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Abstract: This paper aims to address sensor-related challenges in simultaneous localization
and mapping (SLAM) systems, specifically within the open-source Google Cartographer
project, which implements graph-based SLAM. The primary problem tackled is the adapt-
ability and functionality of SLAM systems in diverse robotic applications. To solve this,
we developed a novel SLAM framework that integrates five additional functionalities into
the existing Google Cartographer and Robot Operating System (ROS). These innovations
include an inertial data generation system and a sensor data preprocessing system to
mitigate issues arising from various sensor configurations. Additionally, the framework
enhances system utility through real-time 3D topographic mapping, multi-node SLAM
capabilities, and elliptical sensor data filtering. The average execution times for sensor
data preprocessing and virtual inertial data generation are 0.55 s and 0.15 milliseconds,
indicating a low computational overhead. Elliptical filtering has nearly the same execution
speed as the existing filtering scheme.

Keywords: Cartographer; simultaneous localization and mapping; Robot Operating
System; multi-node; real time

1. Introduction
Since the advent of Industry 4.0, intelligent and automated manufacturing technologies

have rapidly evolved [1]. The requirements for robots used at diverse industrial sites have
become increasingly sophisticated. In addition to stationary robots used in manufacturing
lines, mobile robots such as vacuum cleaners and service robots are becoming more popular.
Mobile robots can be utilized in high-risk environments, such as construction and disaster
sites; however, autonomous map generation is required for autonomous movement. An
interactive visual navigation (IVN) system based on reinforcement learning and task-related
latent variable prediction has been proposed [2]. IVN employs a framework that learns
from the agent’s actions and interactions with the environment, but it does not enable
map construction. Maps can be constructed using simultaneous localization and mapping
(SLAM), a map construction technique that records the distance traveled and predicts the
robot’s own position without prior knowledge [3–7].
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SLAM has versions that utilize various sensors such as light detection and ranging
(LiDAR) sensors, cameras, and inertial measurement unit (IMU) sensors, and these versions
are also differentiated by various algorithms and operating environments [8–10]. SLAM is
primarily classified as either visual SLAM using cameras or LiDAR SLAM using LiDAR
sensors. LiDAR SLAM is widely used because visual SLAM lacks a distance recognition
capability and has low accuracy. Offline SLAM and online SLAM are distinguished based
on whether the sensor data are collected in real time. Offline SLAM collects all sensor data
before constructing a map, whereas online SLAM uses only sensor data received in real time
to construct a map. Graph-based and filter-based SLAM are used to estimate the current
position and map, which are SLAM’s main problems. Recently, graph-based SLAM has
become a dominant approach. It addresses the primary location problem by representing
the relevant information as nodes and constructing a map from the edges. Graph-based
SLAM can incorporate various sensors, including LiDAR and IMU sensors, in the graph
configuration, resulting in good sensor scalability and effective error minimization through
the graph structure [11]. Popular open-source libraries that use graph-based SLAM include
RTAB-Map, Cartographer, ORB-SLAM, and Hector SLAM [9,12,13]. Because we use LiDAR
data for SLAM and Hector SLAM does not enable 3D mapping, we decided to use Google
Cartographer, which is laser-based, rather than RTAB-Map and ORB-SLAM, which use a
vision-based algorithm [14,15].

Google Cartographer (Cartographer) is an open-source library that uses graph-based
SLAM. It uses branch-and-bound optimization techniques to reduce the amount of compu-
tation required. Consequently, for 2D SLAM, Cartographer can compute high-resolution
maps of up to 5 cm in real time and integrates them with the Robot Operating System (ROS)
environment. The ROS is an open-source framework for robotic applications [16]. Several
functions and libraries are available, including hardware abstraction, message passing
between components, and sensor data processing [17].

However, numerous issues arise when Cartographer uses bag files containing sensor
data. First, Cartographer does not operate properly when the time between several sensor
data points is not synchronized or when some sensor data fields are omitted. Second,
when constructing a 3D map in real time, only the most recently measured 3D sensor
data are displayed, rather than all sensor data measured to date. Third, utilizing multiple
robots to create a map has advantages in terms of scalability and time efficiency. However,
because Cartographer performs SLAM on a single node, numerous nodes cannot construct
a single map. Finally, when filtering the sensor data, numerous data points are filtered
based on their distances from the origin.

