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Abstract: Biometrics-based authentication mechanisms can address the built-in weakness
of conventional password or token-based authentication in identifying genuine users.
However, 2D-based fingerprint biometrics authentication faces the problem of sensor
spoofing attacks. In addition, most 2D fingerprint sensors are contact-based, which can
boost the spread of deadly diseases such as the COVID-19 virus. Three-dimensional
fingerprint-based recognition is the emerging technology that can effectively address the
above issues. A 3D fingerprint is captured contactlessly and can be represented by a
3D point cloud, which is strong against sensor spoofing attacks. To apply conventional
2D fingerprint recognition methods to 3D fingerprints, the 3D point cloud needs to be
converted into a 2D gray-scale image. However, the contrast of the generated image is often
not of good quality for direct matching. In this work, we propose an image segmentation
approach using the deep learning U-Net to enhance the fingerprint contrast. The enhanced
fingerprint images are then used for conventional fingerprint recognition. By applying
the proposed method, the fingerprint recognition Equal Error Rate (EER) in experiment
A and B improved from 41.32% and 41.97% to 13.96 and 12.49%, respectively, over the
public dataset.

Keywords: biometrics; fingerprint; 3D; deep learning

1. Introduction
Biometrics-based authentication mechanisms can address the built-in weakness of

conventional password or token-based authentication in identifying genuine users [1].
However, a 2D-based fingerprint biometrics authentication system faces the problem of sen-
sor spoofing attacks, where attackers can capture the latent fingerprints left unintentionally
on glasses or other objects and then make rubber fingerprints to spoof the 2D fingerprint
sensor [2–4].

A 3D fingerprint is captured contactlessly and can be represented by a 3D point
cloud, which is strong against sensor spoofing attacks. It also enjoys the benefit of be-
ing hygienic. However, how to make use of the 3D fingerprint point cloud for effective
identity authentication is very challenging. Ding et al. [5] utilized surface and subsurface
fingerprint information to enhance authentication accuracy while also making the system
more resistant to forgery. He et al. [6] proposed estimating 3D finger angles from a 2D
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fingerprint image as a method to enhance fingerprint matching accuracy, with potential
applications in forensic analysis. To facilitate the study on 3D fingerprints, Dong and
Kumar [7] synthesized contactless 3D fingerprints and a new framework to match contact-
less to contact-based fingerprints. Three-dimensional fingerprints are strong against sensor
spoofing attacks as it is infeasible to capture a 3D fingerprint left unintentionally anywhere.

The 3D fingerprint is a three-dimensional representation of a finger surface [8]. Three-
dimensional fingerprints can be presented by a 3D point cloud, which is a collection of
data points representing the surface of the finger that can be used to extract fingerprint
features [9]. In contrast to 2D fingerprints, which only include the surface pattern of a
fingerprint, the depth and curvature of ridges can also be extracted from a 3D fingerprint,
which offers a higher level of security and spoof resistance [1].

In 2D fingerprint recognition, there are numerous situations where image quality is
insufficient for reliable feature extraction, highlighting the necessity for studies on effective
image enhancement methods. Ai and Kwon [10] proposed a U-Net enhancement method
to increase image contrast for the images taken from surveillance cameras in very-low-
light conditions. Huang et al. [11] proposed a latent fingerprint enhancement method by
using U-Net architecture, where the model is trained progressively, starting with lower-
quality images and gradually moving to higher-quality images. Liu and Qian [12] used a
nested U-Net for latent fingerprint enhancement, which uses synthetic latent fingerprints
for training. Gavas and Namboodiri [13] proposed a modification of U-Net to enhance
low-quality fingerprints.

Three-dimensional fingerprint recognition involves capturing the fingerprint features
from a 3D point cloud. One approach that simplifies 3D fingerprint recognition is to
unwrap a 3D fingerprint to a 2D image [14] or flatten a 3D fingerprint [15] and then use a
conventional 2D fingerprint recognition algorithm for the recognition. The resulting images
from these methods may lack sufficient contrast or contain distorted sections, making
them unsuitable for direct use in 2D-based fingerprint recognition. Unlike standard 2D
fingerprint images, those generated from a flattened 3D point cloud are synthetic, with
intensities derived from the relative height of points in the cloud. Currently, no existing
image enhancement methods specifically address this scenario.

