
Received: 31 December 2024

Revised: 29 January 2025

Accepted: 4 February 2025

Published: 11 February 2025

Citation: Kao, H.-W.; Chen, Y.-C.;

Wu, E.H.-K.; Yeh, S.-C.; Kao, S.-C.

Loka: A Cross-Platform Virtual

Reality Streaming Framework for the

Metaverse. Sensors 2025, 25, 1066.

https://doi.org/10.3390/s25041066

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Loka: A Cross-Platform Virtual Reality Streaming Framework for
the Metaverse
Hsiao-Wen Kao 1,2 , Yan-Cyuan Chen 1,*, Eric Hsiao-Kuang Wu 1 , Shih-Ching Yeh 1 and Shih-Chun Kao 3

1 Department of Computer Science and Information Engineering, National Central University,
Taoyuan 320317, Taiwan; datting@cht.com.tw (H.-W.K.); hsiao@csie.ncu.edu.tw (E.H.-K.W.);
shihching.yeh@g.ncu.edu.tw (S.-C.Y.)

2 Department of Planning, ChungHwa Telecom Laboratories, Taoyuan 326402, Taiwan
3 Department of Health and Kinesiology, Purdue University, West Lafayette, IN 47907, USA; kao28@purdue.edu
* Correspondence: jcxyis@g.ncu.edu.tw

Abstract: As the concept of the Metaverse evolves, virtual reality (VR) plays a pivotal
role in creating immersive, socially interactive environments that form the backbone of
this interconnected digital universe. However, VR technology often faces significant
challenges, including hardware limitations, platform incompatibilities, and difficulties
supporting seamless multiplayer experiences. VR streaming offers a potential solution by
offloading computational tasks to remote servers, enabling high-quality VR experiences
on lower-end devices and enhancing accessibility to a broader audience. In this paper, we
present Loka, a versatile and extensible VR streaming framework designed to address these
challenges, providing the necessary infrastructure to support social interactions and real-
time collaboration in virtual environments—the key components of the Metaverse. Loka
is built on Unity Engine and WebRTC, enabling seamless cross-platform VR experiences
without the need for device-specific SDKs. It also supports real-time integration of custom
sensory data streams, such as motion capture and physiological signals from IoT devices,
which can enhance user interaction and personalization in virtual environments, as well as
provide a more convenient accessible platform for research. Furthermore, Loka’s native
multiplayer and multicasting capabilities facilitate collaborative and interactive social
experiences, aligning with the core goals of the Metaverse. By leveraging cloud-based
rendering with low-latency streaming, Loka allows users to engage in immersive VR
environments on a wide range of devices, without requiring high-end hardware. Its
modular architecture ensures extensibility, allowing researchers and developers to integrate
new data types and experimental setups more easily. With its ability to set up immersive
VR scenes to support social interaction and handle complex virtual environments, we
believe the proposed work can be leveraged to foster the development and research of
the Metaverse.

Keywords: Metaverse; virtual reality; cloud rendering; internet of things

1. Introduction
The emergence of virtual reality (VR) technology has fundamentally transformed the

way users engage with digital content and facilitated the creation of immersive environ-
ments that blur the boundaries between the physical and virtual realms. VR enables users to
interact with three-dimensional, computer-generated spaces in real time, providing a level
of engagement far beyond that of traditional two-dimensional interfaces. Although VR

Sensors 2025, 25, 1066 https://doi.org/10.3390/s25041066

https://doi.org/10.3390/s25041066
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2980-5123
https://orcid.org/0000-0002-1767-2773
https://orcid.org/0000-0002-4096-6155
https://orcid.org/0000-0001-8880-0851
https://doi.org/10.3390/s25041066
https://www.mdpi.com/article/10.3390/s25041066?type=check_update&version=1

Sensors 2025, 25, 1066 2 of 21

initially gained popularity in the gaming and entertainment sectors, its applications have
since expanded to various fields, such as education, healthcare, and industrial training.

When VR technology first began to flourish, VR headsets needed to be connected to
a computer to render frames of VR scenes, which are known as tethered headsets. With
advancements in technology, such as powerful mobile processing, mature VR software
platforms, and faster wireless connectivity, All-In-One VR (AIO VR) headsets have become
the industry standard. These market-dominating VR devices include their own operating
systems (OSs) within the headset. Recent examples include Meta Quest, PICO Neo, HTC
Focus, and Apple Vision Pro. Compared to their wired counterparts, the AIO VR headset
can perform all computing within itself, freeing users from the constraints of cables and
allowing for portable, computer-independent usage scenarios.

Despite these advantages, AIO VR headsets come with some limitations. Smoothly
rendering immersive VR environments requires substantial computing power and high-
end hardware, which are difficult and costly to incorporate into the compact form factor of
an AIO VR headset. Consequently, the accessibility and performance of VR experiences
on standalone AIO devices may be limited due to this constraint. Another challenge for
developers is the difference in operating systems compared to traditional, PC-connected
VR applications, which are typically Windows-based. Migrating existing VR applications
to AIO devices requires significant effort and resources to ensure compatibility and optimal
performance, especially given the distinct OSs provided by different VR vendors. It
becomes even more pronounced when dealing with embedded devices, as their firmware
is highly dependent on the underlying OSs.

Recent advancements in multimedia streaming technology provide a solution to
the hardware limitations of AIO VR headsets. Streaming technology enables users to
experience high-quality VR content via the internet by shifting the heavy computational
workload to remote servers. Instead of performing complex VR rendering locally, the user’s
device only needs to parse input sensory signals and transmit them online. Accordingly,
the VR content is generated in the cloud, then rendered and transmitted back to the
user’s device to display in real time. By offloading these intensive computations to the
cloud, users can access high-quality VR content on lower-end devices [1]. For consumers,
this implies that purchasing high-end hardware is not necessary. For developers, VR
streaming alleviates compatibility issues across various VR OS platforms, thus increasing
development efficiency. This democratization of VR technology opens up new possibilities
for both content creators and consumers, potentially leading to the widespread adoption
of VR in everyday life. Additionally, rendering VR in the cloud enables users to interact
with each other—cloud servers instantly render VR frames according to users’ poses and
interactions, and synchronize to each user’s headset.

However, VR streaming also faces several challenges. One of the most pressing issues
is the requirement for extremely high bandwidth and low latency to ensure responsive
and high-quality VR experiences. Unlike traditional one-way 2D video streaming, VR
frames must be transmitted according to the users’ pose in real time with minimal delay
to maintain their immersion. Any noticeable lag can lead to motion sickness and disrupt
the overall VR experience. In addition, VR streaming demands much higher network
bandwidth to transmit high-resolution, 360-degree video that covers the user’s entire visual
field. According to [2], data rates of more than 530 Mbps and a latency of less than 10 ms
are required by high-quality VR, which are much more stringent than today’s general
network applications.

On the VR headset side, current commercial VR streaming solutions are primarily
built on the OpenXR standard, which registers as the active OpenXR runtime on the
headset system to abstract hardware differences. It allows compatibility with existing

Sensors 2025, 25, 1066 3 of 21

applications using the standardized OpenXR API and eliminates the need to modify source
codes. While offering convenience, it comes at the cost of reduced flexibility for developers.
For instance, OpenXR lacks support for streaming custom sensory data, such as motion
capture (MOCAP) or EEG data. This limitation poses a challenge for researchers aiming
to analyze players’ behaviors or conditions via peripheral sensors in detail. Additionally,
although OpenXR supports connections of multiple VR devices simultaneously, most video
streaming systems do not inherently support action synchronization of multiple players,
further constraining the potential for collaborative or multiuser experiences in VR.

In this paper, we propose Loka (https://github.com/ncu-wmlab/LOKA.Core, ac-
cessed on 22 January 2024), a VR streaming software toolkit developed using Unity Engine,
a leading game engine widely used in VR application development. Loka integrates
the benefits of AIO VR and streaming, allowing developers to avoid the complexities of
cross-platform development and device-dependent SDKs. The toolkit provides a unified
interface, handling the underlying specific organization of various VR OS platforms. We
have tested Loka on various device models to ensure compatibility and performance. By
eliminating the need for developers to “reinvent the wheel”, we aim to enhance VR appli-
cation development efficiency, as well as extend its functions on integrating sensory data.
Figure 1 illustrates the key components of Loka.

Sensors 2025, 25, x FOR PEER REVIEW 3 of 21

On the VR headset side, current commercial VR streaming solutions are primarily
built on the OpenXR standard, which registers as the active OpenXR runtime on the head-
set system to abstract hardware differences. It allows compatibility with existing applica-
tions using the standardized OpenXR API and eliminates the need to modify source
codes. While offering convenience, it comes at the cost of reduced flexibility for develop-
ers. For instance, OpenXR lacks support for streaming custom sensory data, such as mo-
tion capture (MOCAP) or EEG data. This limitation poses a challenge for researchers aim-
ing to analyze players’ behaviors or conditions via peripheral sensors in detail. Addition-
ally, although OpenXR supports connections of multiple VR devices simultaneously, most
video streaming systems do not inherently support action synchronization of multiple
players, further constraining the potential for collaborative or multiuser experiences in
VR.

In this paper, we propose Loka (https://github.com/ncu-wmlab/LOKA.Core, ac-
cessed on 22 January 2024), a VR streaming software toolkit developed using Unity En-
gine, a leading game engine widely used in VR application development. Loka integrates
the benefits of AIO VR and streaming, allowing developers to avoid the complexities of
cross-platform development and device-dependent SDKs. The toolkit provides a unified
interface, handling the underlying specific organization of various VR OS platforms. We
have tested Loka on various device models to ensure compatibility and performance. By
eliminating the need for developers to “reinvent the wheel”, we aim to enhance VR appli-
cation development efficiency, as well as extend its functions on integrating sensory data.
Figure 1 illustrates the key components of Loka.

From the user’s perspective, Loka eliminates the need for high-end devices to expe-
rience high-quality graphics, which also conserves the storage space and energy con-
sumption of devices as only a lightweight streaming app is required to gather and send
input data, then processes the frames received from the server. Furthermore, our solution
inherently supports multiplayer (multicasting) functionality, enabling developers to eas-
ily add users to the same virtual environment. For researchers, Loka can track a variety of
data sources, including connection performance metrics and data from IoT devices linked
to the VR headset, with the flexibility to extend support for additional data as needed.

Figure 1. Loka is a reconfigurable VR streaming framework offering immersive scenes, local multi-
player support, and research data integration. The figure showcases the key components: (a,b) de-
pict the real-time multiplayer experience from the host’s and real-world perspectives, (c) shows the
administration panel for evaluating client performance, and (d) reveals the client’s interface.

2. Related Works
2.1. Network Technology

Network communication technologies have continuously evolved alongside ad-
vancements in transmission capabilities to meet the growing bandwidth demands and
high-quality requirements of modern applications. The 5G mobile networks have enabled
real-time high-quality video and audio streaming, offering peak throughput of up to 20
Gbps by allocating more spectrum. With a significant increase in capacity and efficiency

Figure 1. Loka is a reconfigurable VR streaming framework offering immersive scenes, local multiplayer
support, and research data integration. The figure showcases the key components: (a,b) depict the real-
time multiplayer experience from the host’s and real-world perspectives, (c) shows the administration
panel for evaluating client performance, and (d) reveals the client’s interface.