Existing experiments have been conducted to improve the SLAM performance using
Cartographer [18–26]. Despite improvements to the Cartographer algorithm [18,27,28], it
cannot process sensor timestamp synchronization or omitted sensor data. Cartographer
has improved 3D mapping by enhancing the point cloud consistency [29]. However, im-
provements to the processing performance for the recorded sensor data and functional
improvements for integration with ROS visualization (rviz) are required. Map construc-
tion strategies and path-planning algorithms based on multi-node SLAM have been pro-
posed [30,31]. However, implementing multi-node SLAM in Cartographer has not yet
been discussed.

This paper presents several schemes for improving Cartographer’s sensor data adapt-
ability and functionality in an ROS2 environment. The main contributions of this study are
as follows:

• We propose a time synchronization scheme for asynchronous sensor data.
• We propose a scheme for generating inertial data in order to address IMU data loss.
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• We propose a scheme for expressing all measured sensor data in rviz while construct-
ing a 3D map.

• We propose a scheme for enabling multi-node SLAM.
• we propose elliptical filtering, which filters data using the elliptic equation, to avoid

over-filtering.

The remainder of this paper is organized as follows. Section 2 provides background
information and outlines the structures of existing SLAM systems. Section 3 examines
the limitations inherent in current SLAM systems. Section 4 delineates the architecture
and functional implementation of the proposed SLAM system. Section 5 evaluates the
proposed system, and Section 6 concludes the paper by discussing potential avenues for
future research.

2. Background and Related Works
There are several popular open-source SLAM implementations, including RTAB-Map,

ORB-SLAM, Hector SLAM, and Cartographer [9,13–15]. ORB-SLAM is a visual SLAM
system that utilizes camera inputs [9]. It uses ORB characteristics to track and map the
environment. However, unlike ORB-SLAM, our study was based on LiDAR SLAM. Hector
SLAM is designed for quick mapping in indoor environments and uses LiDAR for 2D
mapping. However, it does not support 3D mapping [13]. RTAB-Map and Cartographer
enable both 2D and 3D mapping [14,15]. RTAB-Map is a visual SLAM system that uses
camera inputs by default but can also use LiDAR as an option. Cartographer, on the other
hand, is a LiDAR SLAM implementation that takes inputs from LiDAR. Table 1 compares
the features of the existing SLAM implementations with the proposed approach. The SLAM
implementations do not support multiple nodes, but the proposed approach does.

Table 1. Comparisons with SLAM frameworks.

SLAM Classification Mapping Multi-NodeVisual SLAM LiDAR SLAM 2D 3D

ORB-SLAM ✓ ✓
Hector SLAM ✓ ✓

RTAB-Map ✓ ✓ ✓
Cartographer ✓ ✓ ✓

Proposed scheme ✓ ✓ ✓ ✓

Cartographer is a SLAM system developed by Google [14]. Figure 1 depicts the
architecture and operation of a Cartographer-based SLAM system. Cartographer can
obtain sensor data from a bag file containing a variety of sensor data, including those
from LiDAR and IMU sensors. Because components in ROS2 can communicate us-
ing the publish–subscribe mechanism, rosbag2_player sends sensor data stored in the
bag file to cartographer_ros. cartographer_ros includes cartographer_node, cartogra-
pher_occupancy_grid_node, and submaps_display. cartographer_ros transmits the sen-
sor data to Cartographer, which executes graph-based SLAM and sends the results to
cartographer_ros, which then sends the sensor data and SLAM results to rviz2 [32].
The Cartographer-based SLAM system then visualizes the map created using rviz2, as il-
lustrated in Figure 2.

In [27], because the Cartographer SLAM algorithm, which performs loopback scan-to-
map detection, exhibits errors in environments with few distinguishable characteristics,
submap matching was used to address the errors. Preliminary matching and lazy decisions
were utilized to improve the real-time performance. In [18], a multi-stage distance scheduler
was proposed to increase Cartographer’s SLAM processing performance. The proposed
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scheme improved the local SLAM by adjusting the distance between the LiDAR sensor and
the scan matcher’s search window. In [28], KP-Cartographer was proposed, a lightweight
SLAM scheme for mapping and estimating locations using LiDAR data. Laser point cloud
feature extraction and personal localization algorithms have been used in low-power
mobile devices. However, previous studies were unable to handle scenarios in which the
sensor timestamps disagreed or there were no inertial data.

Figure 1. SLAM architecture and operation. Rosbag2_player sends LiDAR and IMU sensor data
from the bag file to cartographer_ros. Cartographer performs SLAM using sensor data obtained from
cartographer_ros and returns the results to cartographer_ros. The SLAM results are transferred from
cartographer_ros to rvis2 and visualized.

