
Academic Editor: Arturo de la

Escalera Hueso

Received: 13 January 2025

Revised: 17 February 2025

Accepted: 5 March 2025

Published: 7 March 2025

Citation: Casado-Pérez, A.; Yanes, S.;

Toral, S.L.; Perales-Esteve, M.;

Gutiérrez-Reina, D. Variational

Autoencoder for the Prediction of Oil

Contamination Temporal Evolution in

Water Environments. Sensors 2025, 25,

1654. https://doi.org/10.3390/

s25061654

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Variational Autoencoder for the Prediction of Oil Contamination
Temporal Evolution in Water Environments
Alejandro Casado-Pérez * , Samuel Yanes , Sergio L. Toral , Manuel Perales-Esteve
and Daniel Gutiérrez-Reina

Department of Electronics Engineering, University of Seville, 41009 Seville, Spain; syanes@us.es (S.Y.);
storal@us.es (S.L.T.); mperales@us.es (M.P.-E.); dgutierrezreina@us.es (D.G.-R.)
* Correspondence: acasado4@us.es

Abstract: The water quality monitoring of large water masses using robotic vehicles is a
complex task highly developed in recent years. The main approaches utilize adaptative
informative path planning of fleets of autonomous surface vehicles and computer learning
methods. However, water monitoring is characterized by a highly dynamic and unknown
environment. Thus, the characterization of the water quality state of a water mass be-
comes a challenge. This paper proposes a variational autoencoder structure, trained in
a model-free manner, that aims to provide a dynamic contamination model from partial
observations of a homogeneous fleet of autonomous surface vehicles. To train the proposed
approach, an oil spillage simulator based on heuristics is provided for world building.
The proposed variational autoencoder was tested in three different environments charac-
terized by different oil spill movements and twp different fleets equipped with different
sensors. The results show accurate future contamination distribution predictions with a
mean squared error ranging from 3 to 9% of the baseline at validation, defined as the static
approach. Further tests addressed the overfit of the proposed neural network, showing
a high robustness against unseen scenarios, and the effects of the gathered monitoring
information in the variational autoencoder performance.

Keywords: VAE; prediction; neural networks; contamination model

1. Introduction
Water plays an irreplaceable role in activities like the conservation of biodiversity,

agriculture, tourism and industry, among others. However, besides being the most abun-
dant liquid on the planet, there is a severe scarcity of quality usable water. This problem
is becoming more accentuated due to climate change in recent years [1], requiring huge
investments and difficult treatments for finding new water sources and acquiring quality
water. The United Nations reflected the need for cooperation between worldwide organiza-
tions in Sustainable Development Goal (SDG) 6 [2]. This goal aims to ensure the availability
and sustainable management of water and sanitation for all. SDG target 6.3 addresses
another problem related to the release of hazardous chemicals and materials.

Approximately half of all the wastewater generated worldwide is released without
treatment [3]. This, in addition to the accidental waste of residues like organic matter,
oil spillage, heavy metals, and even radioactive substances, makes the situation a real
environmental hazard. If these sources of contamination are not detected and treated
accordingly in time, they can extend and cover the whole water surface, contaminating it
directly, affecting its biodiversity, or indirectly promoting the appearance of invasive species
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or algae blooms [4], which, with time, can make the water unhealthy for human use. To
avoid reaching this state of environmental crisis, water quality values must remain within
water quality standards [5], and governments and organizations need to continuously
monitor water masses. Monitoring is the preemptive measure against water contamination
and degradation, as recovery is a process that takes several years [6].

Traditional water quality monitoring approaches focus on taking manual measures
and analyzing samples in laboratories, requiring a lot of effort and human resources [7].
Recently, traditional methods are being replaced with superficial satellite methods [8] or
intelligent robots, such as submarines and surface or aerial vehicles, that can be equipped
with water quality sensors and robotic actuators [7]. Thus, vehicles are able to perform tasks
ranging from exploration to actuation on water masses [9], involving detection, chasing and
cleaning pollutants, and other monitoring tasks in real time. Furthermore, the time taken in
laboratories to analyze samples induces a delay that, in the case of emergent contaminants,
can cause a public health problem [10] not present when monitoring with autonomous
vehicles. Therefore, it is envisioned that autonomous vehicles will play a crucial role in
SDG target 6.6 in protecting water masses bodies [2].

The improvements in battery autonomy and computation power have made au-
tonomous vehicles able to take intelligent actions. Thus, tasks that previously required an
operator remotely controlling the vehicle are being replaced with a programmed movement
policy that dictates the behavior of the vehicle [11]. The objective of these policies is to
provide vehicles with target points or waypoints to travel to, making obtaining a policy
a path planning problem. Another objective is to optimize the monitoring task assigned,
which can be exploration or actuation, while taking into account factors present in the
vehicle, such as battery, sensing, and actuating constraints. Thus, the path planning prob-
lem needs to take into account information about the environment. Developing a policy
becomes a complex challenge due to the highly dynamic scenario of water masses. Since
water is a fluid affected by several forces that facilitate the movement of particles through
the whole mass, determining how a mass of water and its properties evolve through time
is difficult. Therefore, vehicles need to adapt to this environment. Vehicles do not have
prior knowledge about the environment. As a consequence, information is gathered by the
vehicles during its mission and processed inside the vehicle or at a base station that the
vehicle is able to communicate with, making offline planning an invalid solution.

