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Abstract: Kinect, with its intrinsic and accessible human motion capture capabilities, found
widespread application in real-world scenarios such as rehabilitation therapy and robot
control. Consequently, a thorough analysis of its previously under-examined motion cap-
ture accuracy is of paramount importance to mitigate the risks potentially arising from
recognition errors in practical applications. This study employs a high-precision, marker-
based motion capture system to generate ground truth human pose data, enabling an
evaluation of Azure Kinect’s performance across a spectrum of tasks, which include both
static postures and dynamic movement behaviors. Specifically, the cosine similarity for
skeletal representation is employed to assess pose estimation accuracy from an application-
centric perspective. Experimental results reveal that factors such as the subject’s distance
and orientation relative to the Kinect, as well as self-occlusion, exert a significant in-
fluence on the fidelity of Azure Kinect’s human posture recognition. Optimal testing
recommendations are derived based on the observed trends. Furthermore, a linear fitting
analysis between the ground truth data and Azure Kinect’s output suggests the potential
for performance optimization under specific conditions. This research provides valuable
insights for the informed deployment of Kinect in applications demanding high-precision
motion recognition.

Keywords: motion capture; Azure Kinect DK; body posture; recognition accuracy;
cosine similarity

1. Introduction
The continuous advancement of motion capture technology propelled its application

far beyond the realms of film production and game design, with notable adoption in
domains such as medical rehabilitation, virtual reality, and robot control [1–3]. In particu-
lar, markerless vision-based motion capture devices, owing to their low hardware costs
and ease of use [4], demonstrate a broader application potential compared to traditional
marker-based systems [5]. Undoubtedly, Microsoft’s Azure Kinect DK series stands as a
representative example of markerless motion capture devices [6], distinguished not only
by its compact design and open software framework, but also by its superior image mod-
ulation frequency, depth data accuracy, and its inherent human skeletal joint recognition
capabilities [7,8]. However, as is characteristic of markerless motion capture devices, the
correctness and precision of its recognition are susceptible to factors such as illumination
variations and occlusions in Kinect’s field of view.

In the film industry, motion capture data are typically acquired offline, allowing for the
mitigation of data deviations through iterative acquisition or heuristic adjustments based
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on experience and intuition. In interactive gaming, motion capture data are processed in
real-time, but inaccuracies often remain unnoticed unless they manifest as egregious errors.
However, in real-world applications, such as medical rehabilitation, the implications of
motion capture data deviations become critical and can no longer be disregarded, as they
directly influence the effectiveness of the application and potentially introduce significant
risks. For Kinect, as the applications increasingly diversify and become more practical, a
rigorous evaluation of its accuracy becomes ever more paramount.

For instance, Amprimo et al. employed the Azure Kinect for the remote assessment,
detection, and rehabilitation of Parkinson’s disease patients [9]. This same sensor has
also been utilized for classifying and detecting individuals with depression [10] and for
monitoring geriatric clinical conditions [11], collectively demonstrating its popularity in
clinical healthcare. Bärligea et al. leveraged the Azure Kinect as a motion-tracking signal
generator for weightlessness simulation, showcasing its potential in manned space mission
planning and other aerospace applications [12]. By integrating the Kinect with other
sensing devices and control techniques, its range of applications can be further expanded.
Examples include combining it with robot models to achieve collision-free human–robot
interaction [13], integrating it with IMUs for more stable human motion measurement [14],
and introducing deep learning techniques to enable upper limb functional assessment
using a single Kinect v2 sensor [15].

Various methods have been proposed to enhance Kinect’s motion capture accuracy.
For instance, a Support Vector Machine (SVM) classifier was employed to improve the
accuracy of human action recognition [16]. Park et al. designed a whole-body driven
scanner consisting of three Kinect v2 sensors, mitigating the time cost and privacy concerns
associated with wearing tight-fitting clothing in traditional 3D whole-body scanning while
achieving high prediction accuracy [17].