Figure 2. rviz2 visualization example.
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In [29], an algorithm for continuous-time SLAM was proposed to improve Cartogra-
pher’s SLAM 3D mapping. The performance was improved by enhancing the global point
consistency. However, greater processing performance for the recorded bag files and a
scheme for connecting to rviz are required. A strategy for effective map construction using
multi-robot systems in a communication-limited environment was proposed in [30]. Owing
to limited communication resources, data transmission for grid map construction causes
bottlenecks. The creation of a topology map for each robot reduces the amount of data
transmitted. A system for creating and updating maps and path planning for a heteroge-
neous group of robots was proposed in [31]. Its client–server architecture improves the map
accuracy. However, while existing research has proposed a scheme for multi-robot-based
map construction, methods for multi-robot SLAM in Cartographer have not been proposed.

3. Sensor Adaptability Improvement
This section discusses the approaches for increasing sensor data flexibility. First, we

analyze cartographic procedures in which timestamps are asynchronous or inertial data
are missing. We then discuss approaches for timestamp synchronization and generating
inertial data.

3.1. Analysis of Cartographer for Sensor Adaptability Improvement

In this section, we discuss asynchronous sensor data and the absence of inertial data.

3.1.1. Asynchronization of Sensor Data

Cartographer can utilize various types of sensor data such as LiDAR and IMU data
when performing graph-based SLAM. Although SLAM’s accuracy can be enhanced by
integrating multiple sensors, the sensor data must be synchronized. Although Cartographer
includes a synchronization process within its sensor data processing pipeline, the analysis
revealed limitations in cases where synchronization requires substantial data modification.

Cartographer’s synchronization is based on the sensor data timestamps. In general,
the sensor sets the timestamp of the data to the Unix time when it was logged. Algorithm 1
is pseudocode that depicts Cartographer’s method for processing sensor data. When
two or more sensors sense at the same moment, but the times reported to Cartographer
differ owing to network delays, the sensor data are synchronized using the sensor data’s
timestamp and are processed chronologically. First, based on the sensor information,
a queue for each currently active sensor is initialized. Sensor data S or the input sensor data
are inserted into the corresponding queue. Then, synchronization starts if all sensor data
queues contain more than one item of sensor data. For example, if there are two LiDAR
sensor queues and one IMU sensor queue, but only one LiDAR sensor is operational, data
are only fed into the associated LiDAR queue, and the synchronization operation is not
performed. Sensor data with a timestamp that is later than that of the most recently input
data from each sensor are used for synchronization. Sensor data with a timestamp that is
older than the most recently input data from each sensor are filtered out. In Algorithm 1, the
CommonStartTime variable stores the timestamp for the most recently input data from each
sensor. The cur_data variable refers to the oldest data entered into all the sensor queues.

When using cartographic sensor data processing, issues may arise if the timestamps
of the sensors differ in the execution environment. For instance, if a LiDAR sensor and an
IMU sensor operate simultaneously but their timestamps differ by 300 s, SLAM will not
execute for the first 5 min. Cartographer determines that the timestamps of LiDAR data
and IMU data with 5 min intervals are the same and operates accordingly. The manual
adjustment of the timestamps at the hardware level may not be feasible for solving the
asynchronous timestamp problem.
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Algorithm 1 Cartographer sensor data processing.

1: Init: Queues.Initialize(∀ sensor)
2: Input: sensor data S
3:
4: CommonStartTime← −1
5: AddQueueData(S)
6: if ∀ Queues not empty then
7: if CommonStartTime = −1 then
8: CommonStartTime← max(∀Queues.Peek())
9: end if

10: repeat
11: cur_data← min(∀Queues.Peek())
12: cur_queue← GetQueue(cur_data)
13: if cur_data.timestamp > CommonStartTime then
14: AddSensorData(cur_data)
15: end if
16: cur_queue.pop()
17: until ∀ Queues is empty
18: end if
19:
20: Output: All sensor data in Queues are synchronized in time order.

3.1.2. Absence of Inertial Data

When executing 3D SLAM, Cartographer is designed to require inertial measurement
unit (IMU) data. The analysis results revealed that, when executing 3D SLAM, the IMU
data queue is always initialized, as shown in Algorithm 1, and the IMU data are utilized
for position estimation calculations. This approach is necessary to define the z-axis based
on the gravity measured by the IMU sensor and to derive the roll and pitch values for
accurate position estimation. However, if 3D SLAM is applied to a robot that moves at
a steady pace, measurements from some sensors are superfluous. Furthermore, if some
inertial sensors do not function properly, some of the required IMU data may not be
measured. For example, if the gravity sensor fails due to an impact when the robot
is in motion, SLAM will not work because there are no IMU sensor data. However,
Cartographer does not offer the option to disable IMU data when performing 3D SLAM.
Thus, a solution for sensor adaptability is required.