With the advancements of neural networks, this field was able to provide solutions to
the Adaptative Informative Path Planning (AIPP) problem based on deep architectures that
have been developed [12]. As a clear example, Deep Reinforced Learning (DRL) approaches
are able to solve the informative path planning problem, providing a valid policy with
which vehicles are able to carry out the designated task [12], offering more robust and
scalable solutions that adapt to the complexities and uncertainties of the environment. There
are various optimization tasks, but regarding AIPP algorithms, some previous works have
focused on water quality monitoring, contamination phenomenon exploration, and search
tasks [13]. Among these previous works, some have focused on the contamination detection
of algae blooms [14] and oil spills [15] using autonomous surface vehicles (ASVs), which
are also called agents in the field of AIPP [16], equipped with specialized sensors [17,18].
However, most of the previous works made the assumption of lentic waters [19]. This
means that the evolution of water properties and contaminants is slow and it can be
considered that they do not change throughout a monitoring mission. However, this is
not the case in larger water bodies like seam rivers and larger lakes, where the scenario is
highly dynamic due to currents and wind, among other factors. Therefore, water quality
conditions may evolve at the same time or faster than the actuation of the vehicles, and
consequently, measures can become easily outdated. Although the use of multiple vehicles
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can alleviate the problem by increasing the data samples [20] or processing the age of the
data collected [21], the obtained models will not reflect the real evolution of water quality
parameters. Therefore, the planning actions will be sub-optimal in real scenarios.

The aim of a contamination model is to solve the estimation problem, obtaining the
whole contamination map from partial observations and estimating its evolution. Several
contamination models have been studied in the past [22]. In [23], the evolution of a
contaminant in a river was modeled using mathematical hydrodynamic equations and
solving the inverse model, reducing the potential harm caused by pollution accidents.
In [24], several numerical models based on advection–dispersion equations or transport
models for vulnerability assessment were used. However, characterizing the evolution in a
larger water mass like a lake with partial observations cannot be explicitly described with
equations, as it is affected by several chaotic effects. Bayesian contamination models like
the Gaussian process [25] are able to provide valid solutions to the static problem, with
the downside of a high computational cost that increases with the number of samples. In
[26], a contamination model was obtained using a variational autoencoder (VAE) neural
network, providing a more scalable solution with water samples. In the same paper,
the results showed that a good contamination model is able to provide improvement in
policy performance of approximately 50%. Thus, offering a forecasting module of the
contamination that provides not only the present state of the contamination but makes
a prediction of the future state of contaminants is likely to improve policy performance
even further.

This paper proposes a variational autoencoder architecture based on the popular
UNet network [27] combined with a prior and posterior convolutional neural network
(CNN) architecture [28]. In [26], a similar architecture was proposed for the static case. In
this paper, it was extended to a dynamic case, analyzing its capacity to estimate future
distributions. This network was trained in a model-free manner, using only simulated
interactions of the agents with the environment. The aim of the simulator is to provide a
spatio-temporal distribution of pollutants in water bodies, replicating an oil spill accident.
The simulator was used to create training and test datasets. The proposed VAE-UNet
architecture will be a tool for any AIPP algorithm to plan ahead. The VAE works as a model
that can provide accurate information about the contamination state from partial observa-
tions. Simultaneously, it captures the temporal-dependent behavior of the contamination,
providing foresight for future contamination states.

To summarize, this paper contributes the following:

• A novel VAE neural network following the U-Net architecture that aims to provide
future state estimations of water pollutant evolution.

• A comparison of the network performance against a naive baseline prediction.
• A further study of the limitations and overfitting of the suggested architecture.

This paper is organized as follows: Section 2 presents the materials and methods and
describes the problem that the proposed VAE wants to solve, as well as how to set up the
environment, contamination, agents, and the simulator. Lastly, the architecture of the VAE
will be discussed. In Section 3, the results of the VAE obtained will be analyzed, and the
model’s behavior will be compared with that of a naive model. In Section 4, the main
contributions of this paper and future lines of work will be discussed.

2. Materials and Methods
2.1. Problem Formulation

The aim of the proposed variational autoencoder (VAE) is to predict and detect the
evolution of an accidental water contamination, providing a visual image of the current
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and future states of contamination, detailing its evolution. The environment analyzed
evolves dynamically, increasing in size and expanding with time. An example of an oil
spill contamination accident is showed in green in Figure 1 at different timestamps.

The information available is the data gathered by a fleet of autonomous surface
vehicles equipped with sensors, which are called agents from now on. This information
is assumed to be incomplete and dispersed like that seen in Figure 1c. Furthermore, this
information can become easily outdated as the contamination value measured by an agent
is instantaneous. In previous works like [29], contamination evolution was estimated
through the Gaussian process. In [26], a neural network model was used to estimate the
contamination distribution at the current timestamp. An example of this estimation can be
seen in Figure 1d.

(a) (b)

(c) (d)

Figure 1. Oil spill evolution and contamination prediction problem where oil is showed in green.
(a) Oil spill at timestamp 50. (b) Oil spill at timestamp 200. (c) Data measured by agents. (d) Possible
estimation at timestamp 200.

In this paper, this problem is further addressed. The data gathered by the agents need
to estimated not only for the current timestamp contamination distribution but also the
distributions at future timestamps. The complexity added by the estimation of future states
of contamination requires a contamination model. Due to the uncertainties of the water
environment and the unknown factors that affect oil spill contamination, establishing a
mathematical model with the available data is not possible. To solve this problem, this
paper proposes a VAE as a contamination model to provide future contamination states.

The reliability of this estimation is measured using the mean squared error (MSE) of
the contamination distribution. At a given coordinate, the ground-truth contamination is
compared with the estimated contamination distribution, and the MSE is calculated.

2.2. Environment Characterization

Given a water body affected by oil spillage, the 3D environment is reduced to a 2D
horizontal distribution of surface pollutants as in previous works [12], assuming that
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pollutants in the vertical (z-direction) are thoroughly mixed, with a negligible concentration
diffusion coefficient. Space will be divided using an arbitrary-sized square grid H ×W, as
seen in Figure 2a. The environment is hence represented as a graph G = (V, E) defined
as follows:

• V = {vi,j|1 ≤ i ≤ H, 1 ≤ j ≤ W}, where each node vi,j represents a specific position
in the grid.