In this study, we propose an image enhancement method by using a deep U-Net to
improve the quality of flattened point cloud images. Note that the flattened point cloud
images are fictitious because the gray intensity is not formed from the natural fingerprint
ridge–valley structure as in most 2D fingerprint sensors. This work will be the first of its
kind in the field.

The rest of this paper is organized as follows: Section 2 describes the method used
for flattening the 3D point cloud and our proposed method for fingerprint enhancement.
Section 3 details a setup for experiments and the results, and the conclusion of this work is
presented in Section 4.

2. Methodology
In this section, we first introduce a 3D point cloud flattening method, adapted from an

existing 3D fingerprint unwrapping approach, which we use to convert 3D fingerprints
into 2D gray-scale fingerprint images. Subsequently, we present the proposed method
aimed at enhancing these generated images. Algorithm 1 given below shows an overview
of the proposed method.
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Algorithm 1: Processes used to enhance contrast of the generated gray-scale
fingerprint image

Data: 3D point cloud
Result: Enhanced gray-scale fingerprint image

1 Flattening 3D point cloud by cylinder surface fitting
2 Converting flattened 3D point clouds to 2D gray-scale images to generate training

input
3 Generating ground truth 2D images
4 Training the U-Net model
5 Applying the trained model to enhance fingerprint images
6 return Enhanced fingerprint images;

2.1. Flattening 3D Fingerprint and Generating Gray-Scale Image

The flattening scheme used in our method is derived from a 3D point cloud unwrap-
ping method that uses surface fitting [14]. In this method, the surface of a 3D fingerprint
is modeled as the surface of a cylinder. We use this approach to fit a surface to the point
cloud. However, instead of unwrapping the data, we flatten the 3D point cloud. This is
achieved by subtracting the z-value of each point on the fitted surface from the z-value of
its corresponding point in the point cloud.

To generate the fitted surface, the radius of the cylinder needs to be calculated. First,
the length of the point cloud is segmented into slices, each with a width of one point. The
central slice is then used to determine the radius of the cylinder. By using the chord length
(width of the slice) and the arc height (the difference between the z-values of the highest
and lowest points in the slice), the radius of the cylinder can be estimated, following a
method similar to the one detailed in [16]. Figure 1a shows a sample 3D point cloud and
Figure 1b shows the flattened point cloud by applying this concept.

(a) (b)

(c) (d)

Figure 1. (a) A sample 3D fingerprint point cloud. (b) The flattened 3D point cloud by using cylinder
surface fitting [14]. (c) A generated gray-scale image from the sample 3D fingerprint point cloud
in (a). (d) The generated gray-scale image from the flattened 3D point cloud in (b).
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By applying the method described in [15], a flattened 3D point cloud can be converted
into a gray-scale image. In this approach, the height of the points (Z value) in the point cloud
is used to determine the intensity levels of the corresponding pixels at the same X and Y
locations in the gray-scale image. The point with the highest Z value is assigned an intensity
of 0, while the point with the lowest Z value is assigned the highest intensity. Points with
Z values in between are mapped to intensities ranging from 0 to 255 proportionally. In
this way, pixels with higher intensities represent valleys and those with lower intensities
represent ridges on the fingerprint surface. Figure 1c,d show the generated gray-scale
images from the point clouds depicted in Figure 1a and 1b, respectively. It is obvious that
these images are of poor quality and are not suitable for direct matching. We will present
our solution for the image enhancement, which will be described in the following.

2.2. Fingerprint Enhancement by U-Net

This section describes our proposed method and the preliminary approaches employed
for image enhancement using U-Net.

2.2.1. U-Net-Based Full Image Fingerprint Enhancement

In this method, the gray-scale images generated in Section 2.1, along with their corre-
sponding ground truth images, are first used to train a U-Net model. The trained model
is then applied to enhance the gray-scale fingerprints. Figure 2 illustrates the processes
involved in the proposed method for generating training data.

Figure 2. Processes used in the proposed method for generating the training data for U-Net-based
full image training.

For this purpose, the Hong Kong Polytechnic University 3D Fingerprint Images
Database Version 2 [17,18] was utilized. Fingerprint impressions from the first 210 subjects
in session 1 of this dataset were used to train the model. The input data for training were
generated by converting the point clouds of these 210 subjects into gray-scale images. Each
subject has six 3D point cloud impressions, resulting in a total of 1260 gray-scale images
used as training input.

