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Abstract: In X-ray industrial computed tomography (ICT) imaging, beam hardening
artifacts significantly degrade the quality of reconstructed images, leading to cupping
effects, ring artifacts, and reduced contrast resolution. These issues are particularly severe
in high-density and irregularly shaped aerospace components, where accurate defect
detection is critical. To mitigate beam hardening artifacts, this paper proposes a correction
method based on the VGG16 feature extraction network. Continuous convolutional layers
automatically extract relevant features of beam hardening artifacts, establish a nonlinear
mapping between artifact-affected and artifact-free images, and progressively enhance the
model’s ability to understand and represent complex image features through stacked layers.
Then, a dataset of ICT images with beam hardening artifacts is constructed, and VGG16
is employed to extract deep features from both artifact-affected and reference images.
By incorporating perceptual loss into a convolutional neural network and optimizing
through iterative training, the proposed method effectively suppresses cupping artifacts
and reduces edge blurring. Experimental results demonstrated that the method significantly
enhanced image contrast, reduced image noise, and restored structural details, thereby
improving the reliability of ICT imaging for aerospace applications.

Keywords: industrial CT; beam hardening correction; aerospace blades; deep convolutional
neural network

1. Introduction
The X-rays produced by CT tubes are not monochromatic but have a certain spectral

width. When high-attenuation materials such as metal are present in the CT scan field,
low-energy photons in the X-ray spectrum are absorbed by the metal, causing some photons
to fail to reach the detector, while higher-energy X-rays more easily penetrate the material.
As the average energy of the X-rays increases during propagation, the rays become more
penetrating or “harder.” This leads to the beam hardening effect under the combined
influence of the beam spectrum’s polychromaticity, attenuation, and energy dependence [1].
Beam hardening artifacts in CT reconstructed images appear as areas that are dark in
the center with bright edges, where the gray-level curve of the middle layer in the CT
image exhibits a “cupping” shape, as shown in Figure 1. These artifacts severely affect the
interpretability of CT images.
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Figure 1. Comparison of reconstructed CT images of turbine blades before and after correction. (a) 

Image with beam hardening artifacts; (b) corrected image. 
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Figure 1. Comparison of reconstructed CT images of turbine blades before and after correction.
(a) Image with beam hardening artifacts; (b) corrected image.

The material of the aerospace structural components studied in this paper is titanium
alloy. In engineering applications, the polychromatic X-rays passing through this material
exhibit a particularly pronounced hardening effect, resulting in distinct “hardening artifacts”
in the reconstructed images. Current methods for beam hardening artifact correction
primarily include four categories: filter-based correction [2], polynomial correction [3],
iterative correction [4], and dual-energy correction [5].

By using filters to reduce the intensity of soft X-ray beams, artifact interference caused
by the hardening effect can be effectively suppressed [6]. For example, Tan et al. conducted
experiments with copper filters, which were able to mitigate beam hardening artifacts to
a certain extent [7]. Zeng et al. studied a polynomial fitting beam hardening correction
method based on experimental spectra and Monte Carlo simulations, effectively reducing
the impact of the hardening effect on imaging quality [8].

The polynomial correction method is based on the characteristics of the beam hard-
ening effect, which causes a nonlinear relationship between the projection values and the
transmission path length. To address this issue, the method performs inverse correction
through linearization, restoring the linear relationship between the projection values and
the X-ray transmission length. Ultimately, this correction process effectively mitigates the
beam hardening effect, ensuring more accurate transmission data and improving imaging
precision. Kyriakou et al. utilized threshold segmentation to extract regions of interest
from images and calculated the correspondence between the projection values and the
transmission path length, thereby determining the parameters of the polynomial [9].

The iterative correction method integrates the beam hardening correction process into
the reconstruction model, allowing for dynamic adjustment of the ray data. This method
is typically divided into two categories: algebraic algorithms and statistical algorithms.
De Man et al. utilized the characteristic of photon detection following a Poisson distri-
bution and applied a statistical iterative method to correct CT images, resulting in more
accurate reconstruction outcomes [10]. Lin et al. assumed that the human body is composed
of several basic materials and proposed a beam hardening artifact correction algorithm that
incorporates the simultaneous algebraic reconstruction technique (SART) [11].

