverting Equation (2), considering Vij(t0) = 0,
Vij(t) = Vmax = 0.993 (which corresponds to the kinematic wear at the time step of five time
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constants, when a capacitor in an RC circuit is typically considered to be fully charged);
the average LUBA score Sij,avg of the motion j of joint i (calculated between the minimum
and the maximum of the scale); and a Tmax = 240 s (corresponding to the time until a
subject applying a low force feels physical discomfort, in a static configuration, as stated
by [19]). Differently from [35], in our work, the endurance capacity was defined for each
joint motion individually, as follows:

Cij = −Sij,avg
Tmax

ln (1 − Vmax)
(4)

Regarding the recovery rate, rij, which is also specific for each joint motion, Equation (5)
is obtained by inverting Equation (3) in order to match the recovery time with the wear
time, i.e., a decrease of five time constants, starting at Vij(t0) = Vmax, as follows:

rij = −
Cij

Tmax
ln

(
1 − Vmax

Vmax

)
(5)

Figure 3 shows how the index changes over time, during the wear and recovery phases,
respectively.

Figure 3. Behaviour of the joint kinematic wear index, Vij, calculated using Equation (2) during the
wear phase and using Equation (3) during the recovery phase.

With this index, new risk levels considering the cumulative effects of postural risk
can be defined. In this manuscript, two levels were considered, using a kinematic wear
index threshold of 0.7, as established by [44] for a muscle fatigue model. For values below
that, the risk is considered minimal, and the subject does not need to change posture
yet. For values of kinematic wear index above 0.7, the risk is high, corresponding to a
high accumulation of non-recommended postures, which means that the subject should
change to a neutral posture. The percentage of time above the threshold, which reflects
how long the accumulated posture hazard exceeded the recommendation, was calculated.
This kinematic wear model could also be integrated into a real-time biofeedback strategy,
in which the user surpassing the aforementioned threshold would trigger biofeedback cues,
namely, haptic cues.

3.4. Report for Biofeedback

The solutions presented by the framework ErgoReport for an automated and complete
posture assessment were conceived to meet the ergonomists’ needs. Hence, an unstructured
interview with two ergonomists helped in understanding the main issues they face when
conducting a postural risk assessment, which are listed in Table 6. The recognised postures
and the computed ergonomic metrics enabled the generation of this report, in which the
ergonomic score is associated with the postures that generated it. This is, to the best of
our knowledge, the first approach to, simultaneously, automatically identify the type of
posture being performed with DL and assign a quantitative score to the user’s ergonomics.
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The computed information is presented through several representations in the ErgoReport,
as follows:

• The visualisation over time of the ergonomic risk as well as the kinematic wear index
for each joint (only using LUBA), to allow us to understand how each ergonomic score
contributes to joint stress.

• The visualisation over time in a single plot of the sequences of ergonomic scores
and performed postures. This acts like a playback of the worker’s shift and can be
particularly useful when the ergonomic scores are very high within specific time
intervals, allowing for a detailed examination of the sequence of postures over time.

• A summary of the work shift presenting the time for which each posture was held
and the average ergonomic score associated with each posture class. This enables a
straightforward visualisation of the most hazardous posture classes, which require
attention. It is relevant to show these two aspects jointly, as certain postures may have
a lower average risk than others but may represent a larger time percentage. The report
also mentions the joint motions that surpassed the kinematic wear threshold of 0.7 for
more time. By computing these ergonomic metrics for subjects individually and for all
subjects together, the managers become capable of assessing whether the task itself is
ergonomically inappropriate or if the problem lies in the postures of certain workers.

