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1. AI in Industry
Industrial artificial intelligence is rapidly evolving, driven by an unprecedented explo-

sion of diverse data modalities. In today’s smart factories and Industry 4.0 environments,
vast streams of data—from machine logs and sensor readings to high-resolution imagery
and acoustic signals—are fueling a new wave of data-centric innovation [1]. Organizations
now collect heterogeneous datasets—ranging from natural language documents [2] and
medical images [3] to sensor readings [4] and satellite imagery—to monitor, optimize, and
transform industrial processes on an unprecedented scale.

This surge in data availability has sparked a fundamental shift toward a data-centric
AI paradigm, where enhancing data quality and coverage becomes the primary driver
of performance Zha et al. [5]. Unlike traditional model-centric approaches, data-centric
strategies focus on meticulously curating multi-modal datasets, refining annotations, and
ensuring that the data reflect the complexity of real-world industrial environments, thereby
bolstering model learning.

Recent breakthroughs in deep learning are further accelerated by the rich, multi-
sensor data now accessible in industrial settings—spanning high-resolution RGB images,
LiDAR scans, hyperspectral imagery, and audio streams captured from various production
sources Paheding et al. [6]. As a result, modern AI systems are beginning to leverage this
wealth of multi-modal information to achieve superior generalization and even exhibit
emergent capabilities once thought beyond reach. For example, large-scale multimodal
models that integrate vision and language are now capable of generating detailed narratives
about production processes or solving complex operational tasks without explicit instruc-
tion Baltrušaitis et al. [7]. In parallel, advancements in natural language processing (NLP),
driven by scaling both models and data in large language models (LLMs), are unlocking
novel behaviors, such as few-shot reasoning and chain-of-thought problem solving, which
are increasingly relevant to industrial applications Xu et al. [8]. Contribution 1 introduces
an innovative intelligent sensor software that combines robust machine learning with
interactive heat map visualization to optimize resistance spot welding for steel reinforce-
ment. Contribution 2 presents an artificial neural network (ANN) model that accurately
predicts process performance. Contribution 3 introduces an innovative U-shaped network
that integrates a Space-To-Depth module and a refined attention mechanism to effectively
address class imbalance and achieve precise segmentation of micro and fine scratch defects
on metal surfaces. These developments highlight how the diversity and volume of data are
transforming AI techniques, establishing a robust foundation for the impactful deployment
of industrial artificial intelligence across modern manufacturing and beyond.
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The convergence of powerful AI methods with Industry 4.0 is driving transformative
changes across a wide range of application domains Rai et al. [9]. Computer vision and NLP
algorithms, in particular, are now deeply embedded in sectors such as healthcare Hirsch
et al. [10], manufacturing Ahmad and Rahimi [11], and cybersecurity Zolanvari et al. [12].
In healthcare, deep learning models can analyze medical images (e.g., radiographs, MRI
scans, pathology slides) with accuracy approaching or even exceeding expert human per-
formance Shen et al. [13], thus aiding in diagnostics and treatment planning. Likewise,
NLP techniques are used to mine clinical texts and biomedical literature Juhn and Liu [14],
enabling predictive analytics and decision support in clinical workflows. These develop-
ments reflect a broader trend in which deep learning has fundamentally reshaped how we
tackle tasks in vision, language, and healthcare analytics, among other fields (Paheding
et al. [6], Abramson et al. [15]).