For each point cloud in Dataset A, there are two corresponding contactless 2D fin-
gerprints, each captured under different illumination conditions and originally used to
generate the 3D point cloud data. However, these 2D images cannot be directly used
as ground truth due to size differences with their 3D point cloud counterparts. In our
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experiments, the Region of Interest (ROI) of the 2D images was manually selected and
cropped by detecting mutual minutiae between the 2D images generated from the 3D point
clouds and the contactless 2D images. Figure 3 illustrates a sample contactless 2D image
and its corresponding ROI.

(a)
(b)

Figure 3. A sample 2D image and its corresponding ROI are shown in (a) and (b), respectively.

Next, the ROI images were binarized by using VeriFinger [19]. Figure 4 shows the
intensity of a section of a binarized image ranging from 0 to 255. The black lines show
the position of the ridge patterns and the area in the middle of the black lines shows the
position of the valley.

Figure 4. A sample intensity pattern of a section of a binarized image ranging from 0 to 255. The
black lines show the position of the ridge patterns and the area in the middle of the black lines shows
the position of the valley.

Figure 5a shows the binarized image from the ROI image in Figure 3b. The binarization
process for some impressions results in blank sections. Figure 5b shows a sample binarized
image with such blank areas. The binarized images generated for all the ROI images,
totaling 1260 images, will be used as ground truth for training the model.
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(a) (b)

Figure 5. A sample binarized image from Figure 3a shown in (a). (b) A sample binarized image with
blank sections.

The U-Net enhancement model is illustrated in Figure 6 with an input and output
image size of 352 × 248 pixels. The model includes 256 classes to cover all potential intensity
levels in a gray-scale image. The training parameters are shown in Table 1. Figure 7a shows
a sample generated gray-scale image, and Figure 7b displays the enhanced image obtained
using U-Net-based full image fingerprint enhancement. It can be observed that the visibility
of ridge and valley patterns in the enhanced image is significantly improved. Additionally,
ridge and valley patterns in some sections that were previously difficult to detect are now
clearly visible. However, the enhanced image contains some blank areas, which may result
from blank regions in certain ground truth images, as shown in Figure 5b.

Figure 6. The U-Net model that we used to enhance fingerprint images.

(a) (b)

Figure 7. (a) A sample generated gray-scale image, and (b) the enhanced image using U-Net-based
full image fingerprint enhancement.



Sensors 2025, 25, 1384 7 of 16

Table 1. Parameters used in U-Net training.

Loss Function Sparse Categorical Crossentropy

Optimizer Adam (learning rate:0.001)

Batch Size 16

Epochs 320

Number of Classes 256

2.2.2. Patch-Based Fingerprint Enhancement Using a U-Net Model

In this method, in order the solve the problem of blank areas in the enhanced images in
the previous method, we are going to use a patch-based approach. The U-Net enhancement
model shown in Figure 6 is also used here, with an image input and output size of 64 by
64 pixels. The same as the previous method, the first 210 subjects in Hong Kong Polytechnic
University 3D Fingerprint Images Database Version 2 session one were utilized to train
the model.

Figure 8 illustrates the steps involved in the proposed method for generating training
data. Following a similar method to the previous approach, 3D point clouds are flattened
and transformed into 2D gray-scale images, with corresponding binarized 2D images
subsequently generated. However, the binarization process for the ROI images in this
method differs as follows:

1. The entire ROI image is initially binarized using VeriFinger.
2. Each individual color channel (e.g., red, green, and blue) of the ROI image is separately

binarized using VeriFinger.
3. By using Matlab, the four binarized outputs (one for the full image and three for the

color channels) are merged.

Figure 8. Processes used in the proposed method for generating the training data for patch-based
U-Net training.

To ensure proper alignment and avoid overlaps between ridge and valley patterns,
only the blank areas (regions without ridge or valley patterns) from one binarized image
are merged with the others. Figure 9 compares the binarized ROI images obtained using the
previous method with those generated by the proposed method in this section in Figure 9a
and 9b, respectively.
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(a) (b)

Figure 9. A comparison of the binarized ROI images obtained using the method described in
Section 2.2.1 and those generated in Section 2.2.2 is shown in (a) and (b), respectively.