Table 6. Typical ergonomists’ difficulties in postural risk assessment and the corresponding ErgoRe-
port’s solution to address it

Ergonomists’ Difficulty Framework’s Solution

Visualisation of the ergonomic risk along
the work shift

Plot with the evolution of the LUBA scores
of the various joint motions and the

corresponding kinematic wear index over
time, using colours to highlight when the

accumulation of joint stress is below
(green) or above (red) the recommended

maximum

Realising the sequences of postures
performed by the workers throughout

the shift

Plot with the sequences of the ergonomic
scores and the performed postures over

time, coloured with green, yellow, orange,
and red, for each of the LUBA posture

categories to indicate corrective actions,
facilitating the interpretation of the

ergonomic risk; similar colours were
assigned to each of the AWBA scores

Realising which postures led to the highest
ergonomic risks along the work shift

Realising which postures led to the
highest ergonomic risks overall

Graph of the average ergonomic score
associated with each posture class; and

indication of the joint motions that
surpassed the recommended maximum
kinematic wear for longer cumulative

durations

Knowing the time each posture was held

Pie chart with the time per posture—on
average, when considering multiple

subjects or multiple recordings from the
same subjects
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4. Materials and Methods
Data acquisition was conducted inside a laboratory in the School of Engineering of the

University of Minho, in alignment with the ethical procedures of the Ethics Committee in
Life and Health Sciences (CEICVS 147/2021), following the standard set by the declaration
of Helsinki and the Oviedo Convention.

4.1. Participants

A total of 13 subjects (9 males and 4 females; age: 24.3 ± 1.9 years old) from the
academic community of the University of Minho accepted to participate in the data ac-
quisition. Very physically distinct participants (body mass: 67.0 ± 11.7 kg; body height:
172.2 ± 11.4 cm; hip height: 95.8 ± 8.0 cm; arm span: 170.4 ± 12.6 cm) were selected to
obtain a dataset that considers the possible variability associated with the physical stature
in posture execution. Also, the subjects were selected based on the following inclusion
criteria: healthy, without clinical history or evidence of motor injuries.

4.2. Hardware Setup

The participants were instrumented with two full-body inertial MoCap systems from
Xsens MTw Awinda (Movella Inc., Henderson, NV, USA), a state-of-the-art system. The first
one was connected to software Xsens MT Manager 2022.0 (Movella Inc., Henderson, NV,
USA), which provided the input for the posture recognition module (raw acceleration
and angular velocity). The second system was connected to proprietary software Xsens
MVN Analyze 2021.0 (Movella Inc., Henderson, NV, USA) to provide the joint angles to
the ergonomic assessment module. Only seven body locations—sternum, right shoulder,
right forearm, left forearm, left upper leg, right lower leg, and left foot—were selected,
as these were demonstrated to be the most statistically relevant in our previous study [37].
The two sets of IMUs were stacked with tape. The second one was placed on the bottom,
closer to the body. The sensors were placed, following the manufacturer’s guidelines
(https://base.xsens.com/s/article/Sensor-Placement-in-Xsens-Awinda-System, accessed
on 13 March 2023), over bony landmarks and tightened with straps. The sampling fre-
quency was set to 20 Hz, respecting the Nyquist theorem, since, in our previous work [37],
we verified that the signals’ frequencies in the spectrum lay below 5 Hz. The literature also
reports the human movement frequencies to be mostly between 0.3 and 3.5 Hz, with a max-
imum of 10 Hz [45]. Moreover, 20 Hz was shown to be optimal for activity recognition [46].

4.3. Protocol

After the participants’ instrumentation, their anthropometric data were collected to
adjust the biomechanical model from Xsens MVN Analyze software for them. The ground
truth sensory system was calibrated in N-pose (neutral posture), performing the necessary
repetitions until achieving good calibration quality. The other system’s IMUs were turned
on after that, to avoid interference.

The participants were instructed to perform two task circuits that replicated real
worksites in the agriculture and construction sectors. The protocol was explained without
imposing a way to perform each posture. Moreover, participants were told to carry out
the tasks at their own pace, since they were not actual workers, and fixed time constraints
could induce mental stress.