From the user’s perspective, Loka eliminates the need for high-end devices to experi-
ence high-quality graphics, which also conserves the storage space and energy consumption
of devices as only a lightweight streaming app is required to gather and send input data,
then processes the frames received from the server. Furthermore, our solution inherently
supports multiplayer (multicasting) functionality, enabling developers to easily add users
to the same virtual environment. For researchers, Loka can track a variety of data sources,
including connection performance metrics and data from IoT devices linked to the VR
headset, with the flexibility to extend support for additional data as needed.

2. Related Works
2.1. Network Technology

Network communication technologies have continuously evolved alongside advance-
ments in transmission capabilities to meet the growing bandwidth demands and high-
quality requirements of modern applications. The 5G mobile networks have enabled
real-time high-quality video and audio streaming, offering peak throughput of up to
20 Gbps by allocating more spectrum. With a significant increase in capacity and efficiency
compared to previous generations, 5G better supports a wide range of applications, includ-
ing media streaming, cloud rendering, and interactions in VR and nano equipment, while
maintaining high performance [3,4].

https://github.com/ncu-wmlab/LOKA.Core

Sensors 2025, 25, 1066 4 of 21

Looking ahead, cellular networks have already entered the Beyond-5G (B5G) era,
meanwhile pursuing the next frontier: 6G. The International Telecommunication Union
(ITU) released the IMT-2030 Framework through its vision, outlining the capabilities of 6G,
which builds on the goals of IMT-2020 and introduces new innovations. IMT-2030 identifies
six usage scenarios for 6G: three of them are extended from 5G, which are immersive
communication, massive communication, hyper reliability and low latency communication
(HRLLC), and the other three are ubiquitous connectivity, AI and communication, and
integrated sensing and communication. VR/XR is one of the typical use cases of immersive
communication. In immersive communication, mixed traffic of video, audio, and environ-
ment sensory data are transmitted in a highly reliable and low-latency time-synchronization
manner. The feature can well support responsive and accurate interaction for real and
virtual objects in VR. The other usage scenario envisaged in IMT-2030, integrated sensing
and communication, facilitates new XR applications. It aims to offer spatial information
about the movements and surroundings of unconnected objects as well as connected de-
vices. Thus, we can imagine that VR/XR services are expected to be extensively applied in
various vertical domains, such as education, medicine, and industry, to help people engage
in activities and cooperate via networks [5,6].

2.2. Cloud Gaming

Cloud gaming has laid much groundwork for the technologies now applied in VR
streaming. In cloud gaming, the computational tasks of rendering are shifted to remote
servers, with video streams and user inputs exchanged over the Internet. For example,
GamingAnywhere [7,8], proposed by Chen et al., is an open-source cloud gaming platform
that has demonstrated the potential of cloud-based solutions in delivering high-quality
gaming experiences to lower-end devices. It provides developers with a customizable
framework for encoding, network transmission, and resource management, enabling flexi-
bility in deployment across different devices which can be found in many research studies.
Other commercial platforms, such as GeForce NOW [9], have advanced cloud gaming by
leveraging large-scale infrastructure and sophisticated video compression techniques [10].
These platforms aim to provide low-latency, high-fidelity gaming experiences without
requiring users to invest in high-end hardware [11]. While successful in gaming, the princi-
ples behind these platforms—offloading computation to the cloud and delivering results in
real time—have heavily influenced the development of VR streaming technologies. How-
ever, the immersive nature of VR introduces greater complexity, such as volumetric content
and low-latency interaction requirements, which necessitate new solutions.

2.3. VR Streaming

VR streaming expands on cloud gaming concepts but faces additional challenges due
to the immersive and interactive nature of virtual reality. Existing VR streaming solutions,
such as Quest Link and Virtual Desktop [12], allow users to stream high-quality VR content
from a powerful PC to standalone VR headsets over local networks. Quest Link, which
operates over a wired or wireless connection, and Virtual Desktop, a wireless solution,
both rely on proprietary protocols optimized for low-latency video transmission and
real-time interaction. These solutions offload computationally intensive tasks to external
hardware while delivering responsive VR experiences to AIO headsets. An open-source
alternative, ALVR (Air Light VR) [13], offers similar functionality but with greater flexibility
for developers and researchers. Unlike some proprietary solutions, ALVR is open source,
providing more customization options and enabling the community to contribute to its
development. While it shares many of the benefits of proprietary platforms, ALVR’s open-

Sensors 2025, 25, 1066 5 of 21

source nature makes it an attractive option for developers looking for greater control over
their VR streaming implementations.

However, the demands of VR streaming, such as the transmission of high-resolution,
volumetric video, exacerbate the need for robust network infrastructures. Solutions like
CloudXR from NVIDIA [14] have optimized VR streaming for these environments, offering
low-latency experiences for both virtual and augmented reality applications. Nevertheless,
current VR streaming platforms still face the challenges of multicast streaming and custom
data collection. For instance, while OpenXR has enabled cross-platform compatibility for
VR applications, it has limited support for transmitting specialized sensory data streams,
such as EEG or motion data, which are essential for research-focused applications.

Loka is designed to fill critical gaps in existing VR streaming solutions by providing
self-hosting, full VR support, and custom data integration for immersive applications
development. Existing solutions, such as GamingAnywhere, Google Immersive Stream
for XR, and NVIDIA CloudXR, provide valuable functionality but lack certain critical
features necessary for VR-specific research workflows, such as multicasting capabilities, and
flexibility for custom sensory data. As summarized in Table 1, Loka’s modular framework
uniquely addresses these gaps.

Table 1. Comparison of open source and commercial solutions on Loka’s unique features.

Supports VR Self-Host Eyetrack Data Custom Data Stream Multicasting

GamingAnywhere No Yes No Yes No

Google
Immersive Stream for XR No No No No No

OpenXR-based tools
(e.g., ALVR) Yes Yes No No No

NVIDIA CloudXR Yes Yes No 1 No No

Loka (our work) Yes Yes Yes Yes Yes
1 Planned support in future versions.

2.4. IoT Sensor Integration

In research, VR experiments are often conducted by integrating built-in or wearable
embedded sensors, with the aim to enhance immersion via obtaining perceptive feedback in
the physical world [15]. For instance, Rosu et al. integrate BLE beacon data to synchronize
the state of a real-world device with its digital twin [16]. Similarly, Mancuso et al. utilized
multiple sensor data streams collected during a VR session to perform psychometric
assessments. Their research leveraged skin conductance (SC), surface electromyography
(sEMG), and photoplethysmography (PPG) biosensors, in addition to built-in sensors for
eye tracking and head movement, providing a depth of data for analysis [17].

Various commercial products can collect different types of data to enhance the VR
experience. One of the most interesting fields is motion capture (MOCAP), which, in
particular, has become a focal point for data collection and real-time interaction for both
entertainment and research purposes. To this end, Sony introduced Mocopi, an array of
compact sensors which can capture users’ arm, torso, and leg movements in real time [18].
HTC has also introduced a range of trackers that provide diverse data, including eye
tracking, facial tracking, and motion capture information [19].

To achieve the most immersive VR or Metaverse experience, real-time biofeedback
integrated into the simulated environment is highly preferable. However, a significant
challenge is that, in most research contexts, sensor data are often collected separately from
the game module itself. This can lead to synchronization issues and a lack of immediate

Sensors 2025, 25, 1066 6 of 21

feedback. Additionally, the integration of biofeedback systems faces challenges related to
privacy concerns and compatibility across different VR devices [20].

3. Objectives and Features
In this paper, we proposed Loka, a novel VR streaming toolkit designed to overcome

the limitations of existing solutions by integrating the benefits of AIO VR and cloud VR
streaming. Our work offers several key contributions to both developers and researchers,
enabling them to efficiently create and deploy interactive, cross-platform VR applications
with ease. The main features and contributions of Loka include the following:

• Cross-platform compatibility without custom SDKs: Loka simplifies cross-platform de-
velopment by abstracting away device-specific SDKs, allowing developers to build VR
applications without worrying about platform-dependent differences. By providing a
unified interface, it reduces the time spent on reconfiguring applications for different
hardware environments.

• Seamless integration of custom data streams: Unlike current VR streaming platforms,
Loka supports the integration of custom data streams, such as motion data, EEG data,
and physiological signals from IoT devices. This makes it ideal for research applications,
enabling researchers to gather a wide range of data for behavioral analysis, neuroscience
experiments, or physiological monitoring within immersive environments.

• Multiplayer and multicasting support: Loka natively supports multicasting function-
ality, allowing multiple users to interact within the same virtual environment on the
same machine, which many existing platforms could not achieve. This facilitates
collaborative experiences or large-scale Metaverse experiments where multiple users
are involved in real time.

3.1. Applications of Loka

Loka’s extensibility allows it to support emerging applications, such as immersive
virtual workspaces for remote teams. Leveraging its self-hosted and customizable nature,
researchers and developers can create solutions tailored to specific use cases. Two key types
of applications are illustrated below:

• Content personalization: Loka’s modular architecture and support for integrating
sensory data make it well-suited for developing personalized VR experiences. It
enables the creation of personalized VR training programs where the difficulty or
content adapts in real time based on the user’s physiological responses, such as eye
movement or stress levels. Delivering immersive entertainment experiences tailored to
individual preferences, such as adjusting the VR environment based on user behavior
or interests, is another interesting application.

• Industrial solutions: Loka can facilitate remote VR collaborative environments for
design and prototyping, allowing multiple users to interact with 3D models or vir-
tual machinery in real time. By integrating IoT sensor data, Loka can be used for
real-time monitoring and control of industrial processes in VR, improving efficiency
and reducing downtime. Loka’s support for custom sensory data makes it ideal for
applications like remote diagnostics, where doctors can use tactile and visual feedback
from IoT-enabled devices to interact with patients remotely.

3.2. Cost-Effectiveness of Loka

Loka’s self-hosted and modular architecture offers significant cost advantages com-
pared to many commercial VR streaming solutions. Unlike proprietary systems such as
NVIDIA CloudXR, which require specific hardware (e.g., NVIDIA GPUs) and licensing
costs, Loka is designed to be hardware-agnostic and open-source, making it accessible to

Sensors 2025, 25, 1066 7 of 21

researchers and industries with diverse setups. We compare Loka with similar solutions
described in Table 1 in terms of financial complexity across the following key aspects:

• Hardware requirements: Loka does not depend on specialized hardware, allowing
organizations to leverage existing infrastructure, which reduces initial setup costs.
Competing solutions like NVIDIA CloudXR often require high-performance GPUs.

• Licensing costs: As an open-source framework, Loka eliminates the licensing fees
typically associated with commercial platforms such as Unreal Engine-based solutions
or NVIDIA CloudXR, offering a more economical alternative. In addition, it allows
organizations to independently maintain and update the system, which avoids vendor
lock-in and eliminates recurring subscription fees.

• Customization and scalability: The modular design of Loka allows for easy cus-
tomization, enabling industries to adapt the framework to their specific needs without
incurring significant development costs. Moreover, its self-hosting feature minimizes
reliance on external cloud services, reducing ongoing operational costs.