The intensity levels in the binarized images are also shifted to two values of 0 and 255
by using Matlab, with 0 indicating a ridge position and 255 indicating a valley position.
Figure 10 shows the intensity pattern in a section of a sample binarized ROI image.

Figure 10. The intensity pattern in a section of a sample binarized ROI image is shown.

Next, MINDTCT [20] is applied to the binarized images, assigning quality scores from
0 to 4 to blocks of 8 × 8 pixels in the fingerprint image. Blocks with a quality score of 0
represent the lowest-quality sections, while blocks with a quality score of 4 indicate the
highest-quality sections. The lowest-quality sections (quality 0 and quality 1) are excluded.
Figure 11a shows a sample binarized image, and its quality-mapped image by excluding
lowest-quality sections (quality 0, and quality 1) is shown in Figure 11b.

(a) (b)

Figure 11. A sample binarized image is shown in (a), and its quality-mapped image by excluding
lowest-quality sections (quality 0, and quality 1) is shown in (b).
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The remaining sections of the binarized images are cropped into 64 × 64 pixel patches,
which serve as ground truth patches. The corresponding input patches for each ground
truth patch are generated by segmenting the 2D gray-scale images of the flattened point
clouds, aligned with the locations of the ground truth patches. A total of 9106 input patches
and 9106 ground truth patches were used for training the U-Net model. The training
parameters are shown in Table 2.

Table 2. Parameters used in patch-based U-Net training.

Loss Function Sparse Categorical Crossentropy

Optimizer Adam (learning rate:0.001)

Batch Size 16

Epochs 100

Number of Classes 2

The trained model can be used for fingerprint enhancement. First, the generated
gray-scale fingerprints from the flattened point cloud were segmented into patches of
64 by 64 pixels. Next, the patches were enhanced by using the trained model. Lastly, the
enhanced patches were merged. Figure 12a shows a sample enhanced fingerprint obtained
by merging the enhanced fingerprint patches. Figure 12b,c show another two samples
of enhanced fingerprint images by merging the enhanced patches with patch sizes of
32 and 112 pixels, respectively. It can be observed that the patch-based method successfully
resolves the issue of blank areas. However, there is still the problem of misaligned ridge
and valley patterns, which may result from enhancing the patches separately. This problem
becomes more significant when using smaller patch sizes, such as 32 pixels. As the patch
size decreases, more cuts are required to generate the patches, which increases the chance
of misaligned ridge and valley patterns.

(a)

(b) (c)

Figure 12. A sample enhanced fingerprint image by merging the enhanced patches shown in (a). The
trained U-Net model was used to enhance the patches of size 64 pixels. A sample enhanced fingerprint
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image by merging the enhanced patches is shown in (b) with patch size 32, and in (c) with a patch
size of 112 pixels.

2.2.3. U-Net-Based Full Image Fingerprint Enhancement by Using Quality Map

The objective of this method is to prevent blank spots in the enhanced image while
ensuring that ridge and valley patterns remain properly aligned. To achieve this, we
use high-quality ground truth images for training and utilize the entire image to avoid
issues with discontinuous ridge and valley patterns. The same U-Net enhancement model
as shown in Figure 6 is also used here, with an image input and output size of 352 by
248 pixels. Figure 13 illustrates the processes involved in the proposed method for generat-
ing training data.

Figure 13. Processes used in the proposed method for generating the training data for U-Net-
based training.

Similar to the method described in Section 2.2.1, the full-size generated gray-scale
images were used as input data for the U-Net model, while the binarized ROI images served
as ground truth data. MINDTCT [20] was also applied to the binarized images in this
approach. In contrast to the patch-based method, which used sections with quality levels
of 2, 3, and 4 for training, this approach utilizes only the highest-quality sections (quality 4).
The intensities of these sections were shifted to the range [1, 255], while the low-quality
sections were assigned an intensity of zero. Figure 14a shows a sample binarized image
from Figure 3a, and its quality-mapped image, which only includes the highest-quality
sections of the binarized image (quality 4), is shown in Figure 14b. Finally, the input
and ground truth images were augmented by a horizontal flip, vertical flip, and both a
horizontal and vertical flip, resulting in a total of 5040 input and ground truth images.