One of the tasks replicated an agriculture task—harvesting and transporting crops.
The subjects were to pick a total of 12 Christmas baubles (simulating fruits) from an artificial
tree at a height of 90 to 180 cm and put them into a bucket on the floor, one by one, at three
sites during each trial, transporting the bucket between each of the harvest sites, located
2.5 m apart. A frame of one trial is presented in Figure 4a.

https://base.xsens.com/s/article/Sensor-Placement-in-Xsens-Awinda-System
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A construction task circuit was also performed. Mimicking bricklaying, it consisted of
carrying a bucket with six milk cartons (simulating bricks) for 4.5 m, from a starting point
to the work site, located one subject-foot from a 90-cm-high workbench, on top of which
the subject should place a bucket, and a sheet of paper acted as a mortar tray. The subjects
had to stack the milk cartons in two vertical layers to simulate the construction of a wall.
With a trowel, the subject simulated spreading mortar on the floor before starting a new
layer and on the sides of each milk carton, as shown in Figure 4b.

(a) (b)

Figure 4. Experimental setup for the (a) harvesting (agriculture) and (b) bricklaying (construc-
tion) tasks.

4.4. Framework Implementation

The whole pipeline was implemented using Pytorch and Pytorch Lightning libraries
in a Python environment. We used a personal laptop with the following specifications:
GPU: 1× Nvidia GeForce GTX 1050; CPU: Intel(R) Core(TM) i7-7700HQ @ 2.80GHz (4 core,
8 threads); RAM: 16 GB.

The flowchart of the proposed framework is depicted in Figure A1 (Appendix A).
Although the proposal is to receive the data one sample at a time (real-time) to allow the
future integration of haptic biofeedback cues, which is within the scope of this manuscript,
the modules were executed offline, and the data were loaded and processed all together.
Note that, with the LUBA ergonomic assessment, the posture class is only needed for
generating the report, while, with AWBA, it is also needed for calculating the risk. Both
the posture recognition and the ergonomic assessment modules use the data at 20 Hz, but,
while the former treats the data in time windows 1 s in size (no overlap), the ergonomic
assessment metrics are calculated for each sample.

Figure A2 (in Appendix A) shows one of the pages of the developed framework’s GUI,
where the user can upload the data acquired by the wearable sensors and select the type of
analysis from the ones mentioned in Section 3.4.
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4.5. Data Preprocessing

The collected data underwent the same preprocessing steps for the DL model develop-
ment, as described in [37].

The raw acceleration and angular velocity were reoriented so that all sensors share the
same orientation, with all axes aligned with a reference frame. The original orientation of
each IMU was assumed to be the same for all subjects. This is considered reasonable since
their instrumentation was verified at the beginning of each trial, and whenever a slippage
occurred, the trial was stopped, discarded, and repeated.

To minimise bias in the neural network for posture recognition, as different sensors
may have distinct ranges and sensitivities [47], MinMax normalisation between 0 and 1
was applied to the data. The data were normalised feature-wise using the extreme values of
the training set, as the DL model was also trained with data normalised within this range.

4.6. Report Usability Assessment

To assess ErgoReport’s usefulness and usability, ergonomists were invited for an online
interview where we presented the system’s goal and the use cases. A demonstration of
how to use the GUI, with some example trials, was conducted.

At the end, the ergonomists were asked to fill out a 7-point Likert scale questionnaire
(1: strongly disagree; 7: strongly agree). This custom questionnaire addresses three main
aspects of the report—its usefulness, ease of use, and usability—and was adapted from the
following three different questionnaires: Perceived Usefulness and Ease of Use (PUEU) [48],
Interface Usability Instrument (INUIT) [49], and Software Usability Measurement Inventory
(SUMI) [50]. With this custom questionnaire, new specific directions for improvement can
be pointed out by ergonomists, who are end users.