4. System Architecture
Loka’s architecture is designed to provide a robust VR streaming solution, allowing

for real-time interaction, data collection, and multiplayer functionality. As illustrated in
Figure 2, the system comprises several key components, including clients, which are VR
devices connected with peripheral sensors, a signaling server, and a host server. The
architecture facilitates the seamless data flow between these components by leveraging
Web Real-Time Communication (WebRTC) for low-latency communication. This setup
enables real-time VR streaming, custom data integration, and multiplayer support, all in a
highly flexible environment.

Sensors 2025, 25, x FOR PEER REVIEW 7 of 21

3.2. Cost-Effectiveness of Loka
Loka’s self-hosted and modular architecture offers significant cost advantages com-

pared to many commercial VR streaming solutions. Unlike proprietary systems such as
NVIDIA CloudXR, which require specific hardware (e.g., NVIDIA GPUs) and licensing
costs, Loka is designed to be hardware-agnostic and open-source, making it accessible to
researchers and industries with diverse setups. We compare Loka with similar solutions
described in Table 1 in terms of financial complexity across the following key aspects:
● Hardware requirements: Loka does not depend on specialized hardware, allowing

organizations to leverage existing infrastructure, which reduces initial setup costs.
Competing solutions like NVIDIA CloudXR often require high-performance GPUs.

● Licensing costs: As an open-source framework, Loka eliminates the licensing fees
typically associated with commercial platforms such as Unreal Engine-based solu-
tions or NVIDIA CloudXR, offering a more economical alternative. In addition, it al-
lows organizations to independently maintain and update the system, which avoids
vendor lock-in and eliminates recurring subscription fees.

● Customization and scalability: The modular design of Loka allows for easy customi-
zation, enabling industries to adapt the framework to their specific needs without
incurring significant development costs. Moreover, its self-hosting feature minimizes
reliance on external cloud services, reducing ongoing operational costs.

4. System Architecture
Loka’s architecture is designed to provide a robust VR streaming solution, allowing

for real-time interaction, data collection, and multiplayer functionality. As illustrated in
Figure 2, the system comprises several key components, including clients, which are VR
devices connected with peripheral sensors, a signaling server, and a host server. The ar-
chitecture facilitates the seamless data flow between these components by leveraging Web
Real-Time Communication (WebRTC) for low-latency communication. This setup enables
real-time VR streaming, custom data integration, and multiplayer support, all in a highly
flexible environment.

Figure 2. Loka’s deployment architecture.

4.1. Client: VR Devices and Data Collection

The client typically denotes the VR devices worn by users. These devices are respon-
sible for receiving streamed frames from the host server and transmitting real-time user
inputs to the server. In addition to tracking basic interaction data (e.g., head movements

Figure 2. Loka’s deployment architecture.

4.1. Client: VR Devices and Data Collection

The client typically denotes the VR devices worn by users. These devices are respon-
sible for receiving streamed frames from the host server and transmitting real-time user
inputs to the server. In addition to tracking basic interaction data (e.g., head movements
and controller inputs), the system supports the collection of more advanced data streams
in real time, such as tracked data and IoT sensor data. The former denotes motion track-
ing data supported by devices; the latter collects custom data streams from peripheral
embedded IoT devices, such as physiological sensors.

These data are continuously sent to the host for processing and rendering, which could
also be retrieved by the virtual scene in real time, enabling a responsive and interactive VR
experience while also supporting research applications that require detailed data tracking.

Sensors 2025, 25, 1066 8 of 21

As illustrated in Figure 3, Loka processes data on the client side by categorizing them
into a standardized format before transmitting the formalized data to the host. When
integrating new sensors or VR devices into Loka, developers can utilize the two groups
of modules located in the top-left corner—sensor API and device SDK—to connect to the
relevant functions within Loka. Depending on the specific sensors and devices, it may be
necessary to extend these modules to transform the data into the required format. This
modular design minimizes effort and eliminates the need for extensive modifications to the
overall architecture, ensuring seamless and efficient integration.

Sensors 2025, 25, x FOR PEER REVIEW 8 of 21

and controller inputs), the system supports the collection of more advanced data streams
in real time, such as tracked data and IoT sensor data. The former denotes motion tracking
data supported by devices; the latter collects custom data streams from peripheral embed-
ded IoT devices, such as physiological sensors.

These data are continuously sent to the host for processing and rendering, which
could also be retrieved by the virtual scene in real time, enabling a responsive and inter-
active VR experience while also supporting research applications that require detailed
data tracking.

As illustrated in Figure 3, Loka processes data on the client side by categorizing them
into a standardized format before transmitting the formalized data to the host. When in-
tegrating new sensors or VR devices into Loka, developers can utilize the two groups of
modules located in the top-left corner—sensor API and device SDK—to connect to the
relevant functions within Loka. Depending on the specific sensors and devices, it may be
necessary to extend these modules to transform the data into the required format. This
modular design minimizes effort and eliminates the need for extensive modifications to
the overall architecture, ensuring seamless and efficient integration.

Figure 3. Streaming components of Loka: The client (VR devices) collects real-time IoT sensor data,
tracked device data, and poses via IoT sensor APIs and device SDKs. The data are compressed,
decoded, and transmitted to the host over WebRTC channels. The host decompresses and processes
the data, updates the game environment, generates video/audio content, encodes, and transmits the
data back to the client via WebRTC tracks for real-time rendering. Reports and data logs are also
generated for further analysis. IoT sensor commands are issued and translated on the client side,
helping to decouple the device model for improved compatibility.

4.2. Host: Rendering Server

The host server is the backbone of Loka’s architecture, managing the environment
(game modules) and handling computationally intensive tasks, such as rendering. The
server is capable of handling multiple clients simultaneously, each represented as Lo-
kaPlayers, interacting within the same virtual environment. It processes incoming data
from the clients and generates the corresponding frames to be sent back to the devices.
The host server is also responsible for the following:
● Environment management: run the virtual environment, ensuring that all users ex-

perience a synchronized, immersive experience.
● Custom data handling: process specialized data streams, such as physiological sig-

nals and IoT data, for real-time integration into the VR experience.

Figure 3. Streaming components of Loka: The client (VR devices) collects real-time IoT sensor data,
tracked device data, and poses via IoT sensor APIs and device SDKs. The data are compressed,
decoded, and transmitted to the host over WebRTC channels. The host decompresses and processes
the data, updates the game environment, generates video/audio content, encodes, and transmits the
data back to the client via WebRTC tracks for real-time rendering. Reports and data logs are also
generated for further analysis. IoT sensor commands are issued and translated on the client side,
helping to decouple the device model for improved compatibility.

4.2. Host: Rendering Server

The host server is the backbone of Loka’s architecture, managing the environment
(game modules) and handling computationally intensive tasks, such as rendering. The
server is capable of handling multiple clients simultaneously, each represented as LokaPlay-
ers, interacting within the same virtual environment. It processes incoming data from the
clients and generates the corresponding frames to be sent back to the devices. The host
server is also responsible for the following:

• Environment management: run the virtual environment, ensuring that all users expe-
rience a synchronized, immersive experience.

• Custom data handling: process specialized data streams, such as physiological signals
and IoT data, for real-time integration into the VR experience.

• Data and log creation: collect users’ input and generate reports and systematic logs
for further analysis, such as player behavior or research-related metrics.

4.3. Signaling Server: Signal Communication

Loka employs a signaling server to establish and maintain communication between
the clients and the host. This server is integral to setting up peer-to-peer (P2P) connections
via WebRTC, which handle real-time signal exchange. The signaling server is responsible
for the following:

Sensors 2025, 25, 1066 9 of 21

• Host–server matching: The signaling server matches available host servers for clients
based on their connection requests. When a client device initiates a connection, the
signaling server selects an appropriate host server to handle the session.

• Signal exchange: The signaling server is responsible for the exchange of signaling
information, which is required to establish a connection between the client and host.
This includes exchanging available connection methods and the state of the client–
host connection.

The detailed steps involved in the connection process will be further discussed in the
next section.

5. Technical Implementation
Loka (the source code is publicly accessible from GitHub: https://github.com/ncu-

wmlab/LOKA.Core, accessed on 22 January 2024) is built atop Unity Render Stream-
ing (URS). This experimental yet powerful framework leverages real-time rendering in
Unity and facilitates remote content delivery, and its source code is publicly reachable on
GitHub [21]. At the core of URS’s data transmission is WebRTC, which enables low-latency,
real-time data exchange between the client and server, ensuring smooth interactions and
responsive VR experiences.

To support cross-platform VR functionality, Loka integrates the Unity XR Interaction
Toolkit along with the OpenXR Plugin, ensuring that the system can be deployed across
various VR devices without needing significant modifications to the application code.
This approach abstracts device-specific dependencies and allows developers to seamlessly
integrate different VR hardware into their applications. On the client side, Loka interfaces
with device-specific SDKs to ensure full compatibility with the unique features of each
VR headset, such as Quest, PICO, and other popular AIO VR devices. The framework’s
modular design enables Loka to be efficiently extended to accommodate new devices and
hardware environments. Additionally, automated compatibility testing pipelines can be
incorporated to ensure seamless cross-platform performance as new devices and operating
systems emerge.

5.1. Establishing Connection

The connection between the client and the host is established through the signaling
server, following the standard WebRTC connection setup process. We extended the ex-
ample web app of URS written using Node.js. It achieves its role as a WebSocket server,
which is responsible for establishing and maintaining WebRTC connections across multiple
devices. As shown in Figure 4, the client first initiates the connection by sending a connect
request to the signaling server. Upon receiving the request, the signaling server creates a
connectionPair, initially linking the client’s WebSocket connection. Next, the client sends
an offer to the signaling server, which is forwarded to the host. The host then responds
with an answer, which the signaling server relays back to the client. Once the answer
is received by the client, the signaling server updates the connectionPair to effectively
pair the two. After both parties exchange their offer and answer messages, the Session
Description Protocol (SDP) connection is established, allowing real-time data exchange to
begin between the client and the host.

https://github.com/ncu-wmlab/LOKA.Core
https://github.com/ncu-wmlab/LOKA.Core

Sensors 2025, 25, 1066 10 of 21

Sensors 2025, 25, x FOR PEER REVIEW 10 of 21

Session Description Protocol (SDP) connection is established, allowing real-time data ex-
change to begin between the client and the host.

Figure 4. Sequence diagram for establishing a connection between the VR client and the host.

5.2. Host View Adaptation and Rendering
Once the connection is established, the host dynamically adjusts the field of view

(FOV) to match the client’s FOV settings. This ensures that the visual experience on the
client’s VR device aligns with the intended perspective. The FOV can still be adjusted
during runtime, allowing for seamless adaptation to user preferences or device con-
straints.

The host captures the in-game view from the perspective of the LokaPlayer—the vir-
tual representation of the user in the virtual scene. This view is then rendered into an
image with an aspect ratio of 2:1. The rendered image is then transmitted to the client and
displayed in front of the user. If the client’s display size does not match this ratio, the
system automatically adjusts and fits the image to ensure a consistent and clear visual
presentation without distortion. For instance, Meta Quest 3 has a resolution of 4128 × 2208;
therefore, the rendered frame will be displayed in 4416 × 2208.