The dual-energy correction method is based on the interaction between X-rays and ma-
terials, as well as the compositional characteristics of the base material. It decomposes the
attenuation coefficient into two physical quantities that are energy-dependent [12,13]. By using
projection data obtained from high-energy and low-energy spectra, the decomposition coeffi-
cients are calculated, enabling the estimation of the material’s attenuation coefficient µ at any
energy level. Zhang et al. developed a method based on the H-L (high–low energy transmission
attenuation value) curve, using a lookup table to achieve the decomposition of dual-energy
projections into basis function projections and then employing the traditional FBP reconstruc-
tion algorithm for image reconstruction [14]. Alvarez et al. proposed a new dual-energy CT
projection decomposition method that improves the accuracy of projection decomposition
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based on the projection matching principle [15]. With advancements in X-ray sources, detector
technologies, and reconstruction theories, dual-energy CT has gradually become a research
hotspot in the field of X-ray inspection.

Deep learning technologies have shown outstanding performance in image feature
extraction and data fusion, with an increasing number of studies combining convolutional
neural networks (CNNs) with medical image processing [16–23], achieving promising
results. In 2016, Zhang et al. [24] proposed a method for correcting streak artifacts under
undersampling by using CNNs to extract artifact features and suppressing them through
nonlinear filtering, thereby improving the quality of images reconstructed using the FBP
algorithm under such limited conditions. In 2017, Chen et al. [25] introduced two different
network structures based on deep learning technology, which, without the need for original
projection data, processed the reconstructed images to suppress noise in low-dose CT.
In 2018, Chen et al. [26] incorporated deep learning into compressed sensing imaging
algorithms, using networks to learn regularization parameters in iterative reconstruction,
improving image quality while reducing computational complexity by several orders of
magnitude. In 2018, Zhang et al. [27] proposed an open neural network architecture that
utilized convolutional neural networks as a medium for information fusion to correct metal
artifacts in CT images. These research advances demonstrate the immense potential of
deep learning in medical image processing, particularly in feature extraction and infor-
mation fusion. Kailash [28] proposed an artificial-intelligence-based solution, utilizing a
cascaded deep neural network (CDNN) architecture constructed with convolutional layers,
ReLU, and batch normalization layers, combined with skip connections to enhance feature
learning. The CDNN leverages Fourier-transform-based reconstructed images as a prior,
effectively reducing beam hardening artifacts in limited-angle CT. This method is primarily
applied to image artifacts caused by limited-angle reconstruction.

Although beam hardening artifacts are a traditional problem in the field of CT and
have been effectively addressed in certain areas, such as medical CT imaging, the beam
hardening artifacts in CT images of high-density alloys have not been well resolved, and the
relevant literature is still limited. Therefore, it is necessary to explore the mechanisms be-
hind the formation of these complex artifacts and develop correction methods suitable
for high-density metallic materials in aerospace applications. In Section 2, we introduce
the method employed in this paper. Section 3 covers data acquisition and experimen-
tal parameter settings. Section 4 demonstrates the beam hardening artifact correction
effect of the proposed algorithm through experiments with simulated and actual data.
Section 5 presents the conclusion of the paper.

2. Beam Hardening Artifact Correction Method Based on Feature Extraction
This paper focuses on the correction of beam hardening artifact images. Currently, there are

two main methods for correcting beam hardening in single-material samples: dual-energy CT
and linear correction. The dual-energy CT correction method utilizes energy spectrum informa-
tion and plays a significant role in correcting beam hardening artifacts in multimaterial samples.
However, the X-ray energy spectrum is often estimated through indirect measurement data,
which means fluctuations in projection data noise can inevitably affect the final reconstruction
results, leading to a reduced signal-to-noise ratio in the reconstructed images. Additionally,
because of its low detection efficiency, dual-energy CT is limited in industrial applications.
The linear correction method typically requires phantoms made from the same material as the
sample being inspected, offering limited flexibility and needing further improvement in its
correction effectiveness. It is also prone to amplifying noise signals in the image.