• E ⊆ V × V is a subset of edges that connect adjacent nodes indicating possible
movements between positions. Node adjacency is defined under the assumption that
the grid is 8-connected.

From the environment representation, we can analyze navigable waters. For each node
vi,j, we will assign a binary value {0, 1}, defining matrix M of size H ×W as the occupancy
of the node vi,j in graph G as seen in Figure 2b:

M[i, j] ∈ {0, 1} where M[i, j] =

1 if vi,j is navigable

0 otherwise
(1)

(a) (b)

Figure 2. Environment characterization. (a) Environment grid V with M detailed. (b) Navigable
water occupancy grid M.

2.3. Oil Spill Contamination Simulator

Contamination is defined as the concentration of a contaminant like crude oil measured
by a sensor. The aim of the simulator is to provide contamination behavior that follows
the movement of real contamination. To represent the contamination in a computationally
efficient way, the oil contamination in the water body is modeled as a set of discrete particles
represented by a set of real positions. With K as the total number of contamination positions,
the set B is defined as

B = {bk = (xk, yk) | k = 1, 2, . . . , K} (2)

where each element bk ∈ B represents a specific contamination position, and (xk, yk), the
coordinates of bk in a continuous reference system. A representation of B over M can be
seen in Figure 3a. A matrix Y̊ of size H×W is defined as the contamination particle matrix:

Y̊[i, j] = |{bk ∈ B | (xk, yk) ∈ Area(i, j)}| (3)
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where each element Y̊[i, j] represents the amount of contamination positions contained in
the vi,j-associated area using the B set of contamination positions. Area(i, j) represents the
area of node vi,j in M contained within the real coordinates that surround the node, and
| · | denotes the size of the subset, the quantity of contamination positions in that area. Y̊ is
depicted in Figure 3b.

Particles

(a)
0.0

1.0

2.0

3.0

4.0

5.0

(b)

Figure 3. Contamination particle distribution. (a) Details of set of real contamination positions B over
M. (b) Contamination particle matrix Y̊.

This simulator assumes that oil spill contamination must have a source from where all
contamination particles originate from before moving through the water body, like in the
case of water shipping [30]. With K as the total number of contamination sources. The set
of contamination sources S is defined as

S = {sk = (vij) | k = 1, 2, . . . , K} (4)

where each element sk represents the node where a contamination source is located. At
each given time step, each contamination source liberates Q contamination particles at
position sk contributing to set B.

In [23], a spatio-temporal model of the migration and dispersion of pollutants in a
river was created using an empirical water quality hydrodynamic equation [23]:

∂hc
∂t

+ u
∂hc
∂x

+ v
∂hc
∂y

=
∂

∂x

(
Ex

∂hc
∂x

)
+

∂

∂y

(
Ey

∂hc
∂y

)
+ H ∑ Si (5)

where hc is the current flow, E is the sum of molecular dispersion coefficients, H is the river
bottom elevation, and S is the sink-source term of contaminants. This equation for a mass
of water can also be described mathematically as in [31]:

bt+1
k = bt

k + ∆t
(

νcurrent + g · νwind + νcorretion + νdi f usion + νmechanical

)
(6)

This model has been further simplified to only consider the effects of the wind νwind

and currents νcurrent on the particle. The last three elements (horizontal turbulent diffusion
velocity νdi f usion, correction νcorretion, and mechanical spreading velocity νmechanical) are
represented by a random effect νrandom following the Brownian movement of particles.
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wwind, wcurrent, and wrandom are the weights associated to each effect of the movement of
particles. The particle movement model is then defined as

b̂t+1
k = bt

k + ∆t(wcurrent · νcurrent + wwind · νwind + wrand · νrand) (7)

The effect of the wind is modeled as a constant 2D vector that affects the whole scenario
uniformly, as seen in Figure 4a. The current effect is modeled as a constant force field that
assigns each node vi,j a 2D vector force. This force field of currents is depicted in Figure 4b
and can be modeled as

wcurrent[i, j] =

[
sin(i− a) ∗ cos(j− b)
−cos(i− a) ∗ sin(j− b)

]
f or[a, b] ∈ V (8)

(a) (b)

Figure 4. Particle movement effects. (a) Wind force field distribution. (b) Current force field
distribution.

This simulator applies two rules before updating particle positions: No particle can
be displaced beyond the water limits, staying at the last position if so. To model the
concentration saturation of a node, which happens under nonlinear viscosity conditions,
quantity C is defined as the maximum node capacity. If a contamination particle enters a
node where there are already C particles present, the node is said to be saturated. The new
particle position will update to the closest node following Algorithm 1, where O is defined
as a set of nodes sorted in ascending order by Euclidean distance, with b̂t+1

k as the expected
new particle position for particle bk.

bt+1
k =


bt

k i f b̂t+1
k ̸∈ M

ParticleInteraction(b̂t+1
k ) i f Y̊bt+1

k
>= C

b̂t+1
k otherwise

(9)

Working with discrete particles is efficient from the simulator’s point of view. How-
ever, in a real-world scenario, an oil spill cannot be measured with particles. A good
approximation to a valid real-world measure is contamination concentration. Given the
amount of contamination particles present in a node Y̊[i, j] and the maximum number of
particles allowed to be present in a node C, node contamination density can be calculated.
The shape of a real oil spill contamination area is characterized by a continuous contamina-
tion concentration [30]. The node contamination density provided by this simulator is a
sparse matrix that presents sharp changes in the contamination density between adjacent
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nodes. To smooth the output of the simulator, a 5 × 5 kernel Gaussian mask is applied to
the contamination density, providing the contamination concentration Y[i, j] as the final
output, as seen in Figure 5c.