5.3. Client Input Handling
Loka’s input system is built on Unity’s new Input System, which offers a flexible and

modular way to handle user input. This system separates input into devices and controls.
Each device (e.g., controller) consists of multiple controls (e.g., button presses, joystick
movements, device position). The input is abstracted into input actions and input action
maps, where actions listen for changes in the corresponding controls to determine
whether an action is triggered or to retrieve specific input values. On top of that are input
action assets, which serve as the container of action maps and could be serialized as files.

As illustrated in Figure 5, an action map can contain multiple actions. For example,
the action Position in action map XRI LeftHand is configured to detect the position data
from either the Left Controller or Left Hand (captured by hand tracking) by looking for
the appropriate controls within those devices. We also provide ControllerPos and
HandPos to let developers retrieve the dedicated data. This system allows for a flexible

Figure 4. Sequence diagram for establishing a connection between the VR client and the host.

5.2. Host View Adaptation and Rendering

Once the connection is established, the host dynamically adjusts the field of view
(FOV) to match the client’s FOV settings. This ensures that the visual experience on the
client’s VR device aligns with the intended perspective. The FOV can still be adjusted
during runtime, allowing for seamless adaptation to user preferences or device constraints.

The host captures the in-game view from the perspective of the LokaPlayer—the
virtual representation of the user in the virtual scene. This view is then rendered into an
image with an aspect ratio of 2:1. The rendered image is then transmitted to the client
and displayed in front of the user. If the client’s display size does not match this ratio,
the system automatically adjusts and fits the image to ensure a consistent and clear visual
presentation without distortion. For instance, Meta Quest 3 has a resolution of 4128 × 2208;
therefore, the rendered frame will be displayed in 4416 × 2208.

5.3. Client Input Handling

Loka’s input system is built on Unity’s new Input System, which offers a flexible and
modular way to handle user input. This system separates input into devices and controls.
Each device (e.g., controller) consists of multiple controls (e.g., button presses, joystick
movements, device position). The input is abstracted into input actions and input action
maps, where actions listen for changes in the corresponding controls to determine whether
an action is triggered or to retrieve specific input values. On top of that are input action
assets, which serve as the container of action maps and could be serialized as files.

As illustrated in Figure 5, an action map can contain multiple actions. For example,
the action Position in action map XRI LeftHand is configured to detect the position data

Sensors 2025, 25, 1066 11 of 21

from either the Left Controller or Left Hand (captured by hand tracking) by looking for the
appropriate controls within those devices. We also provide ControllerPos and HandPos
to let developers retrieve the dedicated data. This system allows for a flexible mapping
of device inputs to in-game actions, which is particularly useful in VR environments with
multiple input devices.

Sensors 2025, 25, x FOR PEER REVIEW 11 of 21

mapping of device inputs to in-game actions, which is particularly useful in VR environ-
ments with multiple input devices.

Figure 5. Integrated input system architecture.

Loka extends this system by synchronizing the input system from the client to the
host machine via a WebRTC data channel, ensuring that the host can receive all relevant
input data from connected VR devices. This approach allows the host to mirror the actions
and input values of each player, ensuring that the virtual environment behaves consist-
ently based on the real-time actions of each user.

WebRTC data channels support buffering of outbound data, enabling real-time mon-
itoring of the buffer state. Notifications can be triggered when the buffer begins to run
low, allowing the system to ensure a steady stream of data without memory overuse or
channel congestion. This mechanism is critical in a dynamic multiplayer environment, as
it minimizes input delays, prevents data loss, and ensures synchronization accuracy for
players.

Loka uses a “first-touch” mechanism to handle simultaneous input on the same vir-
tual object, relying on the queued sequence of the WebRTC data buffer to determine input
priority. While network latency can influence input timing, for research located on a local
network, as in our experimental setup described in Section 6, the difference in input tim-
ing can be negligible.

In conventional VR streaming solutions that rely on OpenXR runtime, the supported
input signals are typically limited to fundamental data such as the poses of heads or con-
trollers (Figure 6). These signals are essential for the basic VR interaction supported by
most devices. However, this restricts the ability to integrate device-specific or advanced
input features, such as eye tracking or EEG sensors. Loka addresses this limitation by ex-
tending input systems to support a wider range of data types. For instance, device-de-
pendent data like eye tracking and hand tracking are fully integrated into the framework.
In addition, since the device-dependent data are not standardized, the same type of data
collected from each device may use varying nomenclatures.

To address this problem, Loka interprets the data on the client side, categorizes them
into a standardized format, and then transmits the formalized data to the host. Beyond
device-specific capabilities, Loka supports the real-time integration of custom IoT sensor
data. For devices with unique input formats, Loka employs adapters to preprocess and
map raw signals to the framework’s standardized format, maintaining compatibility
across various VR headsets and IoT sensors. Also, since some sensors require a startup
signal to work, Loka reserves a direct channel to allow server–sensor communication (as
Figure 3 depicts). These capabilities provide researchers and developers with a versatile

Figure 5. Integrated input system architecture.

Loka extends this system by synchronizing the input system from the client to the host
machine via a WebRTC data channel, ensuring that the host can receive all relevant input
data from connected VR devices. This approach allows the host to mirror the actions and
input values of each player, ensuring that the virtual environment behaves consistently
based on the real-time actions of each user.

WebRTC data channels support buffering of outbound data, enabling real-time mon-
itoring of the buffer state. Notifications can be triggered when the buffer begins to run
low, allowing the system to ensure a steady stream of data without memory overuse or
channel congestion. This mechanism is critical in a dynamic multiplayer environment,
as it minimizes input delays, prevents data loss, and ensures synchronization accuracy
for players.

Loka uses a “first-touch” mechanism to handle simultaneous input on the same virtual
object, relying on the queued sequence of the WebRTC data buffer to determine input
priority. While network latency can influence input timing, for research located on a local
network, as in our experimental setup described in Section 6, the difference in input timing
can be negligible.

In conventional VR streaming solutions that rely on OpenXR runtime, the supported
input signals are typically limited to fundamental data such as the poses of heads or
controllers (Figure 6). These signals are essential for the basic VR interaction supported by
most devices. However, this restricts the ability to integrate device-specific or advanced
input features, such as eye tracking or EEG sensors. Loka addresses this limitation by
extending input systems to support a wider range of data types. For instance, device-
dependent data like eye tracking and hand tracking are fully integrated into the framework.
In addition, since the device-dependent data are not standardized, the same type of data
collected from each device may use varying nomenclatures.

Sensors 2025, 25, 1066 12 of 21

Sensors 2025, 25, x FOR PEER REVIEW 12 of 21

and customizable environment, facilitating advanced applications such as biofeedback
systems and personalized user interactions.

Loka standardizes input signals across devices by translating device-specific formats
into a unified internal representation. This is achieved through Unity’s Input System and
XR Interaction Toolkit, which manage inputs dynamically and ensure consistent interac-
tion experiences. For devices with unique input formats, Loka employs adapters to pre-
process and map raw signals to the framework’s standardized format, maintaining com-
patibility across various VR headsets and IoT sensors.

Figure 6. Different types of tracked data.

5.4. Multicasting Capability

Unlike typical streaming or PCVR solutions, Loka natively supports multiuser func-
tionality within a single host server, allowing multiple users to interact in the same virtual
scene simultaneously. This capability creates opportunities for VR research in areas such
as social interaction, a key component of the Metaverse. This functionality is achieved by
decoupling the OpenXR runtime from our solution. Since the OpenXR runtime does not
support multiple devices connected to the same computer simultaneously, we use it solely
to translate input signals. The actual input data are transmitted via the WebRTC channel
to the host, as described earlier.

Since Loka supports multiple users in the same scene simultaneously, we developed
a custom action map in the host, which stores various types of VR inputs, including con-
troller poses and eye-tracking data. Each time a player connects to the system, a cloned
version of this action map is assigned to the player’s corresponding LokaPlayer instance.
By binding the player’s inputs to their respective action map, Loka ensures that each
player’s inputs are correctly tracked and processed in real time. Whenever a player’s input
is updated, the system reads the bounded action map to retrieve the correct values,
providing precise input handling for multiplayer VR environments. This architecture is
illustrated in Figure 7, where the Input Action Asset defines actions and action maps for
each player. The LokaPlayer on the host is assigned a cloned action map, which ensures
that input data (e.g., device position, rotation, button presses) are accurately reflected in
the host environment.

Figure 6. Different types of tracked data.

To address this problem, Loka interprets the data on the client side, categorizes
them into a standardized format, and then transmits the formalized data to the host.
Beyond device-specific capabilities, Loka supports the real-time integration of custom IoT
sensor data. For devices with unique input formats, Loka employs adapters to preprocess
and map raw signals to the framework’s standardized format, maintaining compatibility
across various VR headsets and IoT sensors. Also, since some sensors require a startup
signal to work, Loka reserves a direct channel to allow server–sensor communication (as
Figure 3 depicts). These capabilities provide researchers and developers with a versatile
and customizable environment, facilitating advanced applications such as biofeedback
systems and personalized user interactions.

Loka standardizes input signals across devices by translating device-specific formats
into a unified internal representation. This is achieved through Unity’s Input System and
XR Interaction Toolkit, which manage inputs dynamically and ensure consistent interaction
experiences. For devices with unique input formats, Loka employs adapters to preprocess
and map raw signals to the framework’s standardized format, maintaining compatibility
across various VR headsets and IoT sensors.

5.4. Multicasting Capability

Unlike typical streaming or PCVR solutions, Loka natively supports multiuser func-
tionality within a single host server, allowing multiple users to interact in the same virtual
scene simultaneously. This capability creates opportunities for VR research in areas such
as social interaction, a key component of the Metaverse. This functionality is achieved by
decoupling the OpenXR runtime from our solution. Since the OpenXR runtime does not
support multiple devices connected to the same computer simultaneously, we use it solely
to translate input signals. The actual input data are transmitted via the WebRTC channel to
the host, as described earlier.

Since Loka supports multiple users in the same scene simultaneously, we developed a
custom action map in the host, which stores various types of VR inputs, including controller
poses and eye-tracking data. Each time a player connects to the system, a cloned version
of this action map is assigned to the player’s corresponding LokaPlayer instance. By
binding the player’s inputs to their respective action map, Loka ensures that each player’s
inputs are correctly tracked and processed in real time. Whenever a player’s input is
updated, the system reads the bounded action map to retrieve the correct values, providing
precise input handling for multiplayer VR environments. This architecture is illustrated in
Figure 7, where the Input Action Asset defines actions and action maps for each player. The
LokaPlayer on the host is assigned a cloned action map, which ensures that input data (e.g.,
device position, rotation, button presses) are accurately reflected in the host environment.

Sensors 2025, 25, 1066 13 of 21
Sensors 2025, 25, x FOR PEER REVIEW 13 of 21

Figure 7. Multiuser architecture in Loka. The host server supports multiple clients, each operating
on different platforms or equipped with unique IoT sensors and controllers.

6. Results
In this section, we evaluated the performance and effectiveness of Loka. We con-

ducted a series of tests focused on key areas such as networking load or responsiveness
under different scenarios.