3.2. Proposed Scheme for Sensor Adaptability Improvement

In this section, we discuss sensor data time synchronization and virtual inertial
data generation. Figure 3 shows the architecture of the proposed SLAM system. Ros-
bag2_player delivers LiDAR and IMU sensor data from the bag file to cartographer_ros.
Simultaneously, the IMU Publisher generates virtual inertial data if any inertial data
are missing. Then, the message preprocessor performs the time synchronization of the
sensor data.
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Figure 3. Proposed SLAM architecture. 1. LiDAR and IMU sensor data are delivered from the bag
file to message preprocessor. Simultaneously, virtual inertial data are generated if any inertial data
are missing. 2. Synchronized sensor data are sent to cartographer_ros and Octomap. 3. Cartographer
performs SLAM, and the results are sent to cartographer_ros. 4. The SLAM results are delivered from
cartographer_ros to rviz2 and Octomap. 5. When 3D mapping is used, Octomap sends 3D mapping
results to rviz2. 6. The rviz2 visualizes the results.

3.2.1. Sensor Data Time Synchronization

To improve the synchronicity of timestamps between sensor data, we propose a
message preprocessor node. The message preprocessor node is added to synchronize
various sensor data before they are sent to cartographer_ros. Figure 4 and Algorithm 2
show the message processor’s synchronization process. We assumed that the initial data
from each sensor are sensed at the same time point. The message preprocessor takes
the original sensor data values as the input and outputs the synchronized sensor data
values. First, the message preprocessor arbitrarily designates a sensor as the reference for
timestamp synchronization. A LiDAR sensor, for example, can be used as the reference
sensor. If the type of input sensor data comes from a reference sensor and the reference
timestamp has not yet been established, the timestamp of the associated sensor data is
used as the reference timestamp. For example, if the LiDAR sensor is a reference sensor,
the reference timestamp is set to the first input sensor data point of the LiDAR data,
as shown in Step 1 of Figure 4. If the input sensor data do not come from a reference
sensor and the reference timestamp has already been set, the sensor data’s timestamp is
set to the reference timestamp plus the measurement time from the reference timestamp
setting to the current time. For example, as shown in Step 2 of Figure 4, the timestamp
value of the IMU data’s first sensor data point is assigned as the reference timestamp.
As Step 3, the timestamp is then reset using the sampling rate of the IMU sensor data. Then,
the synchronized data are passed to cartographer_ros for normal SLAM operation.

3.2.2. Virtual Inertial Data Generation

To address the absence of inertial data, we propose a new ROS2 node termed the
IMU Publisher, which generates virtual inertial data, as illustrated in Figure 3. The format
of the IMU data follows that of the ROS2 sensor_msgs/msg/Imu.msg format. Figure 5
illustrates the composition of the Imu.msg format [33]. The header field contains the
timestamp value, which indicates the time at which the data were generated, and the
frame_id value, which represents the associated coordinate frame. The orientation, angu-
lar_velocity, and linear_acceleration fields, respectively, represent the direction, angular
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velocity, and linear acceleration components as measured using the IMU sensor. The covari-
ance values corresponding to each component are located in the orientation_covariance,
angular_velocity_covariance, and linear_acceleration_covariance fields.

Figure 4. Sensor data preprocessing. 1. If the LiDAR sensor is a reference sensor, the reference
timestamp is set to the first input sensor data point of the LiDAR data. 2. The timestamp value of the
IMU data’s first sensor data point is assigned as the reference timestamp. 3. The timestamp is then
reset using the sampling rate of the IMU sensor data.

Algorithm 2 Sensor data timestamp synchronization.

1: Input: sensor data S
2: Initialize:
3: re f erence_sensor ← one of the sensors
4: re f erence_timestamp← underfind
5:
6: repeat
7: if S.type = re f erence_sensor then
8: if re f erence_timestamp = underfind then
9: re f erence_timestamp← S.timestamp

10: timer.start()
11: end if
12: else
13: if re f erence_timestamp ̸= underfind then
14: S.timestamp← re f erence_timestamp+ timer.current_time()
15: end if
16: end if
17: until termination

Figure 5. Imu.msg format.