1.1. AI in Robotic

In recent years, the integration of artificial intelligence with robotics has led to trans-
formative advancements in robotic perception, planning, decision making, and control Du
and Yu [16], Sünderhauf et al. [17]. In medical applications, for instance, the fusion of
imaging, localization, and magnetic actuation systems has enabled highly precise in vivo
operations with miniature robots Aziz et al. [18]. In industrial and service contexts, visual
and multimodal sensor fusion have significantly enhanced the robustness of grasping,
navigation, and human–robot collaboration tasks Mao et al. [19]. Moreover, inspired by
insights from neuroscience, brain-inspired robotics is exploring novel paradigms that emu-
late biological cognitive processes, thereby facilitating end-to-end autonomous learning
and real-time adaptive control Qiao et al. [20]. These developments collectively represent a
shift away from traditional, hand-coded control schemes toward intelligent systems that
are capable of operating in complex, unstructured, and dynamic environments Hayes-Roth
and Thorndyke [21]. Contribution 4 offers a comprehensive narrative review that elucidates
machine learning strategies for the development of remotely monitored central nervous
system biomarkers using wearable sensors. Contribution 5 presents an innovative task
selection and allocation scheme for mobile crowdsensing that integrates Lyapunov opti-
mization with a Double Deep Q-Network framework to dynamically stabilize task queues
and optimize resource allocation under constrained conditions. Contribution 6 exempli-
fies the cutting-edge integration of multi-view imaging and advanced keypoint detection
techniques to enhance robot arm monitoring in intelligent industrial environments.

1.2. AI in Medicine

The integration of artificial intelligence (AI) into healthcare within the framework
of Industry 4.0 has revolutionized traditional medical practices, enabling data-driven
decision making and personalized patient care. By leveraging advanced technologies such
as machine learning and predictive analytics, AI facilitates the interpretation of complex
medical data, including imaging diagnostics, where it enhances accuracy in identifying
patterns in X-rays and MRI scans. This transformation aligns with the vision of Health 4.0,
which emphasizes decentralized, AI-enabled home healthcare services, reducing reliance
on conventional hospital-centric models. However, scaling AI applications in medical
device manufacturing and clinical workflows remains challenging due to interoperability
issues, regulatory hurdles, and the need for robust data governance frameworks. These
challenges highlight the critical role of Industry 4.0 technologies in optimizing healthcare
systems through digitization, automation, and real-time data exploitation.

The integration of artificial intelligence (AI) into healthcare within the framework of
Industry 4.0 has revolutionized traditional medical practices, enabling data-driven decision
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making and personalized patient care Topol [22]. By leveraging advanced technologies,
such as machine learning and predictive analytics, AI facilitates the interpretation of com-
plex medical data, including imaging diagnostics, where it enhances accuracy in identifying
patterns in X-rays and MRI scans Esteva et al. [23]. This transformation aligns with the
vision of Health 4.0, which emphasizes decentralized, AI-enabled home healthcare services,
reducing reliance on conventional hospital-centric models Keesara et al. [24]. However,
scaling AI applications in medical device manufacturing and clinical workflows remains
challenging due to interoperability issues, regulatory hurdles, and the need for robust
data governance frameworks Rajkomar et al. [25]. Contribution 7 exemplifies a rigorous
methodological advancement by integrating multi-scale feature extraction and channel
selection to significantly enhance EEG-based Parkinson’s disease classification performance.
Contribution 8 highlights the growing role of machine learning in oncology, with a focus
on medical image analysis, treatment planning, and patient prognosis. Contribution 9
leverages a novel cross-scale attention mechanism alongside a progressive edge refinement
module to enhance retinal vessel segmentation performance. These challenges highlight
the critical role of Industry 4.0 technologies in optimizing healthcare systems through
digitization, automation, and real-time data exploitation.