(a) (b)

Figure 14. A sample binarized image from Figure 3a is shown in (a), and its quality-mapped image,
which only includes the highest-quality sections of the binarized image (quality 4), is shown in (b).
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The model includes 256 classes to cover all potential intensity levels in a gray-scale
image. Class zero is excluded since it is used by the quality map to indicate the low-
quality regions of the generated ground truth. The training parameters are shown in
Table 3. Figure 15 shows the gray-scale image generated from Figure 1d, enhanced using
the proposed method. Figure 16a,b show two additional flattened 3D point cloud samples.
The enhanced images of these samples are shown in Figure 16c and 16d, respectively. A
comparison between the enhanced images produced by the revised proposed method and
those generated in the previous sections, shown in Figures 7b and 12a, demonstrates that
the proposed method significantly reduces the size of blank areas in the enhanced images
while also preventing misaligned ridge and valley patterns.

Figure 15. The enhanced image of the generated gray-scale image shown in Figure 1d, using the
proposed method in Section 2.2.3.

(a) (b)

(c) (d)

Figure 16. The 2D images and their corresponding ROI images of the first 3D impression of the first
person in the first session of the dataset are shown in (a–d).
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Table 3. Parameters used in U-Net training.

Loss Function Sparse Categorical Crossentropy

Optimizer Adam (learning rate:0.001)

Batch Size 16

Epochs 1500

Number of Classes 255

3. Experimental Result
This section describes the tool setup and the evaluation of the proposed method for

enhancing fingerprint images.

3.1. Dataset

To train the model and test it, the Hong Kong Polytechnic University 3D Fingerprint
Images Database Version 2 [18,21] was used. The fingerprint impressions of the first
210 subjects in session 1 of this dataset were used for training the model (Dataset A), and
the fingerprint impressions of the subjects 211 to 300 (Dataset B) were used for testing in the
first experiment. Session 2 of this database has 200 subjects (Dataset C), which were used
for testing in the second experiment. In both sessions, each subject had six 3D fingerprint
impressions, which were represented in 3D point cloud format with the dimensions of
900 by 1400 points. For each point cloud impression, two corresponding contactless 2D
images were also available, with dimensions of 1536 by 2048, which were captured with
different illuminations.

3.2. Tools

The experiments were performed on a Dell workstation (Dell, Round Rock, TX, USA)
with a 12th generation Intel Core i9 CPU, 32Gb of RAM (Intel, Santa Clara, CA, USA), and
an NVIDIA GeForce RTX 3060 GPU (NVIDIA, Santa Clara, CA, USA). Microsoft Windows
11 [22], Matlab R2023b [23], PyCharm 2024 [24], and Visual Studio 2022 [25] were used for
training the model and running the experiments. MINDTCT [20] was used to generate quality
maps, and VeriFinger SDK 13.1 [19] was used to calculate fingerprint-matching scores.

3.3. Setup

This section explains the preparation of input images and ground truth for construct-
ing the training dataset required to train the model, as well as the preparation of the
testing dataset.

The input data were generated by converting the 3D point clouds of Dataset A to
gray-scale images as described in Section 2.1. The data were augmented by adding a
horizontal flip, vertical flip, and (horizontal and vertical) flip of each image to the training
data to make a total of 5040 images.

Similar to the input data, the testing data were generated by converting the 3D point
clouds of Dataset B and Dataset C to gray-scale images, with a total of 540 and 1200 images,
respectively.

The ground truth images were generated using the method proposed in Section 2.2.3
and augmented in the same manner as the input images, resulting in a total of 5040 images.
These input and ground truth images were used to train the U-Net model described in
Section 2.2.3 and subsequently applied to enhance fingerprint images in our experiments.

Similar to the input data, the generated quality map images were augmented to make
a total of 5040 images.
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3.4. Experiment A

In the first experiment, the point clouds in Dataset B are first converted into gray-
scale images using the method described in Section 2.1. Next, these images are enhanced
using the proposed method detailed in Section 2.2.3. Following the FVC 2006 protocol,
the genuine and imposter matching scores for the first impression of each subject are
then calculated for both the gray-scale images and their enhanced versions. A total of
1350 genuine and 4005 imposter matching scores are obtained. Figure 17 presents the DET
curve for the gray-scale images and their enhanced counterparts. The results indicate that
the fingerprint recognition performance of the enhanced images has improved.

Figure 17. DET curve of gray-scale images and enhanced gray-scale images for Dataset B.