The image domain postprocessing method leverages deep neural networks for end-to-end
learning and processing of images, enabling more efficient and accurate image processing tasks.
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By using deep convolutional networks to automatically extract relevant features from beam
hardening artifact images, a mapping relationship with artifact-free ground truth images is
established, resulting in high-quality images without artifacts. This paper proposes a beam
hardening artifact correction algorithm based on the VGG feature extraction network. The core
idea of the algorithm is to build a dataset by simulating beam hardening tomography images of
numerous material samples and learning multidimensional artifact features from them to train
the network model. To enhance the model’s generalization ability, various energy conditions
and sample material types are employed during the simulation of beam hardening artifact
images. Furthermore, this paper provides a detailed description of the network architecture and
the design of the loss function, and the suppression effect of the network on beam hardening
artifacts was validated through tests on simulated and real images.

2.1. The Overall Structure of the Algorithm

The processing flow of the beam hardening artifact correction algorithm is shown
in Figure 2. The core of the algorithm consists of a convolutional neural network and a VGG16
feature extraction network, which are connected via a loss function for data transmission.
First, the original image containing artifacts is input into the convolutional neural network
for processing. After passing through multiple network layers, a corrected tomography
image is obtained. To more effectively remove artifacts and accurately restore the object’s
edge contours, the VGG16 feature extraction network is introduced before calculating the
loss value. This network fully extracts the features of the reference image and the output
image. The perceptual loss is then calculated based on these feature maps and fed back into
the convolutional neural network. Through multiple iterations and updates, the network
thoroughly learns the image features, resulting in a beam hardening artifact-corrected image
that maximizes the preservation of the object’s edge structure in the original image.
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The beam hardening artifact correction network consists of an input layer, five convo-
lutional layers, and an output layer. The network takes a 512 × 512 size simulated beam
hardening image as the initial input. The continuous convolutional layers serve several
purposes: (1) automatically extracting relevant features of the beam hardening artifacts
using deep neural networks; (2) associating the artifact features with those of artifact-free
images to establish a nonlinear mapping relationship; (3) stacking convolutional layers
progressively, which helps the network extract increasingly complex and abstract features,
thereby enhancing the model’s ability to understand and represent the image. This layer-by-
layer processing allows the network to build a comprehensive image feature representation,
starting from low-level features such as edges and textures and advancing to high-level
features such as the shape and structure of objects.

To further accelerate the network’s convergence speed and enhance its nonlinear
expression capabilities, this paper introduces the ReLU activation function after the first
four convolutional layers. The ReLU activation function removes negative values while
introducing nonlinearity to the model, helping improve its ability to fit complex patterns.
The relationships between the image features extracted by the convolutional layers can be
expressed as follows:

Pn(x) = RELU(Wn ∗ Pn−1(x) + bn), n = 1, 2, . . . N − 1 (1)

where Pn(x) and Pn−1(x) represent the output of the current layer and the output of the
previous layer, respectively; x represents the input image; n denotes the layer number
within the network; and Wn and bn are the weight and bias of the n − th layer, which are
continuously updated during the network training process, thereby achieving the goal of
minimizing the loss function.

2.2. The VGG-Net Feature Extraction Network

To ensure that the generated corrected image closely resembles the reference image,
it is necessary to extract the features of both the generated image and the reference image,
incorporating these features into the calculation of the objective function. Through the feed-
back mechanism of the loss function and optimization algorithm, the generated image is
ensured to be semantically similar to the reference image. Several mature feature extraction
networks are available for use, such as AlexNet [29] and ResNet [30]. These networks typically
use larger convolution kernels and shallower network layers to avoid the issue of exces-
sive parameters. In subsequent deep learning network research, Goodfellow et al. proposed
that the greater the depth of the network’s hidden layers, the higher the fitting accuracy.
The network was proposed by the Visual Geometry Group (VGG) from the University of
Oxford and is commonly referred to as VGG. The VGG network performed exceptionally well
in the 2014 ImageNet image recognition challenge. The structure of the VGG network is both
simple and classic, consisting primarily of a series of convolutional layers and pooling layers,
followed by several fully connected layers. The convolutional layers in the VGG network use
smaller 3 × 3 convolution kernels and are stacked, which helps retain more local information
and improves the network’s nonlinear representation capability. Between the convolutional
layers, the VGG network employs max-pooling layers to reduce the dimensionality of fea-
ture maps while preserving important features. After the convolutional and pooling layers,
fully connected layers are used for classification. A key feature of the VGG network is its
relatively large depth, with numerous convolutional layers and parameters, but its structure
remains simple, with highly regular connections between layers. Depending on the network
depth, it is divided into two variants: VGG16 and VGG19.