Figure 6 illustrates the flowchart of the IMU Publisher. The IMU Publisher starts oper-
ating when the user enters a timestamp. The timestamp value of the generated IMU data is
set as the input timestamp value, allowing the user to generate a message at the desired
time. Then, only the z component of linear_acceleration is set to a gravitational acceleration
of 9.8 m/s2 while the other components are set to their default values, assuming that some
IMU data may have been lost due to the inertial sensor failure. The generated IMU data are
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published periodically to a designated topic (/imu) within the ROS system. The virtual
inertial data are passed to the message preprocessor for timestamp synchronization.

Figure 6. Flowchart of IMU publisher.

4. Functionality Improvement
This section discusses the approaches for functionality improvement. First, we analyze

limitations for real-time 3D mapping and map accuracy. We then discuss approaches for
real-time 3D mapping, multi-node SLAM, and elliptical filtering.

4.1. Cartographer Analyzed for Functionality Improvement

In this section, we discuss how to disable real-time 3D mapping, support single-node
SLAM, and use distance-based filtering.

4.1.1. Limitation for Real-Time 3D Mapping

The 3D terrain map generated in real time by Cartographer does not continuously
record 3D sensor data. It represents only the 3D sensor data at the current time, as shown in
Figure 7. A scheme for extracting all sensor data into a single 3D terrain map was proposed
for Cartographer [34]; however, it has two constraints.

First, Cartographer does not provide real-time functionality to construct 3D terrain
maps. A 3D terrain map can be constructed using Cartographer’s asset writer node, which
requires bag and PBstream files. The pbstream file contains the results and status data
processed by Cartographer’s SLAM operation [34]. Using both bag and pbstream files
can result in a more accurate and high-resolution output. However, because the pbstream
file is generated by the SLAM operation based on the bag file, additional time is required.
Therefore, constructing a 3D terrain map in a real-time sensor environment is challenging.
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Second, Cartographer generates a 3D terrain map in either the PCD or PLY file for-
mat [34]; however, these files cannot be directly visualized using rviz, the Cartographer
SLAM system’s visualization tool. To visualize the generated map, a different viewer
program that supports the corresponding file format is required, or Cartographer should
be modified to publish the file as a PointCloud2 topic, allowing for rviz visualization.

Figure 7. 3D SLAM result.

4.1.2. Limitation for Map Accuracy

Several nodes must be used to improve the accuracy and efficiency of map construction.
In Cartographer, trajectory_builder generates a map using a trajectory that includes the
estimated robot position and other sensor data. However, since SLAM is performed using a
single robot, only one trajectory is typically defined for each map. Therefore, Cartographer
supports single-node SLAM, and it is not possible to support multi-node SLAM.

Distance measurement sensors such as LiDAR and laser sensors require data filtering
to provide accurate SLAM results based on their positions. For instance, if a portion of
the robot’s body is recorded by the sensor, the SLAM results generated from the data will
always indicate objects near the robot’s location, unlike in a real environment. To resolve
this issue, Cartographer filters the sensor data [35]. However, because the filtering range is
determined by the radius of a circle originating from a central point, the further the filtering
target point is from the origin, the more the sensor data loss increases as the distance from
this origin increases.

4.2. Proposed Scheme for Functionality Improvement

This section discusses real-time 3D mapping, multi-node SLAM, and elliptical filtering.
In Figure 3, the message preprocessor transmits time-synchronized sensor data to cartogra-
pher_ros. Cartographer_ros performs data filtering and delivers the results to Cartographer.
Cartographer performs SLAM, and the results are sent to Rviz2 via cartographer_ros. When
3D mapping is used, the message preprocessor sends sensor data to Octomap, whereas
cartographer_ros sends SLAM results to Octomap. Octomap sends 3D mapping results to
rviz2, which visualizes the results.
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4.2.1. Real-Time 3D Terrain Mapping

We propose a scheme to integrate the OctoMap library with Cartographer to enable
real-time 3D terrain mapping, as shown in Figure 3. OctoMap is an open-source library
implemented using a 3D occupancy grid mapping approach [36]. OctoMap can adjust
the resolution, optimize memory usage, and perform 3D mapping using 3D PointCloud
data from LiDAR sensors. Furthermore, it visualizes a generated 3D map using rviz.
The preprocessed sensor data from the message preprocessor are then sent to cartogra-
pher_ros and OctoMap. Cartographer_ros transmits the SLAM results to OctoMap and
rviz2. Then, the integration of OctoMap and Cartographer proceeds by supplying 3D
PointCloud data to OctoMap and synchronizing the TF (Transform) information from
Cartographer with OctoMap.