Since the parallel use of Kinect sensors can enhance accuracy, various multi-sensor
approaches have been investigated. One study proposed using two Kinect sensors to
acquire upper limb joint angle data from different perspectives, resulting in significantly
improved accuracy and robustness of joint angle trajectory recognition [18]. Another
study combined data from multiple Azure Kinect sensors, transforming depth information
into 3D positions to mitigate occlusion issues inherent in single-camera setups [19]. A
data fusion algorithm for three Kinect devices was developed to enhance the accuracy
of human skeletal tracking [20]. Furthermore, a spatiotemporal calibration method for
multiple cameras was proposed to maximize coverage of the captured subject and min-
imize occlusions, leading to a substantial improvement in the accuracy of Azure Kinect
motion capture [21].

However, considering the practical advantages of deploying a single Kinect and that
using multiple Kinect sensors somewhat contradicts the original intent of its ease of use,
there has been a growing body of research focusing on the motion capture performance of
a single Kinect. Yeunga et al. compared the accuracy of gait tracking using Azure Kinect,
Kinect v2, and Orbbec Astra across five camera viewpoints, demonstrating the superior
performance of Azure Kinect in tracking hip and knee joints in the sagittal plane [22].
Bilesan discussed how to use inverse kinematics to more accurately convert spatial node
data obtained from a single Kinect into joint angle data [23] and evaluated its effectiveness
using a real robot [24]. Beshara, through clinical experiments based on multiple testing de-
vices, demonstrated that Kinect exhibits high reliability in shoulder range of motion (ROM)
measurements [25]. The depth and spatial accuracy of the Azure Kinect DK have also been
compared with those of its predecessors, Kinect v1 and Kinect v2, further validating its
advantages in 3D scanning applications [6,26]. Büker et al. evaluated the repeatability of
the Azure Kinect, analyzing the spatiotemporal progression and differences in derived
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parameters from 100 body tracking experiments, revealing significant variations in joint
positions under different processing modes and thus recommending careful selection of
processing modes and consistent use of the same computer hardware for all analyses in
practical applications [27].

Evidently, even the latest Azure Kinect DK device does not yet represent a sufficiently
precise motion capture apparatus. Nevertheless, considering the significant advantages and
continuous improvement [28–34] of such markerless motion capture systems in practical
applications, as evidenced by the research of Martiš [29], Antico [32], and Milosevic [33]
et al., which demonstrates that markerless recognition technologies can significantly reduce
assessment time in clinical medicine, the advantages and potential of markerless techniques
in clinical settings are undeniable when compared to traditional marker-based systems
(e.g., Vicon) and methods. This compels us to engage in a deeper consideration of the
following question:

(1) What is the precise accuracy of full-body human motion capture using a single
Kinect device? Specifically, how can we design a suitable motion capture data accuracy
evaluation scheme that considers its potential practical application requirements, thereby
providing reference accuracy data and potential guidelines for its application development?
It is pertinent to note that existing accuracy analyses and evaluation methods are primarily
categorized into two types. The first stems from image analysis techniques, generally
emphasizing the spatial position of joint nodes rather than the morphology of the skeletal
system itself. The second directly compares joint rotation angles [23,34], while neglecting
positional accuracy. While we acknowledge that discussions regarding the fidelity of joint
rotation angle tracking have become increasingly important with the advancement of
research on human-like motion, the accuracy of joint position remains crucial, particularly
in tasks requiring spatial positioning. Therefore, devising a new and appropriate accuracy
evaluation method that represents a compromise between these two types of accuracy
(joint angle and joint position) is a worthwhile and practical research direction.

(2) Under the current technological constraints of a single Azure Kinect DK device,
what is the potential for subsequent improvement and enhancement of its motion capture
data? After all, existing accuracy discussions primarily focus on its previous versions, such
as Kinect v2.