5. Results
5.1. Joint Kinematic Wear

The kinematic wear index was computed for nine joint motions. Figure 5 presents one
of the ErgoReport’s graphs, with the kinematic wear of one of the most concerning joint
motions, the back flexion/extension. Three different cases are exposed, referring to three
trials of construction tasks from the same subject, one using stooping posture for bricklaying
(Figure 5a), and the others using squatting (Figure 5b) and kneeling (Figure 5c), starting
with zero as the initial conditions. These figures reflect the temporal dynamics of the tasks
performed. In the three cases, as represented in frame B in Figure 5c, the carrying of the
bucket took place until t ≈ 20 s, when the subject arrived at the bench (frame C). This did
not require any back flexion; thus, the back kinematic wear index did not increase much. It
only increased when grabbing the bucket from the ground in the beginning, shown in frame
A. Still, this index remained negligible until t ≈ 25 s. After that, risky postures started
to be frequently adopted, first when the subject reached the mortar in the tray (frame D),
and, then, when he bent to the floor to spread it, achieving ergonomic scores above the
minimum in those instants, which translated into an increase in the back kinematic wear
index. At t ≈ 35 s in the trial of Figure 5c, when the subject got up to reach a milk carton
(frame E), he straightened his back, which led the LUBA score to reach the minimum (1)
and, consequently, induced a decrease (recovery) in the back kinematic wear regarding
flexion/extension motion. Then, the participant lowered his body (frame F) for the kneeling
motion, to spread the mortar on the milk cartons and lay them on the “wall” (as shown
in frames G and H). It required considerable back flexion, which, for kneeling, typically
leads to a LUBA score of 3 or 6. With this, the joint kinematic wear escalated every time
the subject had to place the simulated brick on the “wall” and decreased every time the
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participant got up to pick another carton—during this time, the subject’s back was able
to recover.

Note that, in Figure 5a, during the last fifth (after t = 90 s) of the trial where stooping
was used for bricklaying, the back kinematic wear was above the defined threshold of 0.7
for the recommended maximum accumulation of joint stress. Other joints also surpassed
that value, for instance, the shoulders, regarding flexion/extension. This resulted from
the accumulation of joint stress when the subjects were in the stooping posture, where the
shoulder flexion angle was above 90◦. Accordingly, back and shoulder flexion/extension
are the joint motions that should require more attention from the workers.

(a)

(b)

(c)

Figure 5. Back flexion/extension LUBA scores and kinematic wear during the circuit based on the
construction task, adopting (a) stooping, (b) squatting, or (c) kneeling postures for bricklaying. Red and
green stripes highlight, respectively, the wear and recovery phases. The red dashed line indicates the
kinematic wear threshold of 0.7, suggested by [44]. To illustrate the trials, some frames (A to H) from
the latter example’s recording are presented and identified in the plot.

5.2. Association Between Ergonomic Risk and Postures

The report associates the ergonomic assessment with the postures recognised by the
framework. In a continuous way over time, Figure 6 shows that the highest LUBA scores
occurred in the moments of stooping. Figure 6b shows, e.g., LUBA score peaks during
stooping repetitions, which correspond to the act of placing the milk cartons on the floor
and spreading mortar on them, where the subjects have to bend the back, almost always
corresponding to the most concerning LUBA category (IV) and achieving a maximum
global score of 43 out of 62 for that subject specifically. In comparison, squatting postures in
Figure 6a were associated more often with category II (global score between 5 and 10).
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(a)

(b)

Figure 6. Global LUBA scores (on a scale from 0 to 62) and postures adopted during (a) an agriculture
and (b) a construction trial. The background colours refer to the categories regarding the need for
corrective actions, defined in Table 5.

Figure 7 displays an overview of the tasks carried out, encompassing all trials from all
subjects, for the agriculture and construction task circuits separately. It transmits informa-
tion regarding the average percentage of time spent at each posture, as well as the average
ergonomic score (here, the global LUBA score) for each posture, and the three joint motions
that breached the kinematic wear threshold for more time. Lifting/lowering was the posture
that was held for a longer period of time, since the protocol, primarily designed to train the
DL models, included a huge number of transitions. Both harvesting and bricklaying tasks
were associated with a considerable global ergonomic score. For harvesting, the overall
score was 8, which, according to LUBA guidelines, would mean no need for immediate
corrective actions. For bricklaying, the overall score was 10, meaning there is a need for
corrective actions soon. Only standing (neutral posture), carrying, and others were free of
risk. Stooping was the posture with the highest risk score in both task circuits.