Algorithm 1 ParticleInteraction

Input: b̂t+1
k

Output: bt+1
k

Require: V
1: P̃← b̂t+1

k
2: for v̊ij ∈ O(b̂t+1

k ) do
3: if Y̊(v̊ij) >= C then
4: bt+1

k = v̊ij
5: break
6: end if
7: end for

Particles

(a)
0.0

1.0

2.0

3.0

4.0

5.0

(b)
0

0.2

0.4

0.6

0.8

1

(c)

Figure 5. Simulator model. (a) Particle positions B. (b) Contamination particle matrix Y̊. (c) Oil
contamination concentration Y.

2.4. Agent Description

The vehicles that monitor the environment are defined as a fleet of N agents. Each
agent is represented by a variable pn, where n is the vehicle index.

P = {pn | n = 1, 2, . . . , N} (10)

pn is characterized by several factors:

• Position (pn): Each position of the fleet corresponds to a node. A position can be
described as pn = vi,j ∈ V

• Speed: An agent is able to move along the 8-connected node grid. However, some
agents may be able to move several nodes along the same direction.

For an agent, moving along a given node of the map, whether horizontally, vertically,
or diagonally, requires one temporal unit. At any given instant, agents must stay withing
navigable water nodes M and no more than one agent can be simultaneously situated in a
node to avoid crashes between them.

Agents are able to take measures of the oil contamination concentration, be it by
electrochemical or spectral sensors like multi-spectral cameras [7]. Agents that use electro-
chemical sensors are able to take punctual measures. This measure will be representative of
the oil contamination concentration in the node. This hypothesis will hold, given that the
smoothness of the contamination phenomena maintains the locality of every measurement.
Multi-spectral cameras are able to cover larger areas, allowing us to measure contamination
concentration in nodes adjacent to the agent.
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Agent monitoring sensing capability is hence characterized by an influence radius ρn.
At any time step, the agent will provide measured data of the node occupied by it and all
the nodes inside a circular area of radius ρn. As seen in Figure 6a, Θ is defined as the set of
nodes inside the vehicle influence radius.

Θ(pn) = {v ∈ V | |v, pn| <= ρn} (11)

As agents explore the map, vehicles measure the contamination concentration in the
environment. Ỹ is defined as the measured vehicle contamination concentration model:

Ŷ[i, j]← Y[i, j] ⇐⇒ vij ∈ Θ(pn) (12)

This matrix is initialized to −1, as vehicles have no prior knowledge about contamina-
tion positions. If at a given instant, a node vi,j is contained by an agent pn or its influence
radius Θ(pn), the value of ˆY[i, j] will be filled with instantaneous values of Y[i, j], as seen
in Figure 6. As contamination positions B evolve dynamically, the values of Ŷ become
outdated. To provide temporal information to the vehicle contamination model Ŷ, a time
dependence matrix U[i, j] is defined as

Ut+1[i, j]← Ut · γ + Θ(P) (13)

This matrix is initialized to 0, denoting that the point has not been visited yet. As
U[i, j] is visited by an agent or an agent is inside its influence radius Θ(pn), it is updated to
1, denoting that the cell has been visited recently. Then, each temporal unit U[i, j] is multiplied
by a forgetting factor γ in the range (0, 1). This translates to a value of U[i, j] closer to 0 the older
the measure present in the contamination model Ŷ[i, j], as seen in Figure 6c.

The monitoring data of a fleet of four agents with influence radius ρ = 1 can be seen
in Figure 6. The same fleet with influence radius ρ = 4 monitoring data can be seen in
Figure 7. The fine estimation of the real contamination distribution will rely upon the VAE
model, as explained in the following Section. Ultimately, all environment parameters are
summed up in Table 1.

Table 1. Environment description.

Parameter Description

G(V, E) Environment graph.
V, vij Set of environment nodes.

E Set of paths between nodes.
M[i, j] Navigation matrix. Indicates if a node i, j can be visited.

δt Internal simulator time constant.
B, bk Set of contamination particles . Each particle has a position and is associated with a node v.
S, sk Set of source points. Each source point has a position and is associated with a node v.

Q Pollutant liberated from the scenario by the contamination source each time step.
Y̊[i, j] Contamination particle matrix.

C Maximum number of particles per node.
Y[i, j], Ŷ[i, j] Contamination concentration matrix and vehicle model of the contamination particle matrix.
wwind, νwind Wind gain and wind force vector.

wcurrents, νcurrents Current gain and current force field.
wrandom, νrandom Brownian movement gain and Brownian movement force effect.

P , pj Fleet of agents. Set of nodes where a vehicle is present.
ρ Maximum distance of water measurement.
N Number of agents present in the fleet.

Θ(pj) Set of nodes inside a distance ρ.
O Set of nodes sorted in ascending order by Euclidean distance.

U[i, j] Matrix that indicates the age of the data associated with the value of node Ŷ[i, j].
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Figure 6. Agent Model. (a) Influence radius Θ. (b) Model contamination Ŷ (ρ = 1). (c) Time
dependence U (ρ = 1).
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Figure 7. Agent exploration. (a) Contamination concentration Y. (b) Model contamination Ŷ (ρ = 4).
(c) Time dependence U (ρ = 4).

2.5. VAE-UNet Model

The proposed variational autoencoder architecture is an improvement of the one
proposed in [26]. It is composed by a fully convolutional neural network (CNN) with an
encoder and decoder phase comprising four convolutional and max-pooling layers inher-
ited from UNet shape [27]. The variational side comprises 2 separate CNNs that produce
the prior Nprior(µ, δ) and posterior Nposterior(µ̃, δ̃) probabilistic Gaussian distributions. The
network architecture is depicted in Figure 8.

Figure 8. VAE-UNet architecture.