We contend that these two questions are pivotal for the deeper application of Kinect
in the future. However, to the best of our knowledge, there is currently a paucity of
comprehensive research in this area; despite their fundamental importance, most studies
continue to focus on showcasing the application cases and potential of Kinect in a wider
range of fields. Therefore, this paper addresses these two questions to serve as a valuable
supplement to the existing research on the accuracy of Kinect.

In this work, we adopt the concept of cosine similarity between vectors to analyze
and evaluate the spatial directional consistency between skeletal recognition results and
their ground truth. Since this metric is directly related to the spatial position accuracy
of the joints and can be further correlated with the accuracy of joint angles, it combines
the advantages of both types of accuracy analysis metrics. Based on a cosine similarity
analysis of both local body segments and the entire skeleton, our findings reveal that Azure
Kinect DK achieves high skeletal recognition accuracy for stationary postures, with a distin-
guishable decline in accuracy during motion. When the distance and orientation between
the human body and the Kinect camera are maintained within a certain range, the Kinect
demonstrates good recognition accuracy and stability, while, as these parameters deviate
from this range, the stability of recognition decreases significantly, and the accuracy conse-
quently declines. For individual skeletal segments, the accuracy of distal limb segments is
generally lower than that of their proximal counterparts, although exceptions occur under



Sensors 2025, 25, 1047 4 of 26

specific conditions, which are analyzed in detail in this study. Furthermore, attempts to
post-process and correct motion capture data based on the ground truth data suggest that
the accuracy of Azure Kinect DK’s motion capture can be further improved under certain
conditions. These novel experimental findings provide practical references and recommen-
dations for the in-depth application of this popular device in tasks requiring high-precision
motion recognition.

2. Materials and Methods
2.1. Experimental Setup

Two identical Azure Kinect DK devices (hereinafter referred to as Kinect), model
1880, with color camera firmware version 1.6.11 and depth camera firmware version 1.6.79,
were selected for the evaluation tests. It is important to clarify that these devices were not
utilized concurrently; rather, one served as a control to assess the generalizability of the
acquired data.

Furthermore, considering that marker-based motion capture systems are capable of
acquiring high-precision spatial positioning data, a Visualeyez system manufactured by
Phoenix Technologies was employed to accurately acquire the spatial pose data of markers
and subsequently generate human motion pose data that could serve as ground truth. This
device, specifically the Visualeyez III VZ10K PTI 3D Motion Capture system (hereinafter
referred to as Visualeyez), is an active marker-based tracking system [35,36]. It features a
maximum sampling frequency of 10,000 Hz and a sampling accuracy of 0.1 mm. With a
spatial resolution of 15 µm, a square field of view (FOV) of 100◦, and a latency of 0.3 ms, it
is capable of supporting high-precision dynamic capture [37].

In practical tests, the coordinate systems of different devices need to be aligned to
facilitate the analysis of motion capture data. As illustrated in Figure 1a, the origin of the
default coordinate system for Kinect is defined at the center point of its depth camera [38],
with the depth direction as the positive z-axis, the positive x-axis pointing to the right, and
the positive y-axis pointing downward. The origin of the data coordinate system for the
Visualeyez device is located at the center of its central capture lens [35], with the depth
direction as the positive z-axis, the positive x-axis pointing upward, and the positive y-axis
pointing to the right. During the testing process, the z-axes of both devices were positioned
in the same vertical plane and maintained parallel to each other, and the YOZ plane of the
Kinect devices and the XOZ plane of Visualeyez were made coplanar.

In the experiments conducted in this study, both Kinect and Visualeyez were used to
simultaneously measure the subjects. For the acquired data, they were first transformed
into a unified coordinate system. Subsequently, the data acquired from Visualeyez were
used as a benchmark to compare and analyze the data obtained from Kinect.