(a)

Figure 7. Cont.
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(b)

Figure 7. Summary report with the average percentage of time spent at each posture, averages
of the mean LUBA scores (on a scale from 0 to 62) for each posture and the 3 joint motions that
breached the kinematic wear threshold of 0.7 for the longest time, considering all (a) agriculture and
(b) construction trials. Note that the time percentages do not have to add up to 100%, as these are
the averages of all trials. The colours refer to the categories regarding the need for corrective actions,
defined in Table 5.

Using the ergonomic method AWBA instead, several differences become noticeable
in Figure 8, which presents the ergonomic assessment for the same trials from Figure 6.
With AWBA, squatting posture is associated with a higher risk than stooping, contrary to
what was verified with LUBA.

Figure 9 presents the summary report considering the AWBA-based ergonomic as-
sessment. By comparing with Figure 7, it can be seen that AWBA generally rates subjects’
postures as riskier than LUBA, since ALLA assigns the risk level 1 only to sitting postures,
which were not addressed in this study. Only standing was considered to have a risk below
3. In agreement with Figure 8, the squatting posture was assigned the highest average risk.

(a)

(b)

Figure 8. AWBA risk levels (on a scale from 1 to 4) and postures adopted during (a) an agriculture
and (b) a construction trial.
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(a)

(b)

Figure 9. Summary report with the average percentage of time spent at each posture and averages of
the mean AWBA risk levels (on a scale from 1 to 4) for each posture, considering all (a) agriculture
and (b) construction trials. Note that the time percentages do not have to add up to 100%, as these
are the averages of all trials. The colours refer to the risk levels, as defined in Table 1.

5.3. Report Usability and Usefulness

Seven ergonomists were invited to participate in the report usability study. Of these,
five agreed to participate. However, one was subsequently unable to participate, and an-
other one was interviewed but was not able to further fill out the questionnaire. Hence,
four ergonomists participated in the study but only three completed the questionnaire.

According to the results of the custom questionnaire, in Table 7, the ergonomists agreed
that the postural ergonomic report would be useful (Q6) in increasing their productivity (Q1,
Q3, and Q5) and performance (Q2, Q4) and it would be easy to use (Q7–Q9). They found
the desired information (Q15) and were able to easily understand it (Q10), although some
suggested that other options could be added, such as the display of the joint angles over
time. Some of them considered that the presentation of the information and the layout
were a little confusing (Q11 and Q12).
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Table 7. Results of the 7-point Likert scale questionnaire for ErgoReport’s usability assessment.

Adapted from Category Question Mean STD

PUEU [48]

Usefulness

1. Using the system in my job would enable me to perform the
postural ergonomic assessment more quickly. 6.00 0.82

2.
Using the system would improve my job performance, by pro-
viding more information and types of postural ergonomic assess-
ment.

6.33 0.94

3. Using the system in my job would increase my productivity,
since it automates the postural ergonomic assessment. 5.67 0.94

4. Using the system would enhance my effectiveness on the job,
by providing more information about the workers’ postures. 6.00 0.82

5. Using the system would make it easier to do my job. 5.67 1.25
6. I would find the system useful in my job. 6.33 0.47

Ease of use
7. Learning to perform the postural ergonomic assessment with the

system would be easy for me. 5.33 1.25

8. It would be easy for me to become skilful at using the system. 5.67 0.94
9. I would find the system easy to use 5.67 0.94

INUIT [49]
Usability

10. I could easily understand the provided information. 5.67 0.94
11. I was not confused using the interface/graphical information. 4.67 0.47

12. I was not distracted by elements of the interface/graphical infor-
mation. 4.00 0.82

13. Typography and layout added to readability. 5.00 0.82

14. The information presented was adequate for the space in the
interface. 5.67 0.47

15. The information I desired was easily reachable. 5.67 0.94

SUMI [50] 16. I would recommend this software to my colleagues. 6.00 0.82
17. I would like to use this software every day. 5.67 0.94

STD: standard deviation.