6.1. Testbed Setup

Our experiments were conducted on a controlled testbed within our lab. To simplify
the network topology, we ran the host and signaling server on the same machine, as the
signaling server only functions as a state exchanger. The machine used was a Windows
11 desktop, equipped with an Intel i7-13700K processor and an NVIDIA RTX 4060 Ti
graphics card. The streamer program is built on Unity 2020.3.33f1.

To facilitate performance analysis, we implemented a logging system in the Loka
framework, which records connection metrics during runtime. These metrics include
WebRTC-specific performance indicators such as latency, packet loss, and bitrate. The
metrics can be monitored on the host machine in real time and are also saved to the file
system for later analysis. The recorded data will be used to evaluate system performance
under different conditions. For instance, the logging system can be used to study Loka’s
performance under high-frequency data input scenarios by monitoring real-time CPU us-
age and tracking latency variations in relation to the volume and frequency of input data.

On the client side, we used the PICO Neo 3 Pro Eye (PICO Interactive, Beijing, China)
throughout the initial experiment, which natively supports eye tracking. Additionally,
several IoT sensors were integrated into the setup, including a breath sensor and an EEG
sensor. To evaluate cross-platform compatibility, we replicated the experiment on other
VR devices, including Meta Quest Pro (Meta Platforms, Menlo Park, CA, USA) and Meta
Quest 3 (Meta Platforms, Menlo Park, CA, USA), as well as on PC platforms. These addi-
tional experiments aimed to assess Loka’s performance across various platforms and de-
vices, which are detailed in Section 6.3.

The breath sensor is an Arduino board (Arduino, Turin, Italy) equipped with a ba-
rometer, mounted on a belt. During the experiment, the user wore the belt around the
abdomen. When the user inhales, the abdomen will expand, causing the barometer read-
ing to increase; conversely, when the user exhales, the reading decreases. The sensor read-
ings are transmitted to the Arduino board and then to the headset via Bluetooth (BT). In
our setup, we use an Arduino Uno or Arduino Leonardo for the breath sensor. Since these
boards do not have built-in BT functionality, we include an HC-06 module (PiePie, Taipei,

Figure 7. Multiuser architecture in Loka. The host server supports multiple clients, each operating on
different platforms or equipped with unique IoT sensors and controllers.

6. Results
In this section, we evaluated the performance and effectiveness of Loka. We conducted

a series of tests focused on key areas such as networking load or responsiveness under
different scenarios.

6.1. Testbed Setup

Our experiments were conducted on a controlled testbed within our lab. To simplify
the network topology, we ran the host and signaling server on the same machine, as the
signaling server only functions as a state exchanger. The machine used was a Windows 11
desktop, equipped with an Intel i7-13700K processor and an NVIDIA RTX 4060 Ti graphics
card. The streamer program is built on Unity 2020.3.33f1.

To facilitate performance analysis, we implemented a logging system in the Loka
framework, which records connection metrics during runtime. These metrics include
WebRTC-specific performance indicators such as latency, packet loss, and bitrate. The
metrics can be monitored on the host machine in real time and are also saved to the file
system for later analysis. The recorded data will be used to evaluate system performance
under different conditions. For instance, the logging system can be used to study Loka’s
performance under high-frequency data input scenarios by monitoring real-time CPU
usage and tracking latency variations in relation to the volume and frequency of input data.

On the client side, we used the PICO Neo 3 Pro Eye (PICO Interactive, Beijing, China)
throughout the initial experiment, which natively supports eye tracking. Additionally,
several IoT sensors were integrated into the setup, including a breath sensor and an EEG
sensor. To evaluate cross-platform compatibility, we replicated the experiment on other VR
devices, including Meta Quest Pro (Meta Platforms, Menlo Park, CA, USA) and Meta Quest
3 (Meta Platforms, Menlo Park, CA, USA), as well as on PC platforms. These additional
experiments aimed to assess Loka’s performance across various platforms and devices,
which are detailed in Section 6.3.

The breath sensor is an Arduino board (Arduino, Turin, Italy) equipped with a barom-
eter, mounted on a belt. During the experiment, the user wore the belt around the abdomen.
When the user inhales, the abdomen will expand, causing the barometer reading to in-
crease; conversely, when the user exhales, the reading decreases. The sensor readings are
transmitted to the Arduino board and then to the headset via Bluetooth (BT). In our setup,
we use an Arduino Uno or Arduino Leonardo for the breath sensor. Since these boards do
not have built-in BT functionality, we include an HC-06 module (PiePie, Taipei, Taiwan) for

Sensors 2025, 25, 1066 14 of 21

BT data transmission. The HC-06 module is connected to the Arduino via its serial interface
(RX-TX); once the barometric sensor data are read by the Arduino, they are wirelessly
relayed through the HC-06, which sends the data to the headset.

For the EEG sensor, we utilized Ganglion, a commercial Arduino-based bio-sensing
device compatible with OpenBCI (Figure 8). Ganglion is capable of monitoring EEG, EMG,
or ECG signals, with data sampled at 200 Hz on each of the four channels. The sensor
was integrated with the headset to collect real-time brainwave data during the experi-
ment. Ganglion uses Bluetooth Low Energy (BLE) to transmit data in a specialized format.
To enable seamless integration with the VR environment, we developed an embedded
library in Android Studio and incorporated it into Unity (the implementation (Android Stu-
dio): https://github.com/ncu-wmlab/LabFrameAndroidPlugins/tree/master/ganglion_
plugin/src/main/java/com/xrlab/ganglion_plugin, accessed on 22 January 2024) (the
interface code in Unity: https://github.com/ncu-wmlab/LabFrame_Ganglion, accessed
on 22 January 2024), allowing real-time data streaming at 200 Hz.

Sensors 2025, 25, x FOR PEER REVIEW 14 of 21

Taiwan) for BT data transmission. The HC-06 module is connected to the Arduino via its
serial interface (RX-TX); once the barometric sensor data are read by the Arduino, they are
wirelessly relayed through the HC-06, which sends the data to the headset.

For the EEG sensor, we utilized Ganglion, a commercial Arduino-based bio-sensing
device compatible with OpenBCI (Figure 8). Ganglion is capable of monitoring EEG,
EMG, or ECG signals, with data sampled at 200 Hz on each of the four channels. The
sensor was integrated with the headset to collect real-time brainwave data during the ex-
periment. Ganglion uses Bluetooth Low Energy (BLE) to transmit data in a specialized
format. To enable seamless integration with the VR environment, we developed an em-
bedded library in Android Studio and incorporated it into Unity (the implementation (An-
droid Studio): https://github.com/ncu-wmlab/LabFrameAndroidPlugins/tree/mas-
ter/ganglion_plugin/src/main/java/com/xrlab/ganglion_plugin, accessed on 22 January
2024) (the interface code in Unity: https://github.com/ncu-wmlab/LabFrame_Ganglion,
accessed on 22 January 2024), allowing real-time data streaming at 200 Hz.

Figure 8. Integrated IoT sensors. (a) Ganglion board. (b) Breath sensor.

6.2. Bandwidth Loads

Loka is built atop WebRTC, whose congestion control capability can dynamically ad-
just the target video bitrate based on the estimated network throughput and condition. It
begins with an initial setting and efficiently adjusts in real time as the network fluctuates.
WebRTC receivers can send receiver estimated maximum bitrate (REMB) messages to the
sender as soon as they detect any congestion and then keep sending the messages per
second even if no congestion is happening. Then, the sender decides if the transmission
bitrate can be raised or should be immediately lowered. REMB messages are usually gen-
erated by the receivers every 250 to 500 ms [22]. Consequently, dynamic forwarding op-
erates on a fine-grained timescale, effectively accommodating short-term bandwidth var-
iations among receivers and ensuring seamless playback continuity. The bandwidth ad-
aptation feature is ideal for remote cooperation scenarios. Gunkel et al. [23] presented a
WebRTC-based system for photorealistic social VR communication and evaluated the per-
formance of the system for handling multiple user streams.

Another key feature is the adaptive bitrate capability of the AV1 encoder, which is
particularly effective in reducing redundant data in low-motion or static frame scenarios,
significantly optimizing bandwidth usage. Compared to traditional codecs, AV1 delivers
approximately 30–50% better compression efficiency than H.264 and 20–30% better than
H.265 (HEVC) while maintaining the same level of visual quality. Uhrina et al. [24] ana-
lyzed the compression performance of several modern codecs, revealing that their effi-
ciency varied with resolution. Notably, newer codecs like AV1 demonstrated greater effi-
ciency at higher resolutions. These findings highlight the potential advantages of using
the AV1 codec for VR streaming, which typically demands high-resolution content. This

Figure 8. Integrated IoT sensors. (a) Ganglion board. (b) Breath sensor.

6.2. Bandwidth Loads

Loka is built atop WebRTC, whose congestion control capability can dynamically
adjust the target video bitrate based on the estimated network throughput and condition.
It begins with an initial setting and efficiently adjusts in real time as the network fluctuates.
WebRTC receivers can send receiver estimated maximum bitrate (REMB) messages to the
sender as soon as they detect any congestion and then keep sending the messages per
second even if no congestion is happening. Then, the sender decides if the transmission
bitrate can be raised or should be immediately lowered. REMB messages are usually
generated by the receivers every 250 to 500 ms [22]. Consequently, dynamic forwarding
operates on a fine-grained timescale, effectively accommodating short-term bandwidth
variations among receivers and ensuring seamless playback continuity. The bandwidth
adaptation feature is ideal for remote cooperation scenarios. Gunkel et al. [23] presented
a WebRTC-based system for photorealistic social VR communication and evaluated the
performance of the system for handling multiple user streams.

Another key feature is the adaptive bitrate capability of the AV1 encoder, which is
particularly effective in reducing redundant data in low-motion or static frame scenarios,
significantly optimizing bandwidth usage. Compared to traditional codecs, AV1 delivers
approximately 30–50% better compression efficiency than H.264 and 20–30% better than
H.265 (HEVC) while maintaining the same level of visual quality. Uhrina et al. [24] analyzed
the compression performance of several modern codecs, revealing that their efficiency
varied with resolution. Notably, newer codecs like AV1 demonstrated greater efficiency
at higher resolutions. These findings highlight the potential advantages of using the AV1

https://github.com/ncu-wmlab/LabFrameAndroidPlugins/tree/master/ganglion_plugin/src/main/java/com/xrlab/ganglion_plugin
https://github.com/ncu-wmlab/LabFrameAndroidPlugins/tree/master/ganglion_plugin/src/main/java/com/xrlab/ganglion_plugin
https://github.com/ncu-wmlab/LabFrame_Ganglion

Sensors 2025, 25, 1066 15 of 21

codec for VR streaming, which typically demands high-resolution content. This advantage
enables Loka to optimize bandwidth consumption while preserving high visual fidelity.
It can adapt to lower bitrate for low-complexity scenes, such as minimal movement or
changes, to reduce bandwidth usage, but also keep the visual quality. Loka’s integration
of WebRTC and AV1 ensures adaptive data transmission in dynamic environments. By
monitoring network conditions and adjusting bitrate dynamically, the system reduces
latency and prevents bandwidth overuse while maintaining high visual quality.

To evaluate this adaptive characteristic, we designed our experiment in three phases
(Figure 9). Each phase was designed to assess network performance under different levels
of user movement and scene complexity:

• Phase 1: The user was instructed to remain still, looking straight ahead with minimal
head or body movement. This phase simulates a low-motion scenario, allowing us
to measure our ability to maintain high-quality streaming when only minor frame
updates are necessary.