1.3. AI in Blockchain

In parallel, blockchain technology is intersecting with AI to enhance trust, security,
and data integrity in Industry 4.0 applications Rahman et al. [26]. Blockchain (distributed
ledger) systems provide tamper-resistant record keeping and decentralized data gover-
nance, which complement AI’s data-driven decision making. The amalgamation of AI and
blockchain is recognized as a disruptive force of the Fourth Industrial Revolution, holding
tremendous potential to create new business models and ecosystems Kumar et al. [27]. For
instance, in industrial supply chains, blockchain can verify the provenance and authenticity
of goods while AI monitors quality and demand forecasts Liu et al. [28]; in healthcare,
blockchain enables the secure sharing of medical data or model parameters across institu-
tions, while AI algorithms analyze those data for insights. Similarly, in finance and digital
asset management, blockchain-based smart contracts can work in tandem with AI models
to automate decision logic in a transparent, fraud-resistant manner Bathula et al. [29]. Early
studies show integrated AI-blockchain platforms being explored for secure IoT networks,
intellectual property protection for AI models and data, and federated learning setups
where blockchain logs and verifies each update Issa et al. [30]. Contribution 10 combines
Groth16 zero-knowledge proofs, blockchain technology, smart contracts, and IPFS to ensure
secure. Contribution 11 introduces a novel deep learning and multimodal decision fusion
approach that integrates source code, opcode, and control flow information to achieve high
detection accuracy for smart contract vulnerabilities. This convergence of AI with decen-
tralized technologies underscores the wide deployment of next-generation AI methods
well beyond conventional settings, reaching into cyber-physical systems, smart cities, and
global digital ecosystems that define Industry 4.0.

2. Trustworthy AI
As AI becomes deeply embedded in Industry 4.0 systems, ensuring that models are

trustworthy, robust, and secure is of paramount importance. Real-world industrial AI
applications (whether in autonomous driving, medical diagnosis, or power grid manage-
ment) demand high reliability and resilience to adversities. However, recent research has
revealed that AI models can be vulnerable to a variety of attacks and failure modes Hu
et al. [31]. For example, adversarial attacks involve subtle perturbations to inputs that
cause misclassification, data poisoning injects malicious data into training sets to subvert
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model behavior, and model inversion or extraction attacks can leak sensitive information
from a model’s learned parameters. Such risks pose serious concerns in safety-critical
environments. A malfunctioning vision system in a robot or an altered prediction in a
clinical AI tool could have dire consequences. Therefore, the development of secure and
robust AI models has become a critical research focus. Methods for adversarial defense,
robust training (e.g., data augmentation, ensemble methods), and anomaly detection are
being actively investigated to harden AI models against these threats. Equally crucial is
safeguarding data privacy: Industry 4.0 AI often operates on sensitive personal or pro-
prietary data. Therefore, techniques such as federated learning, differential privacy, and
secure multi-party computation are being employed to protect data while still enabling
collaborative learning.

In tandem with the robustness, trust, and transparency of AI systems, these systems
are also receiving increasing attention. Stakeholders must be confident that AI-driven
decisions or predictions can be understood and justified—especially in domains such as
healthcare and manufacturing where accountability is essential Murdoch et al. [32]. Efforts
in explainable AI (XAI) aim to highlight the reasoning behind a model’s output, whether
through interpretable model architectures or post hoc explanation tools. Moreover, gov-
ernance frameworks for Trustworthy AI have emerged Rudin [33], advocating principles
such as fairness, accountability, transparency, and ethics in AI system design. For instance,
regulators and industry consortia are beginning to recommend or require that AI systems
provide audit trails of how data are used and how decisions are made Gunning et al. [34].
In manufacturing, this might mean that an AI quality inspection system can highlight
which product features led to a rejection; in smart healthcare, an AI diagnostic assistant
should explain its recommendation in terms a clinician can validate. Incorporating these
principles mitigates the “black box” nature of many deep learning models and increases
user confidence. In summary, achieving trusted AI in Industry 4.0 involves a multi-faceted
approach: technical robustness against attacks and failures, privacy-preserving data prac-
tices, and transparency and fairness measures. Addressing these challenges is vital for the
long-term sustainability and societal acceptance of AI-driven industrial systems.

3. Conclusions
In summary, this Editorial, titled “AI and Data-Driven Advancements in Industry

4.0”, has showcased a diverse array of studies that collectively underscore the pivotal
role of AI and multi-modal data in modern industrial applications. Industrial automation,
robotics, medical diagnostics, and blockchain integration are among the key areas explored,
illustrating how advanced data-centric strategies and deep learning techniques are being
harnessed to address complex challenges. These works exemplify how cutting-edge AI
approaches not only enhance theoretical insights but also drive practical innovations in the
evolving landscape of Industry 4.0.
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