6. Discussion
6.1. How Can the Accumulation of Postural Ergonomics Risk over Time Be Quantified?

The joint kinematic wear index allowed representing the accumulation of the er-
gonomic scores. This model distinguishes wear phases, where joint stress accumulates due
to the ergonomic score above the ideal, from recovery phases, where the joint is not at risk.
Otherwise, the LUBA ergonomic score, as represented in Figures 6 and 7, does not consider
the impact of maintaining hazardous postures over time (nor the AWBA risk). However,
as can be seen in Figure 7 by the time spent above the joint kinematic wear index threshold
of 0.7, in about only 2 min, the back and shoulder joints in the flexion/extension motions ac-
cumulated a lot of stress and were not far from that index maximum (on average), with the
back spending 3.3% of the time above that limit for construction task circuits.

The joint kinematic wear model also discerns the impact of each ergonomic risk level.
For instance, the trial where stooping was the posture chosen for bricklaying was the one
that required the greatest back flexion, and, consequently, higher scores (12) were reached,
according to LUBA. This translated into higher values of the back kinematic wear for the
flexion/extension motion (Figure 5a). It can be seen that, in the time intervals where the
LUBA score was 12, the index slope was steeper, meaning that the accumulation of stress
in the joint was faster than when the LUBA score was 6 or 3—this difference is visible
at t = 70 s in Figure 5a. This is corroborated by Equation (2), which indicates that the
riskier the joint angle values, the faster the kinematic wear increases. Regarding recovery
(minimum LUBA score), it can be seen in any of the figures that the higher the initial
kinematic wear (i.e., the more accumulated posture hazard), the steeper the index descent,
which is supported by Equation (3). Particularly, it can be seen in Figure 5a that the recovery
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that begins at t = 108 s with a kinematic wear index equal to 0.8 is much faster than the one
that begins at t = 33 s with the index below 0.2.

These results point out the suitability of this model to describe joint usage over
time. Still, although this model is inspired by the charge–discharge behaviour of muscle
fatigue, the proposed approach has limitations concerning the provided information and
its theoretical validation, as stated by [35]. For instance, considering the trials’ short
duration (about 2 min) compared with a typical 8-hour work shift, the rapid exceeding
of the threshold suggests that the chosen value—following [44]—may not be suitable.
Furthermore, this threshold could be adapted according to the posture being performed,
as some work tasks may require postures that entail a higher ergonomic risk. Hence, further
investigation is needed.

6.2. How Can Ergonomic Risk Be Associated with the Specific Postures That Lead to It?

ErgoReport presented an association between ergonomic scores and postures. It
showed, e.g., that stooping was the posture class with the highest risk score in both task cir-
cuits. This confirms what Figures 5 and 6 have also indicated— stooping’s great back flexion
is frequently associated with the highest score for that joint motion. In turn, the equivalent
postures of squatting and kneeling were associated with much lower scores, especially the
kneeling (performed only for the construction task circuit), suggesting that these could be a
safer alternative to stooping for the same tasks.

Regarding the differences in the ergonomic scores between LUBA and AWBA, for in-
stance, the highest score for squatting with the latter method, the reason is the consideration
of the legs in the AWBA-based ergonomic assessment (Table 2). Although stooping is
typically associated with a more prominent back angle than squatting, the knee angle is
ergonomically less risky for stooping, being usually at risk level 2. Although this may sound
odd, the truth is that most subjects perceived stooping as less demanding; thus, AWBA
reflects better subject perception, which makes sense as it was conceived under similar
considerations [39]. However, AWBA does not seem to be suitable for dynamic tasks,
as evinced by the risk levels during carrying, where the ALLA level for the legs is constantly
changing while the subject walks, leading to an oscillating pattern. Also, the minimal risk
level assigned within the scope of this study was 2, as the AWBA considers that level 1
is only assigned to sitting postures, which were not present in the experimental protocol.
Thus, modifications to this ergonomic method would be beneficial.