The main new developments from [26] add new channels providing past information
of the contamination model in the input, aiming to obtain future states of the environment.
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Hence, at time t, the input of the VAE will contain a temporal window of the measured
contamination Ŷt constructed from agent samples and the time dependence Ut associated
with them. This set of 2 inputs is concatenated with K samples of data at present and past
states Input = Ŷt−k, Ut−k, Ŷt−k+1, Ut−k+1, . . . , Ŷt, Ut k ∈ K. These windows can be formed
by consecutive timestamps or be selected with asymmetric timestamps. The outputs of
the network are the expected real contamination index at current time ˆ̂Yt and future time
ˆ̂Yt+1, . . . Ĩt+K. This scheme can be seen in Figure 9.

Figure 9. Expected inputs and outputs.

2.5.1. VAE-UNet Architecture

The proposed VAE needs to learn from a vehicle model contamination matrix and
extract not only the data provided but also the implicit information about the dynamics
that rule the environment and invert them to provide the desired output contamination
estimation. Locating an oil spillage on a map is a task that involves visual information.
The use of CNNs facilitates the extraction of high-level features from the input channels
and, combined with a UNet shape [27], is able to perform the image segmentation of
details very well. On the other hand, a structure broadly used in neural networks when the
desired output replicates the input with variations is the autoencoder [32]. This structure
is able to encode the main aspects that dictate the behavior of the oil spill to a reduced
dimension layer, called the latent space, and use the same rules to reconstruct the same
inputs. The module in charge of reducing dimensions is called the encoder, and the one
in charge of reconstructing the input is called the decoder. An enhanced version of the
autoencoder, called a variational autoencoder [33], parameterizes the latent space into n
Gaussian distributions, with its mean µ and covariance σ2 being the output layers of its
encoder. This approach is able to provide a structured architecture to fit the data into
Gaussian distributions, with the subsequent benefits of the sampling capacity allowing us
to provide as many different outputs as samples taken from these Gaussian distributions.
In [28], this VAE architecture was improved through the addition of another latent state
called the posterior, introducing the prior–posterior architecture.
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The VAE used in this study presents 2 different latent spaces produced in the encoder–
decoder phase. The one generated by the prior has as inputs the measured contamination Ŷ
and time dependence U, providing a latent space Nprior originated from the minimization
of the prediction error from the partial observations. The second latent space Nposterior

has as inputs not only the partial observations but also the actual real contamination
concentration Y. The information provided by training with the desired output makes
the network learn from data not available originally, providing a lower loss and hence, a
better latent space. However, complete contamination information is not available in a
real-world experiment, with the prior network being the only feasible solution. The aim of
this architecture is to track both latent spaces during training and try to reduce the Kullback–
Leibler divergence [28] present between the latent spaces of the prior and posterior network.
In this way, the prior is able to induce the data only provided to the posterior. This makes
the generated estimations provided by the VAE follow behaviors closer to the ground-truth
when partial observations are provided. A scheme of the architecture is shown in Figure 8.

2.5.2. VAE-UNet Loss Function

The loss function here is an adaptation of the loss proposed in [34]. The output of the
VAE ( ˆ̂Y) must match the real ground truth (Y). However, during training, neural networks
are biased to first minimize the largest loss [35]. Due to the nature of a temporal prediction,
the farther it is into the future, the higher the probability to miss in the prediction. This
motivates the network to minimize loss in most future predictions (higher by origin) and
less in the near future. To avoid this and improve the accuracy of close future predictions,
the MSE of the future predictions is weighted with a forgetting factor ϕ ∈ (0, 1]. The
reconstruction loss at instant t + k is thus defined as

Lrecon = ∑ MSE(Yt+k, ˆ̂Yt+k) · ϕk k ∈ N (14)

As mentioned before, the latent space is doubled by 2 variational latent spaces. The
output of the network is composed using the posterior latent space during training (blue
lines in Figure 8) and prior latent space during testing (green lines in Figure 8). The
divergences between both latent spaces leads to the definition of the Kullback–Leibler (KL)
divergence loss.

LKL = KL(Nprior(µ, δ), Nposterior(µ, δ)) (15)

Lastly, As the VAE needs to process an image as input and provide an image as output,
a style transfer strategy [36] is adopted utilizing the VGG16 [37]. The VGG16 is a fully
trained CNN for image recognition on a huge dataset. Through studying this network, it
is observed that the initial layers contain the low-level features of the image (color, edges,
texture, etc.), and deeper layers contain higher-level features (objects and their arrangement
in the input image) [36]. In [36], it was demonstrated that pixel-by-pixel comparisons, like
the one we performed with Lrecon, show a low performance when training a new neural
network using a small dataset. However, if training is assisted using a fully trained network
like the VGG16, it results in a much better-performing network. This is defined as style
transfer [36] and is a strategy used in image transformation problems. The VGG16 is used
to compare the output of the proposed VAE-UNet against the actual ground truth using
the features extracted by the VGG16. By doing this, we encourage the output oil spill to
cover the same nodes that are polluted in the ground truth, preserving the same spatial
structure. The mean square error (MSE) of the VGG16 layers relu1_2, relu2_2, relu3_3, and
relu4_3 is defined as Perceptual Loss, as described in Figure 10.

Lperceptual = MSE(ξ(Y), ξ( ˆ̂Y)) (16)
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The total loss of the network is defined as the weighted sum of all 3 losses.

L = ωreconLrecon + ωKLLKL + ωperceptualLperceptual (17)

Y t

Y t^̂
VGG16

Figure 10. Depiction of the feature comparison performed in Lperceptual .

2.6. Agent Planner

The fleet model plays a crucial role in the modeling of the contamination. The input of
the VAE is directly related to the fleet’s information-gathering performance. It is necessary
to address the model at the same time that the path planner is designed. The unavoidable
consequence of an ill-designed model is poor monitoring and decision making. From the
model perspective, poor information acquisition will result in a catastrophic scarcity of
examples to learn from.