An important task in integration is the synchronization of TF information. TF informa-
tion refers to the transformation relationships between coordinate frames in the ROS [37].
Cartographer calculates the robot’s position at a specific point in time and generates TF
information. The generated TF information is distinguished by a coordinate system and a
timestamp and stored in tf2_buffer. Because tf2_buffer stores and manages TF information,
it can share it with ROS nodes. At this time, the synchronization of the timestamps of the
two TF information is required for the synchronization of Cartographer and OctoMap.

When executing SLAM using bag files in an offline sensor environment, the times-
tamp information used by the two libraries may be inconsistent. OctoMap requests TF
information based on the 3D sensor data’s timestamps. However, Cartographer sets the
timestamp of the TF information to the most recent time generated from either the current
node’s time or the time when Cartographer’s extrapolator performed the last prediction.
In general, the current node’s time is chosen first because choosing the most recent time is
more efficient because of Cartographer’s interpolation. However, in sensor-offline condi-
tions, an exception may arise if the time zone of Cartographer’s node is set later than the
sensor data’s timestamp.

Figure 8 illustrates the generation and requesting of TF information in such an excep-
tional case based on timestamps. Because the timestamp of all the generated TF information
corresponds to the Cartographer node’s time, OctoMap cannot receive the appropriate
TF information. In this case, as shown in Step 1 of Figure 8, the issue can be resolved by
modifying Cartographer to set the timestamp of the generated TF information to the last
execution time of the extrapolator. The extrapolator’s final execution time can be identified
as being in the same time zone as the timestamp of the 3D sensor data, thereby resolving
the issue of synchronizing the TF information with OctoMap.

Figure 8. Exceptional case in sensor-offline environment.
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4.2.2. Multi-Node SLAM

We improved the code for a multi-node SLAM system to allow trajectory_builder to
construct a single integrated map from numerous trajectories. Algorithm 3 depicts the multi-
node SLAM processing. The start_trajectory and finish_trajectory functions in Cartographer
were used to create and terminate the trajectories, respectively [38]. The start_trajectory func-
tion utilizes configuration_directory, configuration_basename, use_initial_pose, initial_pose,
and relative_to_trajectory_id as an argument. Then, it generates a new trajectory and returns
the generated trajectory ID. The trajectory’s initial position can be set using initial_pose and rel-
ative_to_trajectory_id, depending on the value of use_initial_pose. To terminate the trajectory,
the finish_trajectory function uses the trajectory ID as the input and returns the status value. In
the algorithm, TrajectoryID represents the current robot’s trajectory ID. The following actions
are repeated sequentially from the first robot to the Nth robot. The ith trajectory, trajectory

i, is generated by using the start_trajectory function with configuration i, and the generated
trajectory ID is saved in TrajectoryID. The robot’s trajectory information is then displayed on
the map. When the robot’s operation is complete, TrajectoryID is used as an argument for the
finish_trajectory function, which terminates the current trajectory. The i + 1th trajectory is
then used to construct a map. The previously generated map is preserved. This allows sensor
data from several robots to be combined into a single integrated SLAM system.

Algorithm 3 Multi-Node SLAM Processing

1: N = 1, 2, 3, . . .
2: i = 1
3: RobotN : N-th operation robot
4: ConfigurationN : configuration_directoryRobotN
5: configuration_directoryRobotN
6: configuration_basenameRobotN
7: use_initial_poseRobotN
8: initial_poseRobotN
9: relative_to_trajectory_idRobotN

10: for i = 1 to N do
11: TrajectoryID← start_trajectory(Configurationi)
12: Roboti Operate Done
13: finish_trajectory(TrajectoryID)
14: end for

4.2.3. Elliptical Filtering

We present an elliptical filtering approach that allows for adjustments to the center, size,
and rotation angle to minimize the loss of unnecessary sensor data. The cartographer_ros
node was modified for sensor filtering. The z-axis component of the 3D sensor data has
a minimal impact on data filtering; therefore, only the x- and y-axis components were
considered, and the proposed elliptical filtering was applied to 2D projection. The rotated
ellipse used for filtering was mathematically modeled using Equations (1) and (2) for the
ellipse and Equation (2) for the rotational transformation matrix. x and y represent the x-
and y-axis, respectively, and a and b represent the major and minor axis, respectively. x0

and y0 are the x- and y-coordinate values of the center of the ellipse, respectively. xi and yi

represent the x and y coordinate values within the ellipse defined by Equation (1), while
x′i and y′i represent the x- and y-coordinate values when xi and yi are rotated by θ. The
rotational transformation matrix was rotated counterclockwise by θ in a two-dimensional
plane. The modeled ellipse equation and sensor data coordinate values were then used to
decide whether unnecessary data were included.