6.3. Can an Ergonomic Assessment Tool Be Simultaneously Easy to Use and Comprehensive for
End Users?

The proposed ergonomic tool was assessed by ergonomists. Regarding usefulness,
they recognised that this framework would expedite their work and allow them to ob-
tain detailed and objective data for the posture assessment. The interviewed ergonomists
considered that the interface would be easy to use after a quick explanation of its function-
ing. Concerning usability, there is still room for improvement. Some of the ergonomists
considered that visualising the ergonomic risk and the joint kinematic wear index over
time in the same graph (Figure 5) was slightly confusing at the beginning, although it
became more straightforward after the authors’ explanation. Similarly, two ergonomists
considered that the visualisation of the sequence of postures and their ergonomic risks over
time (Figures 6 and 8) was a little confusing, suggesting that it would be more intuitive if
the posture class was displayed only when hovering the mouse over a certain time step.
On the other hand, they considered that the graphs displayed in Figures 7 and 9 are an
important feature of this tool for providing a straightforward summary of the ergonomic
performance, which they can be further investigated by visualising the graphs with the
assessment over time. In fact, typical difficulties experienced by ergonomists are realising
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the sequences of postures performed by the workers, the time each one was held and which
ones lead to the highest ergonomic risks throughout the shift, as we collected in our first
survey (Table 6). Moreover, they considered that the colours expedited the association
with risk levels. An ergonomist pointed out that the designations of the posture classes
in the graphs could be replaced by representative images to expedite the association with
each one.

7. Conclusions and Future Work
Motivated by the enormous impact of WRMSDs, this manuscript addressed one of

their most relevant causes—hazardous postures. Focusing on the two activity sectors with
the highest WRMSDs’ prevalence, we developed a valuable tool for providing a more
targeted analysis of the underlying causes of high ergonomic risk and demonstrating
the applicability of DL-based posture recognition to complement a postural ergonomic
assessment. With ergonomists’ validation, within this framework, two ergonomic methods
were automated based on inertial data as follows: the agriculture-specific AWBA, to assess
the back, shoulders, elbows, and knees in the sagittal plane; and the standard ergonomic
method LUBA, to assess the upper-body joints in the sagittal, coronal, and axial planes.
In order to take into account previous postures’ impact on joint stress, a kinematic wear
index was computed for the various joint motions. With regard to this, two situations were
distinguished as follows: when the LUBA score is not the lowest, the joint kinematic wear
index increases—and its rate of increase is greater when the risk is greater—representing
the accumulation of posture hazards over time; contrariwise, for the minimum global
score, the joint recovers and the kinematic wear index decreases. In a GUI, this index was
plotted over time to show its evolution, and for each time step, the computed ergonomic
score was associated with the posture class (recognised by the DL model), also enabling
the assessment of the average risk of each posture and the overall risk of the entire tasks,
with graphs. With these data, the user can understand which posture classes are the most
hazardous. This GUI was evaluated by ergonomists, who considered it useful in expediting
their work and easy to use. Concurrently, they provided relevant feedback towards an
effective application of such a tool.

However, this study also has some limitations that need to be addressed in the future.
The presented system was validated with volunteers simulating agriculture and construc-
tion activities, but an experimental protocol with workers in their real workplaces should
be carried out. The kinematic wear index inspired by muscle fatigue behaviour should be
validated with EMG, by associating the monitored joints with the corresponding muscles.
A user-specific risk assessment is intended to be performed, considering the psychoso-
cial and individual factors which most influence WRMSDs’ development. The drafted
biofeedback strategy should be implemented in real time with vibrotactile cues, which
could be triggered considering the accumulated joint stress, by using a kinematic wear
threshold. Regarding the visual report, ergonomists’ suggestions to improve comprehen-
sibility will be followed. The commercial MoCap system used is intended to be replaced
by the team’s low-cost upper-body smart garment, Ergowear [51], implementing sensor
fusion algorithms to estimate the joint angles.
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Appendix A

Figure A1. Flowchart of the proposed holistic ergonomic assessment framework.
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Figure A2. GUI of the developed framework, showing the page with the options to upload the
acquired data and perform the posture assessment.
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