In this paper, VGG16 was selected as the backbone structure of the image feature
extraction network. The VGG16 network consists of 13 convolutional layers, 5 max-pooling
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layers, and 3 fully connected layers. The primary function of the max-pooling layers is
to reduce the dimensionality of matrices. However, in this algorithm, the fully connected
layers are removed, because the task of suppressing image artifacts does not require
converting image features into specific numerical values. Instead, the feature maps are
directly input into the perceptual loss function for subsequent structural difference value
calculations. The feature extraction network structure used in this paper is shown in Table 1.

Table 1. Improved VGG16 framework structure.

VGG-Net

A A-LRN B C D E
11 weight layers 11 weight layers 13 weight layers 16 weight layers 16 weight layers 19 weight layers

Input image (512 pixels × 512 pixels)

conv-64 conv-64
LRN

conv-64
conv-64

conv-64
conv-64

conv-64
conv-64

conv-64
conv-64

Max pooling

conv-128 conv-128 conv-128
conv-128

conv-128
conv-128

conv-128
conv-128

conv-128
conv-128

Max pooling

conv-256
conv-256

conv-256
conv-256

conv-256
conv-256

conv-256
conv-256
conv-256

conv-256
conv-256
conv-256

conv-256
conv-256
conv-256
conv-256

Max pooling

conv-512
conv-512

conv-512
conv-512

conv-512
conv-512

conv-512
conv-512
conv-512

conv-512
conv-512
conv-512

conv-512
conv-512
conv-512
conv-512

Max pooling

conv-512
conv-512

conv-512
conv-512

conv-512
conv-512

conv-512
conv-512
conv-512

conv-512
conv-512
conv-512

conv-512
conv-512
conv-512
conv-512

Max pooling

The VGG16 network structure is composed of five modules, each containing 3 × 3
convolutional kernels and max-pooling operations with a 2 × 2 pixel window. When the
simulated single-material metal images are input into this network, multiple feature maps
at different depths of convolutional layers can be obtained.

Figure 3 shows an original artifact image and the corresponding feature maps. The top-left
corner displays the original image, followed by feature maps from different depths of the
network arranged sequentially from left to right and top to bottom. Observing this figure
reveals that as the network depth increases, the extracted image features become progressively
more abstract. In the final layers of the network, the feature map dimensions are significantly
reduced because of pooling. For better visualization, all feature maps at different layers are
resampled to a uniform size in this paper.
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2.3. Loss Function

In deep-learning-based image reconstruction tasks, the mean squared error (MSE) is
commonly used as the loss function for network training. However, MSE is highly sensitive
to noise and outliers, which can lead to unstable reconstruction results. Additionally, directly
using the MSE loss function to compare generated and reference images often results in overly
smooth images, with degraded quality in terms of fine details, e.g., blurring.

This paper adopts the perceptual loss function as a replacement for the MSE loss
function. Compared with MSE, the perceptual loss function focuses more on high-level
features such as texture, structure, and content. Specifically, the perceptual loss function
leverages a pretrained deep neural network to extract feature representations of images.
It calculates the loss based on these feature representations rather than directly comparing
pixel-level differences. This approach is more robust to noise and variations in image
details, often producing images that are closer to the ground truth data.