(x− x0)
2

a2 +
(y− y0)

2

b2 = 1 (1)
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0
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)
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(
x′i
y′i

)
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Figure 9 compares the performance of the existing filtering scheme and the proposed
elliptical filtering approach in filtering a specific distribution of the target sensor data.
The proposed filtering method resulted in lower sensor data loss. The ‘AddRangeData’
function in the ‘cartographer/mapping/internal/3d/local_trajectory_builder_3d.cc’ file
validates, accumulates, and filters the input sensor data, which are established by accessing
each sensor’s data independently. Therefore, elliptical filtering is implemented using the
’AddRangeData’ function in the file. The elliptical component can be modified during
execution using the existing Lua file without requiring a separate build process.

(a) Sensor data for filtering (b) Existing filtering method (c) Proposed filtering method
Figure 9. Data filtering comparison. The sensor data indicated by the red circle is subject to filtering.

5. Computational Experiments
5.1. Sensor Data Preprocessing

We validated the sensor data preprocessing by synchronizing the sensor data timestamps
and modifying the frame_id field value. We created a bag file, and the site where the bag
file was created is shown in the satellite image in Figure 10. Table 2 displays the details of
the bag file used for sensor data preprocessing. The bag file had a duration of 379 s and
contained PointCloud2 and IMU data. The PointCloud2 and IMU data were published
in the /hesai/pandar and /machine_2/imu topics, with timestamps of 1,504,709,606 and
1,712,023,723, respectively. To synchronize the timestamps of the two topics, the timestamp of
the IMU data with the higher value was set as the timestamp value of PointCloud2. Table 3
displays the results of the sensor data preprocessing. According to the table, the timestamp
value of /machine_2/imu was updated to 1,504,709,606. Furthermore, the frame_id values
of the IMU data needed to be updated. Table 2 shows that the frame_id value for the
/machine_2/imu topic changed to imu_link. The results demonstrate that the proposed
sensor data preprocessing method allows for the synchronization of various sensor data. To
evaluate the performance of sensor data preprocessing, we measured the execution time
of timestamp synchronization on IMU sensor data. The measurement results in Figure 11
show that it took around 0.55 s on average. This indicates that the operation of the proposed
preprocessing is efficient.

Table 2. Bag file information.

Topic Type Count Header
stamp.sec frame_id

/hesai/pandar sensor_msgs/msg/Pointcloud2 3794 1,504,709,606 PandarQT
/machine_2/imu sensor_msgs/msg/Imu 3798 1,712,023,723
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Table 3. Sensor data preprocessing result.

header.stamp.sec header.frame_id

Unpreprocessed 1,712,023,723 “”
Preprocessed 1,504,709,606 “imu_link”

Figure 10. Satellite image.

5.2. Virtual Inertial Data Generation

This section presents the process for validating virtual inertial data generation for 3D
SLAM under stationary conditions. The created virtual data must include the x, y, and z
values of the linear acceleration field, as well as the timestamp. As it is stationary, both x and
y must be set to zero, and z was set to 9.8, which represents the gravitational acceleration.
We generated the inertial data, and Table 4 presents the measured data and virtual data
generated using the proposed virtual inertial data generation method. The x, y, and z
values of the measured linear acceleration results were all zero. However, the table shows
that the x and y values were set to 0 and the z values to 9.8. The results confirmed that
virtual inertial data, including gravitational acceleration, were generated. We measured
the execution time of linear acceleration to evaluate the computation overhead of virtual
inertial data generation. The measurement results are presented in Figure 12. The average
generating time was approximately 0.15 milliseconds. This result implies that the overhead
for virtual inertial data generation is insignificant.
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Figure 11. Execution time for sensor data time synchronization.
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Table 4. The measured and virtually generated linear acceleration results.

Measured Virtual

x y z x y z
0 0 0 0 0 9.8
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Figure 12. Execution time for virtual inertial data generation.

5.3. 3D Map Production Offline

This section presents the validation of the 3D map production function in offline
conditions. For generating the 3D map, we used the bag files listed in Table 2. We
verified that the 3D terrain map was built using the previously saved bag file in the offline
environment and that the generated 3D map was output by the rviz2 node. Figure 13 shows
the rviz2 screens of the SLAM system with the proposed 3D map production function and
the current SLAM system. The results for the current and proposed SLAM systems are
shown in Figure 13a and 13b, respectively. Although the 3D map shown in Figure 13a
was poorly created, Figure 13b shows the 3D terrain displayed using rviz2. These results
indicate that the proposed 3D map production function can produce 3D maps in an offline
environment from a previously created bag file.