Agent information policies have been broadly studied [13], and the optimal policy is
out of the scope of this paper. The aim of this study was to use the VAE to predict future
states of contamination from partial observations that are assumed to provide relevant
enough data of the contamination source. The proposed policy was selected to be a safe
random coverage policy that provides enough information without considering the optimal
policy in the long range. This puts the focus on the necessary objective of obtaining a model
that works even when the policy is not perfect. Consequently, the model will be robust
enough to serve other purposes in other scenarios. At the start, agents choose a random
direction in the 8-connected grid to move toward. The selection takes into account that
the agent will stay within navigable water M limits and the destination cell is not already
occupied by another agent. When an agent movement will cause the agent to leave M or
crash with another agent, the agent chooses a new safe random direction in the 8-connected
grid. To avoid the overlapping of positions and possibilities of agents occupying the same
node due to simultaneous movement, agents follow a priority order defined randomly at
the start of the simulation, where an agent executes the policy just after the previous one
has established a target position.

3. Results
Experiments were performed using a 97 × 93 node scenario in a circular shape. The

simulator was used offline to create datasets for Ŷt and Ut as inputs of the network and Yt

as the ground truth of the scenario and the value we want to compare to as output from
the variational autoencoder (VAE). To evaluate the performance of the VAE in different
environments, the simulator was configured to create scenarios where oil spill evolution
can present three different behaviors: Linear dispersion, currents and wind affect particles
moving in a general direction, allows erratic behaviors, as seen in Figure 11c. Circular
expansion, wind and currents forces are minimal and the sources have a high flow of
particles, allowing for particles to grow in a circular shape as seen in Figure 11a. Triangular
diffusion is a rule-based behavior that mimics an oil spill caused by a flow coming from a
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broken cross pipe that follows a cross shape, as seen in Figure 11b. Oil presents a fast release
that slows down once it has been liberated to the water body. This last environment presents
the most artificial behavior but adds more complexity to the problem. The simulator
(https://github.com/AloePacci/cpp_oil_simulator, accessed on 11 January 2025) and VAE
(https://github.com/AloePacci/VAEPOCTEWE, accessed on 11 January 2025) codes are
available on GitHub.

(a)
0

0.2

0.4

0.6

0.8

1

(b) (c)

Figure 11. Oil spill behaviors. (a) Circular expansion. (b) Triangular diffusion. (c) Linear dispersion.

The VAE was configured to have five window frames
(
Ŷt, Ut) as inputs expatiated

uniformly five time steps between each other ranging from t−20 to t0, and another five
frames as output ranging from t0 to t20. Several datasets were created for each of the oil
spill behaviors; 20,000 different contamination scenarios were synthesized for training,
4000 for testing and 200 for validation. These include monitoring situations with agents
equipped with electrochemical sensors, with influence radius ρ = 1, and agents equipped
with cameras, with influence radius ρ = 4. An example of a contamination instance dataset
can be seen in Figure 12.

Figure 12. Dataset example containing inputs
(
Ŷt, Ut) for ρ = 4 and ground truth

(
Yt).

All simulations and training were carried out on a server running Ubuntu 22.04.4
LTS (Universidad de Sevilla, Sevilla, Spain), equipped with an Intel Dual Xeon Gold
5220R CPU 2.20 GHz, 192 GB of RAM and two GPUs: Nvidia Quadro A4000 48 GB and
Nvidia RTX 3090 25 GB. Training loss was calculated using Equation (17) and forgetting

https://github.com/AloePacci/cpp_oil_simulator
https://github.com/AloePacci/VAEPOCTEWE
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factor ϕ = 0.9. The hyperparameters ωrecon, ωKL, ωperceptual and the learning rate lr were
optimized utilizing Optuna [38] to minimize the reconstruction loss Lrecon in order to
address the final objective of model accuracy.

Given the datasets and different combinations of agents and oil spill evolution be-
haviors, different networks were trained to calculate the cross losses and validate the
effectiveness and generalizing capabilities of the proposed VAE. Thus, results were divided
into a fleet of agents characterized by an influence radius ρ = 1 and another characterized
by an influence radius ρ = 4. For each fleet of agents, four different models were trained:
one for each of the oil spill behaviors for cross validation, and one containing a fusion of all
three oil spill behaviors, from now on called the generalized network. The weights were
chosen for the network at the epoch that showed the lowest test loss.

3.1. Performance Metrics

As mentioned previously, the aim of the VAE-UNet is to provide future states of oil
spill contamination. The baseline taken for comparison to evaluate the performance of the
network is the static approach, where the environment is considered non-dynamic and the
expected future state of the contamination position is equal to the current one ˆ̂Yt+k = Ŷ0

k ∈ N. The loss at time step 0 at areas recently visited by agents is minimal. However, in
areas with data measured several steps ago, or with predictions at future timestamps, the
error using this approach increases at a high rate. The visual of this loss establishes this
baseline as a solution that underperforms but provides a valid estimation.

Figure 13 shows the results of evaluating the reconstruction loss MSE
(
Yt −Y0) before

using the baseline approach. The loss incurred by the VAE-UNet was calculated with
respect to the baseline and expressed in a percentage value of the baseline loss.

Figure 13. Baseline error
(
Yt −Y0).

3.2. Fleet with ρ = 1

This fleet is characterized by an influence radius ρ = 1 and is able to take measure-
ments in the nodes where the agents are currently located at, like the one used in [39]
equipped with electrochemical sensors. It is made up of four different agents that are
able to move through three cells each time step. An example of the dataset can be seen in
Figure 14.
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Figure 14. Dataset example containing inputs
(
Ŷt, Ut) for ρ = 1 and ground truth

(
Yt).