In image reconstruction tasks, combining the perceptual loss function with the VGG
feature extraction network allows for a more accurate computation of feature differences
between the reference and output images. This results in higher-resolution output images.
The calculation expression for the perceptual loss function is as follows:

loss =
1

Cj HjWj

∥∥∥φj

(∧
y
)
− φj(y)

∥∥∥2

2
(2)

where Cj HjWj represents the size of the feature map at the j − th layer,
∧
y is the output

image, y is the reference image, and φ denotes the loss function. It can be observed that the
calculation form of perceptual loss is essentially consistent with MSE, but the calculation
domain shifts from the original image space to the feature space of the VGG network.
For the feature maps generated at each layer of VGG16, the difference values are computed
between the output and reference images. These differences are then used to influence the
gradient descent direction of the convolutional neural network via the Adam optimizer.
This process iteratively updates the model parameters to achieve an optimal state.
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3. Data and Experiment
3.1. Data Acquisition

Because of the difficulty of obtaining artifact-free ground truth images correspond-
ing to beam hardening artifact images in practical situations, computer simulation was
employed to generate the dataset required for network training. The simulation image
generation process was as follows:

(1) Simulating CT images of single-material objects: Simulated tomographic images were
generated of objects composed of a single material.

(2) Simulating multienergy projection data: Multienergy spectra and material atten-
uation coefficients were used to simulate the multienergy projection data of the
tomographic images.

(3) Reconstruction with filtered back projection: The tomographic images containing
beam hardening artifacts using the filtered back projection algorithm.

3.1.1. Artifact-Free Simulated Data

To improve the generalization ability of the network model, a large number of repre-
sentative data needed to be generated. An artifact-free ground truth image dataset was
constructed through random combinations of phantoms with different shapes, including
randomly generated circles, rectangles, and ellipses. The image size was set to 512 × 512,
with the sizes of the generated patterns being random. The radii of the circles, the lengths
and widths of the rectangles, and the major and minor axes of the ellipses were all randomly
selected within the range of 20 to 64 pixels. The center points of the patterns were also
determined randomly within a square 50 pixels away from the image edges. To avoid over-
lap between the generated patterns, this experiment set the number of patterns per image
to 2, 3, or 4, resulting in 300, 500, and 400 images, respectively, for a total of 1200 images.
Of these, 1100 images were used for the training dataset and 100 images were used for the
test dataset. Figure 4 shows some of the simulated ground truth images generated.
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3.1.2. Generation of Simulated Artifact Data

First, the X-ray energy spectrum at different energies and the attenuation coefficients
of the materials used were determined. Based on the empirical energy ranges required for
detecting different metal materials, two voltage levels, 120 kV and 150 kV, were selected
to simulate the corresponding beam hardening images. The current was set to 2 mA,
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and the X-ray equipment model used was GE Maxiray 125. The energy spectrum curves
can be obtained through Spectrum GUI software 1.0, as shown in Figure 5. Aluminum and
copper, two common elements, were chosen as attenuation materials, and their attenuation
coefficients can be found on NIST, with the attenuation curves shown in Figure 6.
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Given the attenuation coefficients of the materials and the energy spectrum curves,
the corresponding multienergy projection values for the slice can be calculated. This study
adopted the fan-beam FBP reconstruction method, with the image size set to 416 × 416,
640 detector pixels, a scanning angle range of 0◦ to 360◦, and a step size of 0.5◦ for the scanning
angles. The distance between the X-ray source and the detector was 59.5. The simulated
tomography images containing beam hardening artifacts, reconstructed using the filtered back
projection (FBP) algorithm, were used as the input data for network training. This allowed
the network to simulate potential noise and artifact situations encountered in real applications
during the training process. The artifact-free images from the above simulation were used
as the ground truth training images. Some of the tomography images of the two materials
generated under the two voltages are shown in Figure 7.
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Figure 7. Beam hardening simulation images.