• Phase 2: The user was asked to move forward within the virtual environment, specif-
ically walking through a playground slide. This phase represents moderate user
movement, introducing more complex frame changes as the user interacts with objects
in the scene.

• Phase 3: In this phase, the user was allowed to freely walk and turn around in the
scene. This phase introduced both rapid movement and changing perspectives as the
user explored the virtual environment. With significant changes to both the objects
and the user’s perspective, this phase poses higher bitrate demands and more frequent
frame updates.

Sensors 2025, 25, x FOR PEER REVIEW 15 of 21

advantage enables Loka to optimize bandwidth consumption while preserving high vis-
ual fidelity. It can adapt to lower bitrate for low-complexity scenes, such as minimal
movement or changes, to reduce bandwidth usage, but also keep the visual quality. Loka’s
integration of WebRTC and AV1 ensures adaptive data transmission in dynamic environ-
ments. By monitoring network conditions and adjusting bitrate dynamically, the system
reduces latency and prevents bandwidth overuse while maintaining high visual quality.

To evaluate this adaptive characteristic, we designed our experiment in three phases
(Figure 9). Each phase was designed to assess network performance under different levels
of user movement and scene complexity:
● Phase 1: The user was instructed to remain still, looking straight ahead with minimal

head or body movement. This phase simulates a low-motion scenario, allowing us to
measure our ability to maintain high-quality streaming when only minor frame up-
dates are necessary.

● Phase 2: The user was asked to move forward within the virtual environment, spe-
cifically walking through a playground slide. This phase represents moderate user
movement, introducing more complex frame changes as the user interacts with ob-
jects in the scene.

● Phase 3: In this phase, the user was allowed to freely walk and turn around in the
scene. This phase introduced both rapid movement and changing perspectives as the
user explored the virtual environment. With significant changes to both the objects
and the user’s perspective, this phase poses higher bitrate demands and more fre-
quent frame updates.

Figure 9. Visual representation of the three experimental phases. (a) Phase 1: the user remains sta-
tionary. (b) Phase 2: the user moves forward, navigating through the playground. (c) Phase 3: the
user freely explores the scene, including rotational movements.

Figure 10 demonstrates how WebRTC responded to different scenarios across the
three phases. During the low-motion scenario, where the user remained mostly still, the
bitrate remained relatively low and stable at an average of 8353 kbps. This is expected in
scenarios with minimal movement, as WebRTC saves up bandwidth by reducing the
number of frame updates. As the user began to move in the virtual environment, the bi-
trate increased significantly. The average bitrate during this phase rose to 12,536 kbps,
reflecting the more complex frame updates required to handle moderate user movement.
WebRTC adapted by dynamically increasing the target bitrate to ensure high-quality
streaming in response to the increase in scene complexity. Finally, in phase 3, the user was
allowed to freely walk and turn around, introducing rapid movement and more frequent
changes from the user’s perspective. The system reported a further increase in bitrate,
averaging 14,675.5 kbps. The higher bitrate in this phase reflects the increased demand for
frequent frame updates to accommodate the dynamic state of the scene. Despite the in-
creased motion, the system managed to maintain a relatively stable frame rate and avoid
significant delays.

Figure 9. Visual representation of the three experimental phases. (a) Phase 1: the user remains
stationary. (b) Phase 2: the user moves forward, navigating through the playground. (c) Phase 3: the
user freely explores the scene, including rotational movements.

Figure 10 demonstrates how WebRTC responded to different scenarios across the three
phases. During the low-motion scenario, where the user remained mostly still, the bitrate
remained relatively low and stable at an average of 8353 kbps. This is expected in scenarios
with minimal movement, as WebRTC saves up bandwidth by reducing the number of
frame updates. As the user began to move in the virtual environment, the bitrate increased
significantly. The average bitrate during this phase rose to 12,536 kbps, reflecting the more
complex frame updates required to handle moderate user movement. WebRTC adapted by
dynamically increasing the target bitrate to ensure high-quality streaming in response to
the increase in scene complexity. Finally, in phase 3, the user was allowed to freely walk
and turn around, introducing rapid movement and more frequent changes from the user’s
perspective. The system reported a further increase in bitrate, averaging 14,675.5 kbps. The
higher bitrate in this phase reflects the increased demand for frequent frame updates to
accommodate the dynamic state of the scene. Despite the increased motion, the system
managed to maintain a relatively stable frame rate and avoid significant delays.

Sensors 2025, 25, 1066 16 of 21
Sensors 2025, 25, x FOR PEER REVIEW 16 of 21

Figure 10. Bitrate performance and the target bitrate WebRTC evaluated across three different use
cases.

6.3. Multi-Platform Performance

Loka’s cross-platform compatibility is enabled by its modular design and reliance on
Unity’s XR Interaction Toolkit and OpenXR Plugin. This approach abstracts device-spe-
cific dependencies and ensures seamless operation across different hardware. Rigorous
cross-platform testing, including evaluations on various VR devices and operating sys-
tems, ensures consistent performance. The framework’s dynamic configuration capability
further enhances adaptability, enabling Loka to accommodate new devices and platforms
efficiently.

To evaluate Loka’s performance across various platforms and devices, we replicated
the experiment mentioned in the previous section on a range of VR devices, including
PICO Neo 3 Pro Eye, Meta Quest Pro, and Meta Quest 3 (Table 2). In addition to VR de-
vices, we conducted the experiment on PC platforms, where keyboard inputs were used
to simulate the control of movement and viewport, to mimic the VR experience. The PC
tests were performed on both Windows and MacOS systems to assess Loka’s compatibil-
ity and performance across desktop environments. By covering a diverse range of plat-
forms, both VR and non-VR, we ensured that Loka’s performance was evaluated under
various hardware and software configurations, providing a comprehensive understand-
ing of its streaming capabilities across different devices and operating systems.

Table 2. The VR device used within the experiments.

 PICO Neo3 Pro Eyes Meta Quest Pro Meta Quest 3

Preview

Resolution 3664 × 1920 3600 × 1920 4128 × 2208
FOV 95° 98° 100°

Connectivity Wi-Fi 6 Wi-Fi 6E Wi-Fi 6E
Built-in

Sensor Data
Eye tracking Eye tracking

Hand tracking
Hand tracking

Integrated
Embedded Sensors

EEG sensor (Ganglion)
Breath sensor

EEG sensor (Ganglion)
Breath sensor

Breath sensor

Figure 10. Bitrate performance and the target bitrate WebRTC evaluated across three different
use cases.

6.3. Multi-Platform Performance

Loka’s cross-platform compatibility is enabled by its modular design and reliance on
Unity’s XR Interaction Toolkit and OpenXR Plugin. This approach abstracts device-specific
dependencies and ensures seamless operation across different hardware. Rigorous cross-
platform testing, including evaluations on various VR devices and operating systems, ensures
consistent performance. The framework’s dynamic configuration capability further enhances
adaptability, enabling Loka to accommodate new devices and platforms efficiently.

To evaluate Loka’s performance across various platforms and devices, we replicated
the experiment mentioned in the previous section on a range of VR devices, including
PICO Neo 3 Pro Eye, Meta Quest Pro, and Meta Quest 3 (Table 2). In addition to VR
devices, we conducted the experiment on PC platforms, where keyboard inputs were used
to simulate the control of movement and viewport, to mimic the VR experience. The PC
tests were performed on both Windows and MacOS systems to assess Loka’s compatibility
and performance across desktop environments. By covering a diverse range of platforms,
both VR and non-VR, we ensured that Loka’s performance was evaluated under various
hardware and software configurations, providing a comprehensive understanding of its
streaming capabilities across different devices and operating systems.

The result is depicted in Figure 11, where we can observe a clear trend in bandwidth
consumption across the three phases. Phase 3, which involved the most user movement and
scene complexity, consistently consumed the most bandwidth, followed by Phase 2 with
moderate movement, and finally Phase 1, where users were mostly stationary. This pattern
aligns with the results from the previous section, reinforcing that higher user motion and
scene complexity demand greater bandwidth for real-time streaming in VR environments.

A notable observation is the lower bitrate performance on PC platforms (Windows and
MacOS) during Phase 1 compared to the VR devices. This discrepancy can be attributed to
the fact that, on PCs, users could remain completely stationary, while VR users, though
instructed to remain still, could still exhibit subtle, involuntary movements such as head tilts
or minor body shifts. These slight movements were enough to increase the bitrate required
for VR streaming, as even small changes in position result in new frame data being sent.
Additionally, the use of the AV1 codec could play a significant role in this observation. AV1
is known for its exceptional efficiency in handling low-motion or static frames, significantly
minimizing the bitrate when there are no major changes in the scene [25]. As a result, on PC
platforms where users could remain truly stationary, the bitrate remained consistently low

Sensors 2025, 25, 1066 17 of 21

during Phase 1. This highlights AV1’s ability to optimize bandwidth usage in low-motion
scenarios, particularly when streaming static frames.

Table 2. The VR device used within the experiments.

PICO Neo3 Pro Eyes Meta Quest Pro Meta Quest 3

Preview

Sensors 2025, 25, x FOR PEER REVIEW 16 of 21

Figure 10. Bitrate performance and the target bitrate WebRTC evaluated across three different use
cases.

6.3. Multi-Platform Performance

Loka’s cross-platform compatibility is enabled by its modular design and reliance on
Unity’s XR Interaction Toolkit and OpenXR Plugin. This approach abstracts device-spe-
cific dependencies and ensures seamless operation across different hardware. Rigorous
cross-platform testing, including evaluations on various VR devices and operating sys-
tems, ensures consistent performance. The framework’s dynamic configuration capability
further enhances adaptability, enabling Loka to accommodate new devices and platforms
efficiently.

To evaluate Loka’s performance across various platforms and devices, we replicated
the experiment mentioned in the previous section on a range of VR devices, including
PICO Neo 3 Pro Eye, Meta Quest Pro, and Meta Quest 3 (Table 2). In addition to VR de-
vices, we conducted the experiment on PC platforms, where keyboard inputs were used
to simulate the control of movement and viewport, to mimic the VR experience. The PC
tests were performed on both Windows and MacOS systems to assess Loka’s compatibil-
ity and performance across desktop environments. By covering a diverse range of plat-
forms, both VR and non-VR, we ensured that Loka’s performance was evaluated under
various hardware and software configurations, providing a comprehensive understand-
ing of its streaming capabilities across different devices and operating systems.

Table 2. The VR device used within the experiments.

 PICO Neo3 Pro Eyes Meta Quest Pro Meta Quest 3

Preview

Resolution 3664 × 1920 3600 × 1920 4128 × 2208
FOV 95° 98° 100°

Connectivity Wi-Fi 6 Wi-Fi 6E Wi-Fi 6E
Built-in

Sensor Data
Eye tracking Eye tracking

Hand tracking
Hand tracking

Integrated
Embedded Sensors

EEG sensor (Ganglion)
Breath sensor

EEG sensor (Ganglion)
Breath sensor

Breath sensor

Sensors 2025, 25, x FOR PEER REVIEW 16 of 21

Figure 10. Bitrate performance and the target bitrate WebRTC evaluated across three different use
cases.