The networks training loss curve shows a high descending slope that stabilizes around
epoch 100, as seen in Figure 15. A value of 200 epochs for training was considered sufficient.
Figure 16 shows the relation between the three different losses during training. In analyzing
the reconstruction loss Lrecon curve, the loss associated with each of the future estimations
shows a similar value despite the loss reduction applied to future predictions. This justifies
the assumption taken before that the further the network looks into the future, the higher
the loss.

0 25 50 75 100 125 150 175 200
epoch

10 2

Lo
ss

Train Loss

0 25 50 75 100 125 150 175 200
epoch

10 2

6 × 10 3

2 × 10 2

3 × 10 2

Lo
ss

Test Loss

Figure 15. Training and test loss curves (ρ = 1).

In Table 2, the reconstruction loss value of each trained network is shown. The network
trained using only triangular diffusion data shows the lowest loss. This could be due to the
simplicity of the contamination behavior for this case. It is followed by circular expansion;
being simpler, it presents no effects of the wind or currents. Lastly, the linear dispersion
case shows the highest loss. This could be due to the high variety and random evolution
of this contamination behaviour. The generalized network, presenting data from all the
different datasets, presents a middle value.
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Figure 16. Training loss curves (ρ = 1).

Table 2. Train and test reconstruction loss (fleet ρ = 1).

VAE-UNet Test Loss Train Loss

Circular expansion 5.216× 10−3 1.449× 10−3

Triangular diffusions 3.479× 10−3 1.624× 10−3

Linear dispersion 12.394× 10−3 10.139× 10−3

Generalized 6.637× 10−3 2.124× 10−3

Once the different networks were trained, their performances were evaluated. Table 3
shows the reconstruction loss results of evaluating each trained network against each of
the different validation datasets. In view of the results, the solution presented in this paper
is able to provide a prediction of the evolution of an oil spill with an error of less than 10%
of the naive baseline approach for each assigned contamination behaviour. This shows that
the network is able to predict oil spill evolution with high accuracy in environments similar
to those it was trained with.

To test the adaptability of the trained VAE-UNet in unseen behaviour, the network
was evaluated against datasets in which the oil spill behaves very differently compared
to the dataset that it was trained on. The results show that the VAE behaves better than
the baseline prediction in all individual cases, except for the circular expansion cross-loss
against the triangular diffusion case, which underperformed. This occurs mostly due to
overfitting, as there is no wind or current effect in the circular expansion dataset. The
opposite can be seen in the linear dispersion network, where contamination particles
evolve in diverse ways, allowing for a better adaptability and lower cross-losses. A special
case is triangular diffusion error, where the generalized VAE performs better than in
triangular case in its own error. This could be due to loss hyperparameters being optimized
for the generalized case and a better understanding of particle behavior due to a more
varied dataset.

Table 3. Cross-losses VAE-UNet architecture (fleet ρ = 1).

VAE-UNet Circular Expansion
Environment Loss

Triangular Diffusion
Environment Loss

Linear Dispersion
Environment Loss

Circular Expansion 1.54% 100.16% 74.22%
Triangular Diffusions 20.34% 4.71% 20.76%

Linear Dispersion 17.48% 11.73% 7.71%
Generalized 1.82% 4.53% 8.72%

Baseline 0.8551 0.3194 0.2815
Percentages were calculated with respect to the baseline.

Lastly, Table 4 shows the evolution of Lrecon along the different prediction timestamps
for each VAE-UNet trained through the complete validation dataset. The values show that
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as the VAE-UNet predicts further into the future, the higher the error in the prediction.
The increase in this loss is higher in the specific contamination behaviors of VAE-UNets
due to them not being trained for the whole dataset. However, the loss value remains low,
presenting a better estimation than the baseline. The Supplementary Material includes a
video showing the evolution of the VAE-UNet as the fleet explores the map.

Table 4. VAE-UNet performance comparison by time step (fleet ρ = 1).

VAE-UNet Loss t0 Loss t5 Loss t10 Loss t15 Loss t20

Circular Expansion 36.04% 37.66% 39.08% 40.59% 42.27%
Triangular Diffusions 14.65% 15.7% 16.73% 17.66% 18.45%

Linear Dispersion 12.41% 13.25% 14.11% 14.96% 15.82%
VAE-UNet Generalized 3.51% 3.68% 3.84% 4% 4.16%

Baseline 1.5173 1.5687 1.6205 1.6726 1.7252
Percentages were calculated with respect to the baseline.

3.3. Fleet with ρ = 4

The fleet is characterized by an influence radius ρ = 4; this could be the case of agents
equipped with spectral sensors like the ones present in [40]. It is made up of four different
agents that are able to move through three cells each time step. An example of this fleet’s
dataset can be seen in Figure 12. This fleet is able to provide contamination information
about nodes adjacent to the agents in a four-node radius, providing more information
than the one equipped with electrochemical sensors, resulting in a lower loss, as seen in
Figure 17. The analysis of the reconstruction loss for each time step in Figure 18 shows
similar values despite the loss reduction. This result enhances the assumption that the
further into the future the estimation, the higher the error committed by the VAE in the
prediction. Table 5 presents the training and testing reconstruction losses. The losses
present the same relationships. However, due to having more information, the magnitude
of the loss is lower.

Table 5. Train and rest reconstruction loss (fleet ρ = 4).

VAE-UNet Test Loss Train Loss

Circular Expansion 0.930× 10−3 0.756× 10−3

Triangular Diffusions 1.719× 10−3 1.427× 10−3

Linear Dispersion 7.580× 10−3 1.057× 10−3

Generalized 3.707× 10−3 1.249× 10−3
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Figure 17. Training and test loss curves (ρ = 4).
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Figure 18. Training loss curves (ρ = 4).

The performance of the network was evaluated, and the results are shown in Table 6.
The static approach selected as the baseline provided by this fleet has more information,
providing an estimation loss that is six times lower on average. The VAE is able to process
the new information to provide better estimations. However, even though the absolute loss
values were reduced. The cross-losses show a performance worse than those of the baseline
in environments different from those in the trained cases. This overfit is more present in
the circular expansion case trained without the influences of the wind or currents. The
opposite is seen in the linear dispersion case, presenting a more varied training dataset and
environment effects.