2.2. Experimental Scenarios

To comprehensively evaluate the accuracy of human pose data identified by the
Kinect, we categorized the testing tasks into static and dynamic scenarios from an appli-
cation perspective. In the static tests, a mannequin with a height of 1.85 m was selected
as the sole subject. This mannequin closely approximates the full-body morphology of
a human and can maintain a static posture, as visually compared to a real human in
Figure 1b. Consequently, static tests enable the repeatable and precise reproduction of the
human pose to be measured, facilitating the direct assessment of discrepancies between
motion capture data and ground truth data. This setup was also used to investigate how
factors such as the subject’s position, orientation, and posture affect the motion capture
accuracy and stability. In the dynamic tests, human subjects performed a variety of pre-
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defined actions in sequence to evaluate the overall accuracy of the Kinect in continuous
motion capture.
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Figure 1. Illustration of the experimental protocol and scenarios. (a) Placement of the two types of
motion capture devices, with the default coordinate system of Kinect indicated in red and that of
Visualeyez in blue. Red nodes and lines superimposed on the human figure are directly generated
from skeletal data acquired by Kinect. (b) Photograph of the testing environment and equipment.
(c) Key test parameters for static human pose evaluation, including various pose types, distances, and
orientations, all performed using a mannequin. (d) Various motion types used to evaluate motion
capture performance under dynamic conditions, performed by human subjects.

2.2.1. Static Test Protocol

The specific tasks and scenarios for the static tests are illustrated in Figure 1c. In
these tests, the mannequin was configured in a stable, upright standing posture, further
categorized into three distinct poses based on upper limb configuration: standing at
attention, arms swinging anteroposteriorly, and arms outstretched laterally. These poses
were selected to represent common and typical human postures.

The relative positioning between the subject and the Kinect was limited to the most
prevalent application scenario: the subject positioned directly in front of the Kinect.
Considering the recognition range of Kinect, the subject was maintained within a dis-
tance range of 1500 mm to 4000 mm directly in front of the device. Distances less than
1500 mm could result in the hands exceeding the effective recognition range. Within this
range, static tests with the subject directly facing the Kinect were conducted at 100 mm inter-
vals. For tests where the subject was not directly facing the Kinect, intervals of 500 mm were
used. In these instances, although the subject’s position remained directly in front of the
Kinect’s lens, their body orientation maintained a fixed angular deviation from the Kinect’s
negative z-axis.

For scenarios where the subject’s orientation deviated from the Kinect’s negative z-axis,
specific yaw angles of ±15◦, ±30◦, and ±45◦ were implemented.
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The aforementioned subject-to-device distance refers specifically to the separation
along the device’s Z-axis. The device’s position is defined as the origin of its coordinate
system. The subject’s position is defined by the furthest protrusion of their toes relative
to a circle centered at their body’s center. Therefore, when the subject stands directly in
front of the device, facing it, the Z-axis distance between the toes and the device consti-
tutes the measured distance. By rotating the subject in place, the facing direction can be
adjusted while maintaining this distance. This distance was measured using a portable
laser rangefinder during the experiments.

Taking into account the aforementioned factors, the specific tasks for the static tests
are detailed in Table 1.

Table 1. Parameter settings for static experiments.

Pose Orientation
(◦)

Distance Range
(mm)

Distance
Interval (mm)

Number of
Sub-Tests

Standing at
attention

0 [1500, 4000] 100 26
±30 [1500, 4000] 500 12
±45 [1500, 4000] 500 12

Arms swinging (Left
forward) 0 [1500, 4000] 100 26

Arms swinging (Right
forward) 0 [1500, 4000] 100 26

Arms
Outstretched laterally 1

0 [1500, 4000] 100 26
±15 [2000, 4000] 500 10
±30 [2000, 4000] 500 10
±45 [2000, 4000] 500 10

1 For tests involving the arms outstretched laterally pose with orientations not directly facing Kinect, the minimum
distance was set to 2000 mm to prevent wrists from exceeding the recognition range.