6.3. Multi-Platform Performance

Loka’s cross-platform compatibility is enabled by its modular design and reliance on
Unity’s XR Interaction Toolkit and OpenXR Plugin. This approach abstracts device-spe-
cific dependencies and ensures seamless operation across different hardware. Rigorous
cross-platform testing, including evaluations on various VR devices and operating sys-
tems, ensures consistent performance. The framework’s dynamic configuration capability
further enhances adaptability, enabling Loka to accommodate new devices and platforms
efficiently.

To evaluate Loka’s performance across various platforms and devices, we replicated
the experiment mentioned in the previous section on a range of VR devices, including
PICO Neo 3 Pro Eye, Meta Quest Pro, and Meta Quest 3 (Table 2). In addition to VR de-
vices, we conducted the experiment on PC platforms, where keyboard inputs were used
to simulate the control of movement and viewport, to mimic the VR experience. The PC
tests were performed on both Windows and MacOS systems to assess Loka’s compatibil-
ity and performance across desktop environments. By covering a diverse range of plat-
forms, both VR and non-VR, we ensured that Loka’s performance was evaluated under
various hardware and software configurations, providing a comprehensive understand-
ing of its streaming capabilities across different devices and operating systems.

Table 2. The VR device used within the experiments.

 PICO Neo3 Pro Eyes Meta Quest Pro Meta Quest 3

Preview

Resolution 3664 × 1920 3600 × 1920 4128 × 2208
FOV 95° 98° 100°

Connectivity Wi-Fi 6 Wi-Fi 6E Wi-Fi 6E
Built-in

Sensor Data
Eye tracking Eye tracking

Hand tracking
Hand tracking

Integrated
Embedded Sensors

EEG sensor (Ganglion)
Breath sensor

EEG sensor (Ganglion)
Breath sensor

Breath sensor

Sensors 2025, 25, x FOR PEER REVIEW 16 of 21

Figure 10. Bitrate performance and the target bitrate WebRTC evaluated across three different use
cases.

6.3. Multi-Platform Performance

Loka’s cross-platform compatibility is enabled by its modular design and reliance on
Unity’s XR Interaction Toolkit and OpenXR Plugin. This approach abstracts device-spe-
cific dependencies and ensures seamless operation across different hardware. Rigorous
cross-platform testing, including evaluations on various VR devices and operating sys-
tems, ensures consistent performance. The framework’s dynamic configuration capability
further enhances adaptability, enabling Loka to accommodate new devices and platforms
efficiently.

To evaluate Loka’s performance across various platforms and devices, we replicated
the experiment mentioned in the previous section on a range of VR devices, including
PICO Neo 3 Pro Eye, Meta Quest Pro, and Meta Quest 3 (Table 2). In addition to VR de-
vices, we conducted the experiment on PC platforms, where keyboard inputs were used
to simulate the control of movement and viewport, to mimic the VR experience. The PC
tests were performed on both Windows and MacOS systems to assess Loka’s compatibil-
ity and performance across desktop environments. By covering a diverse range of plat-
forms, both VR and non-VR, we ensured that Loka’s performance was evaluated under
various hardware and software configurations, providing a comprehensive understand-
ing of its streaming capabilities across different devices and operating systems.

Table 2. The VR device used within the experiments.

 PICO Neo3 Pro Eyes Meta Quest Pro Meta Quest 3

Preview

Resolution 3664 × 1920 3600 × 1920 4128 × 2208
FOV 95° 98° 100°

Connectivity Wi-Fi 6 Wi-Fi 6E Wi-Fi 6E
Built-in

Sensor Data
Eye tracking Eye tracking

Hand tracking
Hand tracking

Integrated
Embedded Sensors

EEG sensor (Ganglion)
Breath sensor

EEG sensor (Ganglion)
Breath sensor

Breath sensor

Resolution 3664 × 1920 3600 × 1920 4128 × 2208

FOV 95◦ 98◦ 100◦

Connectivity Wi-Fi 6 Wi-Fi 6E Wi-Fi 6E

Built-in
Sensor Data Eye tracking Eye tracking

Hand tracking Hand tracking

Integrated
Embedded Sensors

EEG sensor (Ganglion)
Breath sensor

EEG sensor (Ganglion)
Breath sensor Breath sensor

Sensors 2025, 25, x FOR PEER REVIEW 17 of 21

The result is depicted in Figure 11, where we can observe a clear trend in bandwidth
consumption across the three phases. Phase 3, which involved the most user movement
and scene complexity, consistently consumed the most bandwidth, followed by Phase 2
with moderate movement, and finally Phase 1, where users were mostly stationary. This
pattern aligns with the results from the previous section, reinforcing that higher user mo-
tion and scene complexity demand greater bandwidth for real-time streaming in VR en-
vironments.

A notable observation is the lower bitrate performance on PC platforms (Windows
and MacOS) during Phase 1 compared to the VR devices. This discrepancy can be at-
tributed to the fact that, on PCs, users could remain completely stationary, while VR users,
though instructed to remain still, could still exhibit subtle, involuntary movements such
as head tilts or minor body shifts. These slight movements were enough to increase the
bitrate required for VR streaming, as even small changes in position result in new frame
data being sent. Additionally, the use of the AV1 codec could play a significant role in this
observation. AV1 is known for its exceptional efficiency in handling low-motion or static
frames, significantly minimizing the bitrate when there are no major changes in the scene
[25]. As a result, on PC platforms where users could remain truly stationary, the bitrate
remained consistently low during Phase 1. This highlights AV1’s ability to optimize band-
width usage in low-motion scenarios, particularly when streaming static frames.

Overall, the results demonstrate Loka’s ability to adapt to different platforms and
scenarios, efficiently managing bandwidth across varying levels of motion and scene com-
plexity. The system’s performance across multiple platforms shows that Loka can effec-
tively scale its streaming capabilities to meet the demands of different devices and de-
mands.

Figure 11. Average bitrate across different devices.

6.4. Multicasting Performance

To evaluate Loka’s multicasting capability, we conducted an experiment by connect-
ing multiple clients to a host simultaneously. The test began by connecting a single device
to the host, followed by the addition of a new device every 60 s. Throughout the process,
we measured the bitrate and framerate performance to evaluate the system’s behavior
under increasing load.

The results of the multicasting performance experiment are shown in Figure 12. We
can observe that the frame rate remains stable (i.e., close to 60 FPS) for up to three players
interacting in the same virtual environment at the same time, demonstrating that the sys-
tem is able to perform smoothly without impacting users’ experience. However, as the
number of players increases, the frame rate gradually declines, dropping to between 40

Figure 11. Average bitrate across different devices.

Overall, the results demonstrate Loka’s ability to adapt to different platforms and
scenarios, efficiently managing bandwidth across varying levels of motion and scene com-
plexity. The system’s performance across multiple platforms shows that Loka can effectively
scale its streaming capabilities to meet the demands of different devices and demands.

6.4. Multicasting Performance

To evaluate Loka’s multicasting capability, we conducted an experiment by connecting
multiple clients to a host simultaneously. The test began by connecting a single device to
the host, followed by the addition of a new device every 60 s. Throughout the process, we
measured the bitrate and framerate performance to evaluate the system’s behavior under
increasing load.

The results of the multicasting performance experiment are shown in Figure 12. We
can observe that the frame rate remains stable (i.e., close to 60 FPS) for up to three players
interacting in the same virtual environment at the same time, demonstrating that the system
is able to perform smoothly without impacting users’ experience. However, as the number

Sensors 2025, 25, 1066 18 of 21

of players increases, the frame rate gradually declines, dropping to between 40 and 50 FPS
with six players. Additionally, the maximum round-trip time for packets increases from
15 ms to 25 ms. This performance degradation is primarily attributed to CPU load, as the
system requires significantly more computational resources to process and synchronize
data as more players join.

Sensors 2025, 25, x FOR PEER REVIEW 18 of 21

and 50 FPS with six players. Additionally, the maximum round-trip time for packets in-
creases from 15 ms to 25 ms. This performance degradation is primarily attributed to CPU
load, as the system requires significantly more computational resources to process and
synchronize data as more players join.

This performance drop is primarily attributed to CPU resource limitations on the host
server. As more players join, the system requires significantly more computational re-
sources to process and synchronize data streams, leading to increased CPU load. Conse-
quently, the system becomes CPU-bound, and this serves as the major bottleneck in the
current experimental setup.

The results indicate that, on our experimental host hardware, Loka performs effi-
ciently in multiplayer settings with up to three concurrent users, maintaining consistent
frame rates, lower latency and delivering a seamless experience. However, beyond this
threshold, performance degradation occurs. The WebRTC testing conducted in [26] also
highlights the impact of resource limitations on performance. The service was hosted on
a medium-sized cloud instance with 2 vCPUs and 4 GB of RAM. The study found that the
system could support up to approximately 175 clients while maintaining acceptable la-
tency. However, when the number of connected clients exceeded this threshold, the la-
tency for all connected clients increased dramatically.

To address this limitation, a straightforward solution is to scale the system by in-
creasing the CPU resources on the host server to support additional multicasting sessions.
Furthermore, future optimizations will prioritize the development of efficient resource
allocation strategies to enhance CPU utilization and improve overall system scalability.

Figure 12. Average bitrate, frame rate, and latency performance with multiple devices connected to
the host.

7. Conclusions and Future Works

Figure 12. Average bitrate, frame rate, and latency performance with multiple devices connected to
the host.

This performance drop is primarily attributed to CPU resource limitations on the host
server. As more players join, the system requires significantly more computational resources
to process and synchronize data streams, leading to increased CPU load. Consequently,
the system becomes CPU-bound, and this serves as the major bottleneck in the current
experimental setup.

The results indicate that, on our experimental host hardware, Loka performs efficiently
in multiplayer settings with up to three concurrent users, maintaining consistent frame
rates, lower latency and delivering a seamless experience. However, beyond this threshold,
performance degradation occurs. The WebRTC testing conducted in [26] also highlights the
impact of resource limitations on performance. The service was hosted on a medium-sized
cloud instance with 2 vCPUs and 4 GB of RAM. The study found that the system could
support up to approximately 175 clients while maintaining acceptable latency. However,
when the number of connected clients exceeded this threshold, the latency for all connected
clients increased dramatically.

To address this limitation, a straightforward solution is to scale the system by in-
creasing the CPU resources on the host server to support additional multicasting sessions.
Furthermore, future optimizations will prioritize the development of efficient resource
allocation strategies to enhance CPU utilization and improve overall system scalability.

Sensors 2025, 25, 1066 19 of 21

7. Conclusions and Future Works
In this paper, we introduced Loka, a VR streaming toolkit designed to support the

growing demands of the Metaverse by integrating the flexibility of AIO VR with the power
of cloud-based rendering and streaming. Loka enables high-quality VR experiences on
low-end hardware by offloading rendering tasks to remote servers, overcoming hardware
limitations while supporting a variety of platforms. We assessed Loka’s ability to adapt to
varying network conditions and user motion, ensuring stable and immersive experiences.
Additionally, Loka’s multicasting functionality allows multiple users to engage in real-time
interactions, a crucial feature for expanding social and collaborative experiences in the
Metaverse, while integrating IoT sensor data, further enriching VR applications for both
developers and researchers.