(a) rviz2 result of existing SLAM system (b) rviz2 result of proposed SLAM system

Figure 13. Comparison of rviz2 execution results.

5.4. Multi-Node SLAM

To evaluate the feasibility of the multi-node SLAM system’s functionality, we separated
the bag files listed in Table 2 into two different files. Table 5 presents information on the
split bag files. Multiple trajectories were combined into a single map for multi-node SLAM.
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The results are shown in Figure 14. The yellow and red lines in the figure represent the
SLAM execution routes for bag4_split_1 and bag4_split_2, respectively. We compared the
results with those shown in Figure 10, which depicts a satellite image of the site where
the bag files were recorded. By comparing the outline of the location and the location of
the buildings, we confirmed that the results of the multi-node SLAM system were similar
to the actual location. Without multi-node SLAM functionality, only half of the map in
Figure 14 could be generated from a separate bag file. The bag file for the route on the red
line would have generated the left side of the map, whereas the bag file for the route on the
yellow line would have generated the right side.

Figure 14. The result of multi-node SLAM execution. The yellow and red lines represent the SLAM
execution routes for bag4_split_1 and bag4_split_2, respectively.

Table 5. Split bag file information.

File Topic Type Count

bag4_split_1 /imu sensor_msgs/msg/Imu 2109
/hesai/pandar sensor_msgs/msg/PointCloud2 2115

bag4_split_2 /imu sensor_msgs/msg/Imu 1662
/hesai/pandar sensor_msgs/msg/PointCloud2 1664

5.5. Elliptical Filtering

The performance of the proposed elliptical filtering scheme was evaluated. For the
bag file captured on-site in Figure 10, we used no filtering, distance-based filtering, or the
suggested elliptical filtering. We used the /scan_matched_points2 topic represented by a
red point in rviz2 to evaluate the effectiveness of the different filtering schemes visually. Car-
tographer filters the input data and publishes the results using the /scan_matched_points2
topic, which is a message in the format of PointCloud2. The results of the various filtering
schemes are displayed in Figure 15. Because no filtering was used, all the measured sensor
data are shown in Figure 15a. The results of using distance-based filtering in SLAM with
the distance set to 10 are shown in Figure 15b. In the figure, the sensor data included in a
circle with a radius of 10 centered on the origin were filtered. The results obtained using
the proposed filtering method are shown in Figure 15c. The origin of the ellipse was at



Sensors 2025, 25, 1808 17 of 20

(5, 0). and it rotated 60° clockwise with major and minor axes of 7 and 5, respectively.
In contrast to the results of the distance-based filtering, the sensor data measured from
the right-hand side are displayed as the results of the proposed filtering method. Conse-
quently, the proposed filtering method maintains essential sensor data while eliminating
extraneous data.

(a) (b) (c)
Figure 15. rviz2 execution results with different filtering schemes. (a) Without filtering. (b) With
distance-based filtering. (c) With the proposed filtering method

Figure 16 depicts the execution times for elliptical filtering and the existing distance-
based filtering method. The average execution times for the existing and proposed filtering
methods were 379.46 s and 379.42 s, respectively. As a result, the two filtering approaches
have about the same computing overhead.
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Figure 16. Comparison of execution time between existing filtering and elliptical filtering methods.

6. Conclusions
This study implemented a SLAM system that improves aspects of the current Cartogra-

pher version’s limitations by incorporating five additional features. Various sensor-related
issues can be addressed through the implemented virtual inertial data generator and sen-
sor data time synchronization scheme. This functionality was enhanced by integrating
Cartographer with OctoMap to perform real-time 3D mapping. In addition, the feasibility
of multi-node SLAM for increasing scalability was investigated. Elliptical filtering was
proposed for filtering unnecessary sensor data. The proposed approaches provide signifi-
cant benefits for improving autonomous robot movement. Multi-node SLAM, in particular,
improves robotic systems’ scalability, while real-time 3D terrain mapping allows for more
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precise environmental awareness. Sensor data time synchronization and virtual inertial data
generation have average execution times of 0.55 s and 0.15 milliseconds, respectively. This
implies that the two schemes have a modest computational overhead. These technologies
can make a substantial contribution to increasing the efficiency of industrial robots.
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