By observing the simulated image results, it is evident that there was a significant
beam hardening phenomenon, with band-like artifacts appearing in the regions between
different phantoms. For larger objects, cupping artifacts were observed, with dark centers
and bright edges. The gray value curve along the yellow line in Figure 7 is plotted in
Figure 8, where the cupping artifact presented by the circular object can be clearly observed.
The simulation experiment results closely resembled real beam hardening artifact images.
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3.2. Network Training

The network training was conducted on the PyTorch 1.5.0 platform, using Python 3.6.5
as the programming language, CUDA version 10.2, and the acceleration library cudnn7.6.
The operating system used was Windows 10. The hardware configuration included an Intel
Xeon W-3300 CPU, 32 GB of memory, and two NVIDIA Quadro RTX 4000 graphics cards.
The network was trained for 200 iterations with a learning rate set to 1 × 10−4. The Adam
optimization algorithm was used for training, and the weight parameters were initialized
according to a normal distribution with a mean of 0 and a standard deviation of 0.1.
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4. Experimental Results
In this section, we report correction experiments using both simulated beam hardening

artifact images and real beam hardening artifact images to validate the method proposed in
this paper. We also compare the state-of-the-art CGAN method and the ConvNeXt method
with our proposed method. Through subjective visual evaluations and quantitative metric
analysis, our method demonstrated optimal image correction results on both simulated
and real datasets.

4.1. Simulated Experiment Results

To validate the effectiveness of the beam hardening artifact correction model, simu-
lated experiments were conducted. The simulated beam hardening artifact image dataset
consisted of 1200 images, with 1100 images selected for the training set and the remaining
100 images used as the test set. Figure 9 shows the correction results of the copper material
tomography simulated images under 120 kV/2 mA conditions. As can be seen from the
figure, the CGAN method removed the bright and dark band artifacts between metals,
but the metals themselves still exhibited beam hardening artifacts with dark centers and
bright edges. The ConvNeXt method effectively suppressed the artifacts, achieving results
close to those of the proposed method in this paper. The algorithm proposed in this paper
effectively eliminated the stripe and cupping artifacts caused by the beam hardening effect.
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Figure 9. Correction results of simulated images of copper material at 120 kV. (a) Artifact image;
(b) reference image; (c) CGAN method; (d) ConvNeXt method; (e) proposed method.

Additionally, by calculating the gray value curve of any row, the gray value curve
results, shown in Figure 10, indicated that the cupping artifacts were well suppressed after
correction using this method. Furthermore, the algorithm was also capable of suppressing
noise information in the images to some extent, which can be attributed to the downsam-
pling operation in the network. Table 2 shows the quantitative indices for the correction
results of the simulated images at 120 kV. The proposed method consistently outperformed
CGAN and ConvNeXt across all metrics (RMSE, PSNR, and SSIM), demonstrating its
superior ability to correct artifacts, preserve structural details, and enhance image quality.
ConvNeXt showed competitive performance but was not as effective as the proposed
method, while CGAN lagged significantly behind in all aspects.
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Figure 10. Comparison of gray value curves at the yellow dashed lines in Figure 9. (a) Gray value
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Table 2. Quantitative indices for correction results of simulated images at 120 kV.

Index CGAN ConvNeXt Proposed

Sample 1
RMSE 2.6118 0.8242 0.4156
PSNR 20.5411 26.7854 28.3647
SSIM 0.9274 0.9566 0.9638

Sample 2
RMSE 2.8112 1.6514 0.9574
PSNR 21.9457 24.3789 27.6621
SSIM 0.9348 0.9470 0.9513

Figure 11 shows the correction results of beam hardening artifact images under
150 kV/2 mA conditions, indicating that the algorithm still achieved good artifact cor-
rection performance under different voltage levels. Although there were differences in the
gray-scale range of artifact images generated under different energy conditions, the charac-
teristic patterns of beam hardening artifacts were quite similar. The reason the algorithm
achieved good correction results is that the deep learning network can fully learn the
obvious characteristic information of beam hardening images and accurately map the
artifact images to artifact-free images, benefiting from the network’s training on a large
dataset. However, when two objects were close to each other or even overlapped, it could
lead to severe structural artifacts, distorting the outer contours of the objects and causing
significant edge distortion. As a result, the corrected image could not be fully restored to
the artifact-free reference image. Figure 12 shows a comparison of gray value curves at the
yellow dashed lines in Figure 11. It can be seen that the proposed method (green line) had
the grayscale values closest to the reference image (orange line) at these positions, showing
better image restoration effects. The other methods, CGAN (red line) and ConvNeXt
(dark blue line), also performed well but were slightly inferior to the proposed method and
the reference image. Table 3 shows the quantitative indices for the correction results of the
simulated images at 150 kV.
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Table 3. Quantitative indices for correction results of simulated images at 150 kV.