Table 6. Cross-losses of VAE-UNet architecture (fleet ρ = 4).

VAE-UNet Circular Expansion
Environment Loss

Triangular Diffusion
Environment Loss

Linear Dispersion
Environment Loss

Circular Expansion 4.31% 386.17% 601.95%
Triangular Diffusions 43.26% 18.09% 146.96%

Linear Dispersion 46.38% 53.41% 47.86%
Generalized 4.11% 16.77% 60.90%

Baseline 0.1615 0.0479 0.0233
Percentages were calculated with respect to the baseline.

Table 7 shows the evolution of Lrecon along the different prediction timestamps through
the complete validation dataset. The overfit can be easily seen in the circular expansion
network. The rest of the trained networks present loss values lower than those of the
baseline. The generalized dataset presents the lowest reconstruction loss value, being the
network trained with the most varied dataset. These results proclaim that the more varied
the dataset, the better and the more robust the network, leading to better adaptation to
unknown environments and lower losses.

Table 7. VAE-UNet Performance comparison by time step (fleet ρ = 4).

VAE-UNet Loss t0 Loss t5 Loss t10 Loss t15 Loss t20

Circular Expansion 78.00% 85.32% 91.31 % 96.34% 100.96%
Triangular Diffusions 27.17% 28.36% 29.64% 31.18% 32.56%

Linear Dispersion 25.34% 27.58% 29.75% 31.81% 33.76%
VAE-UNet Generalized 7.19% 7.49% 7.75% 7.99% 8.21%

Baseline 0.2470 0.2701 0.2948 0.3206 0.3474
Percentages were calculated with respect to the baseline.

A visual representation of the VAE-UNet generalized network for the fleet equipped
with electrochemical sensors can be seen in Figure 19, showing the partial input Ŷ and
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the output of the VAE ˆ̂Y against the ground-truth data Y and the difference between both
ˆ̂Y − Y. As mentioned previously, the agent policies are not the objective of this study.
Figure 20 shows an example where agents have yet to discover the oil spill contamination.
The VAE-UNet predicts contamination to be in an erroneous position. This addresses the
effect of the fleet’s information-gathering performance present both during testing and
training in the modeling of the contamination.

Figure 19. Comparison of VAE (generalized) output against real ground truth.

Figure 20. Comparison of VAE output against real ground truth, unfavorable case.
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Figure 21 shows the evolution of the different losses along three different oil spill envi-
ronments. Initially, reconstruction loss increases until the contamination area is detected
and then decreases sharply. The generalized network presents instances where the fleet
with ρ = 1 presents a lower loss than ρ = 4. This is due to the planner policy of the agents
that provides different monitoring information to each fleet.
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Figure 21. Reconstruction loss during a synthesized oil spill contamination accident.

4. Conclusions
This paper proposes a variational autoencoder to predict the evolution of oil spill con-

tamination in water bodies from partial observations. To assess performance, it was tested
on several scenarios presenting three different simulated oil contamination environments:
circular expansion, presenting minimal wind and current forces; triangular diffusion, where
contamination is exposed to biased currents; and linear dispersion, allowing random be-
haviors with high wind and current effects. Furthermore, the test was duplicated using
two fleets of autonomous surface vehicles with different monitoring capabilities: a fleet
equipped with electrochemical sensors able to take punctual measurements and a fleet
equipped with spectral cameras able to monitor an area close to the vehicle.

According to Tables 4 and 7, the validation results of the proposed generalized VAE
show a prediction loss as low as 3.51%, the baseline at current time, by the fleet equipped
with electrochemical sensors, and as high as 8.21%, the baseline 20 time steps into the
future, by the fleet equipped with spectral cameras. The magnitude of this loss increases
with the age of the predictions, presenting an increase the further into the future that the
predictions are made. The overfit of the network to the data trained on was tested using
networks trained with datasets presenting only one of the three available environments.
The results show a lower loss at the specific environments and a higher loss at different
ones. A further study showed that this overfit decreases when the network is trained with
a more varied dataset, presenting validation losses as high as six times the baseline for
the circular expansion case in the fleet equipped with spectral cameras, or 11.73% for the
baseline, in the linear dispersion case with the fleet equipped with electrochemical sensors.
Thus, it is expected that the proposed generalized network trained with a varied dataset
performs very well in new environments.

The gathering performance of the agents affects the proposed VAE in two different
ways. The fleet equipped with spectral cameras is able to cover a wider monitoring area,
providing more monitoring data and allowing for a reconstruction loss six times lower on
average. Furthermore, the wider coverage allows for detecting the contamination position
with more certainty. The path-planning policy is random, presenting cases where the
vehicles have not detected any contamination and the prediction erroneously locates the
contamination. Thus, in a monitoring scenario, the initial losses of the proposed VAE show
an underperforming solution.

Future lines of work diverge into two lines of investigation. On the one hand, an
analysis of the effect of the proposed VAE-UNet structure on informative path planning
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should be performed, providing numeric data of the effects of taking a future state of con-
tamination particles into account in agent policy estimation. On the other hand, the limits of
the VAE should be addressed, evaluating the effects on the prediction accuracy of different
agent policies and the input requirements regarding number and age of window frames.

Supplementary Materials: A video was added as Supplementary Data to provide a better visual
of the VAE-UNet performance: https://youtu.be/xtE6pfyCSVo (accessed on 14 February 2025).
Video S1: Variational autoencoder tests fleet electrochemical sensors. https://youtu.be/KH9hu6
ksXp8 (accessed on 14 February 2025). Video S2: Variational autoencoder tests fleet spectral sensors.
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