For future work, we plan to integrate Loka into our existing game modules, expanding
its cross-platform and multiplayer capabilities. This integration will allow for seamless
interaction between players on different devices, enhancing the versatility of the system. In
addition, we plan to test Loka in various real-world scenarios to demonstrate its applicabil-
ity and performance in practical settings. For example, in a remote education scenario, Loka
will be used to create immersive VR classrooms where multiple students can interact in real
time. These tests will evaluate key performance metrics such as synchronization accuracy,
latency, and the effectiveness of personalized content delivery in enhancing learning out-
comes. From a technical standpoint, we aim to study approaches to optimize bandwidth
consumption and reduce latency by exploring advanced techniques such as foveated video
streaming, which achieves throughput reduction by prioritizing rendering quality in areas
where the user is looking [27,28]. The user’s viewpoint prediction can be also utilized to
cache video data proactively and partially offload computing tasks to the edge server, to
meet the demanding E2E latency [29]. Additionally, we plan to implement quality of ser-
vice (QoS) prediction algorithms to instantly predict the variance of the demanded quality
metrics and allocate resources accordingly, to ensure a smooth streaming experience even
under fluctuating network conditions [22]. We plan to design adaptive algorithms for input
prioritization, such as dynamic down-sampling of low-priority data streams and resource
allocation strategies for high-priority inputs, to ensure that high-frequency input data do
not degrade system performance and user experiences in multiplayer environments.

Author Contributions: Conceptualization, Y.-C.C.; Methodology, H.-W.K. and S.-C.K.; Software,
Y.-C.C.; Validation, H.-W.K.; Writing—original draft, Y.-C.C.; Writing—review & editing, H.-W.K.;
Supervision, E.H.-K.W. and S.-C.Y.; Project administration, E.H.-K.W. and S.-C.Y.; Funding acquisition,
E.H.-K.W. and S.-C.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are openly available in Source Code at
https://github.com/ncu-wmlab/LOKA.Core (accessed on 22 January 2024).

Conflicts of Interest: Hsiao-Wen Kao was employed by ChungHwa Telecom Laboratories. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

https://github.com/ncu-wmlab/LOKA.Core

Sensors 2025, 25, 1066 20 of 21

References
1. Wang, H.; Martinez-Velazquez, R.; Dong, H.; El Saddik, A. Experimental Studies of Metaverse Streaming. IEEE Consum. Electron.

Mag. 2024, 14, 26–36. [CrossRef]
2. Kizilkaya, B.; Zhao, G.; Sambo, Y.A.; Li, L.; Imran, M.A. 5G-enabled education 4.0: Enabling technologies, challenges, and

solutions. IEEE Access 2021, 9, 166962–166969. [CrossRef]
3. Latha, D.H.; Reddy, D.R.K.; Sudha, K.; Mubeen, A.; Savita, T.S. A Study on 5th Generation Mobile Technology-Future Network

Service. Int. J. Comput. Sci. Inf. Technol. 2014, 5, 8309–8313.
4. Yu, H.; Lee, H.; Jeon, H. What is 5G? Emerging 5G mobile services and network requirements. Sustainability 2017, 9, 1848.

[CrossRef]
5. Framework and Overall Objectives of the Future Development of IMT for 2030 and Beyond. 2024. Available online: https:

//www.itu.int/dms_pub/itu-d/oth/07/31/D07310000090015PDFE.pdf (accessed on 20 December 2024).
6. Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems.

IEEE Netw. 2019, 34, 134–142. [CrossRef]
7. Huang, C.-Y.; Hsu, C.-H.; Chang, Y.-C.; Chen, K.-T. GamingAnywhere: An open cloud gaming system. In Proceedings of the 4th

ACM Multimedia Systems Conference, Oslo, Norway, 27 February–1 March 2013.
8. Huang, C.-Y.; Chen, K.-T.; Chen, D.-Y.; Hsu, H.-J.; Hsu, C.-H. GamingAnywhere: The first open source cloud gaming system.

ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2014, 10, 1–25. [CrossRef]
9. NVIDIA GeForce Now. Available online: https://www.nvidia.com/geforce-now/ (accessed on 1 December 2024).
10. Di Domenico, A.; Perna, G.; Trevisan, M.; Vassio, L.; Giordano, D. A network analysis on cloud gaming: Stadia, geforce now and

psnow. Network 2021, 1, 247–260. [CrossRef]
11. Suznjevic, M.; Slivar, I.; Skorin-Kapov, L. Analysis and QoE evaluation of cloud gaming service adaptation under different

network conditions: The case of NVIDIA GeForce NOW. In Proceedings of the 2016 Eighth International Conference on Quality
of Multimedia Experience (QoMEX), Lisbon, Portugal, 6–8 June 2016.

12. Virtual Desktop. Available online: https://www.vrdesktop.net/ (accessed on 1 December 2024).
13. ALVR (Air Light VR). Available online: https://github.com/alvr-org/ALVR (accessed on 1 December 2024).
14. NVIDIA CloudXR Suite. Available online: https://developer.nvidia.com/cloudxr-sdk (accessed on 1 December 2024).
15. Kim, H.; Kwon, Y.; Lim, H.; Kim, J.; Kim, Y.; Yeo, W. Recent advances in wearable sensors and integrated functional devices for

virtual and augmented reality applications. Adv. Funct. Mater. 2021, 31, 2005692. [CrossRef]
16. Rosu, A.G.; Simiscuka, A.A.; Togou, M.A.; Muntean, G.-M. BeTwin: Enhancing VR Experiences with BLE Beacon-Based Digital

Twins. In Proceedings of the ICC 2023-IEEE International Conference on Communications, Rome, Italy, 28 May—1 June 2023.
17. Mancuso, V.; Borghesi, F.; Chirico, A.; Bruni, F.; Sarcinella, E.D.; Pedroli, E.; Cipresso, P. IAVRS—International Affective Virtual

Reality System: Psychometric Assessment of 360◦ Images by Using Psychophysiological Data. Sensors 2024, 24, 4204. [CrossRef]
[PubMed]

18. Shin, R.; Choi, B.; Choi, S.-M.; Lee, S. Implementation and evaluation of walk-in-place using a low-cost motion-capture device for
virtual reality applications. Sensors 2024, 24, 2848. [CrossRef] [PubMed]

19. Kulozik, J.; Jarrassé, N. Evaluating the precision of the HTC VIVE Ultimate Tracker with robotic and human movements under
varied environmental conditions. arXiv 2024, arXiv:2409.01947.

20. Queck, D.; Albert, I.; Burkard, N.; Zimmer, P.; Volkmar, G.; Dänekas, B.; Malaka, R.; Herrlich, M. SpiderClip: Towards an open
source system for wearable device simulation in virtual reality. In Proceedings of the CHI Conference on Human Factors in
Computing Systems Extended Abstracts, Honolulu, HI, USA, 11–16 May 2024.

21. Unity Render Streaming. Available online: https://github.com/Unity-Technologies/UnityRenderStreaming (accessed on 1
December 2024).

22. Petrangeli, S.; Pauwels, D.; van der Hooft, J.; Wauters, T.; De Turck, F.; Slowack, J. Improving quality and scalability of WebRTC
video collaboration applications. In Proceedings of the 9th ACM Multimedia Systems Conference, Amsterdam, The Netherlands,
12–15 June 2018.

23. Gunkel, S.N.; Hindriks, R.; Assal, K.M.E.; Stokking, H.M.; Dijkstra-Soudarissanane, S.; Haar, F.T.; Niamut, O. VRComm: An
end-to-end web system for real-time photorealistic social VR communication. In Proceedings of the 12th ACM Multimedia
Systems Conference, Istanbul, Turkey, 28 September–1 October 2021.

24. Uhrina, M.; Sevcik, L.; Bienik, J.; Smatanova, L. Performance Comparison of VVC, AV1, HEVC, and AVC for High Resolutions.
Electronics 2024, 13, 953. [CrossRef]

25. Han, J.; Li, B.; Mukherjee, D.; Chiang, C.-H.; Grange, A.; Chen, C.; Su, H.; Parker, S.; Deng, S.; Joshi, U.; et al. A technical overview
of AV1. Proc. IEEE 2021, 109, 1435–1462. [CrossRef]

26. Garcia, B.; Gortazar, F.; Lopez-Fernandez, L.; Gallego, M.; Paris, M. WebRTC testing: Challenges and practical solutions. IEEE
Commun. Stand. Mag. 2017, 1, 36–42. [CrossRef]

https://doi.org/10.1109/MCE.2024.3364118
https://doi.org/10.1109/ACCESS.2021.3136361
https://doi.org/10.3390/su9101848
https://www.itu.int/dms_pub/itu-d/oth/07/31/D07310000090015PDFE.pdf
https://www.itu.int/dms_pub/itu-d/oth/07/31/D07310000090015PDFE.pdf
https://doi.org/10.1109/MNET.001.1900287
https://doi.org/10.1145/2537855
https://www.nvidia.com/geforce-now/
https://doi.org/10.3390/network1030015
https://www.vrdesktop.net/
https://github.com/alvr-org/ALVR
https://developer.nvidia.com/cloudxr-sdk
https://doi.org/10.1002/adfm.202005692
https://doi.org/10.3390/s24134204
https://www.ncbi.nlm.nih.gov/pubmed/39000988
https://doi.org/10.3390/s24092848
https://www.ncbi.nlm.nih.gov/pubmed/38732956
https://github.com/Unity-Technologies/UnityRenderStreaming
https://doi.org/10.3390/electronics13050953
https://doi.org/10.1109/JPROC.2021.3058584
https://doi.org/10.1109/MCOMSTD.2017.1700005

Sensors 2025, 25, 1066 21 of 21

27. Illahi, G.; Siekkinen, M.; Masala, E. Foveated video streaming for cloud gaming. In Proceedings of the 2017 IEEE 19th International
Workshop on Multimedia Signal Processing (MMSP), Luton, UK, 16–18 October 2017.

28. Hsiao, L.; Krajancich, B.; Levis, P.; Wetzstein, G.; Winstein, K. Towards retina-quality VR video streaming: 15ms could save you
80% of your bandwidth. ACM SIGCOMM Comput. Commun. Rev. 2022, 52, 10–19. [CrossRef]

29. Yu, H.; Shokrnezhad, M.; Taleb, T.; Li, R.; Song, J. Toward 6g-based metaverse: Supporting highly-dynamic deterministic
multi-user extended reality services. IEEE Netw. 2023, 37, 30–38. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3523230.3523233
https://doi.org/10.1109/MNET.004.2300101

	Introduction
	Related Works
	Network Technology
	Cloud Gaming
	VR Streaming
	IoT Sensor Integration

	Objectives and Features
	Applications of Loka
	Cost-Effectiveness of Loka

	System Architecture
	Client: VR Devices and Data Collection
	Host: Rendering Server
	Signaling Server: Signal Communication

	Technical Implementation
	Establishing Connection
	Host View Adaptation and Rendering
	Client Input Handling
	Multicasting Capability

	Results
	Testbed Setup
	Bandwidth Loads
	Multi-Platform Performance
	Multicasting Performance

	Conclusions and Future Works
	References