Index CGAN ConvNeXt Proposed

Sample 1
RMSE 3.1020 2.5564 1.2128
PSNR 19.3123 25.7412 26.3147
SSIM 0.9236 0.9571 0.9634

Sample 2
RMSE 3.2401 2.3697 1.5441
PSNR 21.0496 25.3412 27.8741
SSIM 0.9034 0.9367 0.9501

4.2. Real Data Experimental Results
4.2.1. Experiment 1: Additive Manufacturing of Titanium Alloy Samples

This paper selected two titanium alloy additive manufacturing samples with significantly
different sizes for the experiment. First, the method in this paper was validated for beam hard-
ening artifact correction on small-sized samples. Sample 1 had dimensions of 10 mm × 8 mm.
An actual image of the sample and its projection image are shown in Figure 13. The tube voltage
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of the X-ray source was set to 200 kV, and the tube current was set to 2.5 mA. The distance from
the X-ray source to the rotation center was set to 292.54 mm, and the distance to the detector
was 1622 mm. The specific CT scanning parameters are shown in Table 4.
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ping artifacts in the tomographic image was significant, and the phenomenon of bright 

edges and dark central regions of the specimen was greatly improved. Since the sample 

was a single object, there was no occlusion caused by multiple objects, and no stripe-like 

metallic artifacts appeared in the image. However, there were large areas of scattered ar-

tifacts near the edges of the object, which were well corrected, making the object’s edges 

clearer. The original tomographic image also contained obvious ring artifacts caused by 

the detector’s inconsistent response to X-rays or pixel channel damage. Although the al-

gorithm in this study did not extract features of the ring artifacts, after correction, the ring 

Figure 13. Physical sample and projection of additive titanium alloy. (a) Additive titanium alloy
sample; (b) projection image.

Table 4. X-ray CT scanning parameters.

Flat Panel Detector Pixel Size Resolution Ratio Integration Time Projection Number

Amorphous silicon 0.139 mm 900 × 900 5.545 1 s 720

After the image reconstruction was completed, a slice from the middle region was
randomly selected for testing. The reconstructed image was input into the trained network
for model inference, and the result is shown in Figure 14. Table 5 shows the quantitative
indices of the correction results for the additive titanium alloy.
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Figure 14. Comparison of the 900th slice of the sample before and after correction. (a) Artifact image;
(b) CGAN method; (c) ConvNeXt method; (d) proposed method.

Table 5. Quantitative indices for correction results of additive titanium alloy.

Index CGAN ConvNeXt Proposed

RMSE 3.1062 1.6472 0.8873
PSNR 25.3601 28.9647 30.1422
SSIM 0.9320 0.9698 0.9731

From the results of the proposed method, it can be observed that the removal of cupping
artifacts in the tomographic image was significant, and the phenomenon of bright edges
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and dark central regions of the specimen was greatly improved. Since the sample was a
single object, there was no occlusion caused by multiple objects, and no stripe-like metallic
artifacts appeared in the image. However, there were large areas of scattered artifacts near the
edges of the object, which were well corrected, making the object’s edges clearer. The original
tomographic image also contained obvious ring artifacts caused by the detector’s inconsistent
response to X-rays or pixel channel damage. Although the algorithm in this study did
not extract features of the ring artifacts, after correction, the ring artifacts were suppressed,
though some severe structured ring artifacts were not completely eliminated.

Sample 2 was a TC17 titanium alloy flat plate, with dimensions of approximately 100 mm
by 25 mm. Actual and projection images of the sample are shown in Figure 15. The upper part
of the flat plate was the additive section, the lower part was the substrate, and there were two
inserts on the side, with the focus area being the additive section. From the reconstructed image,
it is clearly visible that the edges of the object were bright while the internal region was dark,
reflecting the typical cupping artifact characteristics. The corrected result using the method
in this paper is shown in Figure 16d. Compared with Figure 16a, the contrast of the image
corrected with the proposed method was significantly improved, the object’s edges were clearer,
and the beam hardening artifact was effectively corrected. Therefore, the experiment results and
quantitative index results from Table 6 prove that the algorithm in this paper performed well
in correcting beam hardening artifacts for objects of different sizes and under different energy
conditions, demonstrating strong network generalization capabilities.
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Figure 15. TC17 titanium alloy flat plate sample image. (a) Titanium alloy flat plate sample;
(b) projection image.
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Table 6. Quantitative indices for correction results of flat plate.