The Cumulative Match Characteristic (CMC) curve is shown in Figure 18. It can be
observed that the identification accuracy of the enhanced gray-scale images has improved.
The CMC curve is generated by identifying each subject’s first impression within a gallery
that includes the subject’s second impression, along with all impressions from 89 other
subjects, resulting in a gallery size of 535 impressions.

Figure 18. CMC curve of gray-scale images and enhanced gray-scale images for Dataset B.

Table 4 presents the calculated Equal Error Rate (EER), rank-1 accuracy, precision,
recall, and F1-score for these experiments. The results show that fingerprint recognition
performance and identification accuracy are improved for the images enhanced by the
proposed method.
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Table 4. Comparison of equal error rate, rank-1 accuracy, precision, recall, and F1-score of the
generated gray-scale images by flattening the 3D point cloud and their enhanced fingerprint images
for Dataset B using the proposed method.

Experiments EER Rank-1 Accuracy Precision Recall F1-Score

Generated gray-scale images from the flattened point cloud 41.32% 24.44% 45.68% 28.96% 35.45%

Enhanced gray-scale images 13.96% 40.00% 66.90% 86.52% 75.45%

3.5. Experiment B

In the second experiment, Dataset C is used for testing. Similar to the previous experi-
ment, gray-scale images are generated from the 3D point clouds using the method described
in Section 2.1 and then enhanced using the proposed method detailed in Section 2.2.3. The
genuine and imposter matching score for the gray-scale images and their enhanced images
are calculated. For each case, there are 3000 genuine and 19,900 imposter matching scores.
Figure 19 shows the DET curve of the gray-scale images and their enhanced counterparts
using the proposed method. The results demonstrate that the enhanced fingerprint images
improve fingerprint recognition performance.

Figure 19. DET curve of gray-scale images and enhanced gray-scale images for Dataset C.

Figure 20 shows the CMC curve of gray-scale images and their enhanced counterpart.
It can be observed that the fingerprint identification accuracy of the enhanced fingerprint
images is improved compared to their gray-scale counterparts. The CMC curve is obtained
by identifying each subject’s initial impression within a gallery that includes the subject’s
second impression along with all impressions from 199 other subjects, resulting in a gallery
size of 1195 impressions.

Table 5 shows the calculated EER, rank-1 accuracy, precision, recall, and F1-score of
these experiments. The results of this experiment also show that fingerprint recognition
performance and identification accuracy are improved for the images enhanced by the
proposed method.

Table 5. Comparison of equal error rate, rank-1 accuracy, precision, recall, and F1-score of the
generated gray-scale images by flattening the 3D point cloud and their enhanced fingerprint images
for Dataset C using the proposed method.

Experiments EER Rank-1 Accuracy Precision Recall F1-Score

Generated gray-scale images from the flattened point cloud 41.97% 20.5% 25.33% 28.90% 27.00%

Enhanced gray-scale images 12.49% 33.5% 50.74% 87.87% 64.33%
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Figure 20. CMC curve of gray-scale images and enhanced gray-scale images for Dataset C.

3.6. Evaluation

In both experiments, the enhanced fingerprints achieved a lower EER and a higher
rank-1 accuracy. These results indicate that the proposed fingerprint enhancement method
is effective in improving recognition and identification performance, particularly when the
fingerprints are of very low quality.

4. Conclusions
In this work, a modified 3D point cloud unwrapping method was implemented

to flatten a 3D point cloud, which was then converted into gray-scale images. Since
image intensities were derived from relative point heights in the point cloud, a specialized
enhancement method was necessary, which this study addresses.

To improve image quality, three U-Net training approaches based on image pixel
classification were proposed.

1. Full image enhancement;
2. Patch-based enhancement;
3. Filtered full-size image enhancement.

Each approach aimed to overcome the limitations of the previous method, with the
final approach being examined and evaluated. Experimental results demonstrate that
the proposed method effectively enhances low-contrast fingerprint images, leading to
improved fingerprint recognition and identification performance.

While the third proposed approach serves as a better alternative to address the weak-
nesses of the first two methods, each approach requires further in-depth study and eval-
uation. Our future work will focus on resolving misaligned ridge and valley patterns in
the enhanced images of the patch-based method, as this refinement has the potential to
significantly improve performance and will be our primary research focus moving forward.
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