Index CGAN ConvNeXt Proposed

RMSE 1.9873 1.0035 0.8423
PSNR 26.3041 27.7415 28.4762
SSIM 0.9598 0.9773 0.9841

4.2.2. Experiment 2: Blisk Sample

Compared with the traditional blade and disc separate assembly structure, the blisk
adopts an integrated design, merging the blades and disc into a single unit. This design
not only simplifies the structure by eliminating traditional connecting components such as
tenons, mortises, and locking devices but offers performance advantages such as weight
reduction, fewer parts, increased efficiency, and improved reliability. In this experiment,
a three-component integrated impeller was selected for testing, with the actual sample and
its projection image shown in Figure 17.
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Figure 17. Blisk sample and projection data. (a) Blisk sample; (b) projection image.

The trained network was used to validate the artifact correction effect on the blisk CT image.
A comparison between CGAN, ConvNeXt, and the proposed method is shown in Figure 18.
In the artifact image, the blades were curved, causing significant beam hardening artifacts
in the impeller region, making it difficult to accurately determine the edge of the impeller.
Additionally, there was interference from artifacts between adjacent blades, which severely
affected the observation and evaluation of internal defects in the blades. The CGAN method
removed the bright and dark band artifacts between metals, but the edge structures of the
metals remained unclear. After beam hardening artifact correction, most of the artifacts were
effectively removed, allowing the true structure of the blades to be accurately represented.
In Figure 19, by plotting the gray value curve of row 256 in the image, it can be observed that
the artifacts around the impeller were largely eliminated. A comparison of the uncorrected
images, the CGAN method, the ConvNeXt method, and the proposed method showed a
significant improvement in image quality, with effective suppression of the artifacts and a
clearer edge of the impeller, providing a more reliable foundation for observing and evaluating
internal defects in the blisk. We also computed the quantitative index results for the blisk,
as shown in Table 7.
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Figure 19. Comparison of gray value curves in the 256th row of the reconstructed images.

Table 7. Quantitative indices for correction results of the blisk.

Index CGAN ConvNeXt Proposed

RMSE 3.0193 2.3676 1.3647
PSNR 28.5511 30.6470 33.1478
SSIM 0.9632 0.9796 0.9821

By performing three-dimensional visualization analysis on the beam hardening cor-
rected tomographic image of the blisk, the integrity of its external structure can be observed
and analyzed more intuitively. From Figure 20, it can be seen that the outer contour of the
blade was free from beam hardening artifacts and stripe artifacts, with the edges of the
blade being clearer and smoother, presenting a more realistic result.
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The real data experimental results show that the correction method based on the
feature extraction network proposed in this paper could effectively address issues such as
cupping artifacts, unclear edge contours, and blurred details caused by beam hardening.
It improved the image contrast and enhanced the quality of the CT images.

5. Conclusions
This paper focuses primarily on the study of beam hardening artifact correction

methods for CT images of aerospace high-density metal materials. It begins with an
analysis of the causes of beam hardening and presents the principle of the beam hardening
artifact correction algorithm based on feature extraction. A deep convolutional neural
network for beam hardening artifact correction was developed, and the structure of the
feature extraction network and the perceptual loss function were introduced. A dataset
was constructed by simulating beam hardening tomographic images of a large number
of single-material samples, and artifact features were automatically extracted from these
images. Finally, experimental validation was conducted using both simulated and real
beam hardening artifact images. The results demonstrated that the proposed method could
effectively address issues such as cupping artifacts, unclear edge contours, and blurred
details caused by beam hardening, improving image contrast and enhancing the quality of
CT reconstruction images.
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