2.2.2. Dynamic Test Protocol

The specific tasks and scenarios for the dynamic tests are illustrated in Figure 1d. In
these experiments, multiple human subjects, as opposed to the mannequin, participated
directly to perform pre-defined actions. We did not investigate scenarios involving multiple
subjects simultaneously; rather, similar to the static tests, each experiment involved only
one subject present in the scene.

The pre-defined actions comprised four types: marching in place, forward and back-
ward walking, lateral walking, and in-place body rotation. During walking, neither the
speed of body movement nor arm movements were strictly controlled (though natural
swinging was encouraged); subjects were instructed to act according to their personal
habits, provided the task duration was satisfied. Each type of movement only had specific
goals related to body movement. For example, forward and backward walking required
the subject to begin at a distance of 3500 mm from Kinect, proceed forward to 1500 mm,
and then retreat backward to 3500 mm. Marching in place and lateral walking tests were
conducted at a series of pre-defined initial positions, with a z-axis interval of 500 mm
between these positions. The specific tasks for the dynamic tests are detailed in Table 2.

The diversification of test movements was designed according to the principle of
including common types of motion while maintaining the complexity of the movements
within certain limits. This facilitates the comparison and evaluation of the Kinect’s perfor-
mance in capturing dynamic motion.
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Table 2. Parameter settings for dynamic experiments.

Action 1 Orientation
(◦)

Distance Range
(mm)

Distance
Interval (mm)

Number of
Sub-Tests

Marching in place 0 [1500, 3500] 500 5
Forward and

backward
walking

0 [1500, 3500] - 3

Lateral walking 0 [1500, 3500] 500 5
In-place body

rotation [−15, 15] 2000 - 1

1 Each set of experiments was repeated three times for cross-validation and to mitigate potential data anomalies
caused by device-related issues.

2.3. Description and Visualization of Human Pose Data
2.3.1. Selection of Joint Nodes

The Azure Kinect DK device inherently represents the human skeleton using
32 predefined joint nodes. From these, we selected 16 nodes located on the torso and
limbs for pose estimation, aiming to retain the maximum amount of human posture data
while discarding unnecessary test data. For instance, nodes located on facial features and
hands were excluded from our evaluation. Similarly, the clavicle node was omitted due to
its proximity to the neck node. The toe node was also excluded due to its demonstrably low
recognition accuracy. The final selection of 16 nodes and their corresponding experimental
numbering is illustrated in Figure 2.
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Figure 2. Selection from the 32 human tracking joint nodes provided by Azure Kinect DK, with
16 nodes used to reconstruct the human skeletal morphology. For each selected node, the physical
marker required for Visualeyez recognition was attached to the corresponding location on the body
surface. Considering that this device necessitates grouping every four markers and connecting
them to the receiver via a single cable, adjacent numbering was adopted to minimize the constraints
imposed by cables on the subject’s movement.

2.3.2. Ensuring Data Quality of Skeletal Nodes

The spatial positions of skeletal nodes serve as the foundational data for all our
analyses. To ensure data quality, a multitude of detailed measures were implemented
during the experiments, including:

• Stable testing conditions: The experiments were conducted in an enclosed indoor
space with minimal natural light, primarily illuminated by indoor light sources. These
sources consisted of LED lights uniformly distributed across the ceiling. The walls
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were painted white, the floor was wood-textured, and the primary testing area featured
adhesive floor markers. The lighting remained constant throughout all experiments.
This setup ensured consistent diffuse lighting conditions, similar to typical well-lit
indoor environments.

• Specific design of experimental apparatus: In the experimental area, a thin, gradu-
ated carpet was fixed to the floor in front of Kinect to visually indicate the distance
between any given position and the Kinect. The mannequin used in static experi-
ments was mounted on a mobile stand equipped with counterweights, allowing for
convenient and precise adjustments to its position and orientation, thereby enabling
corresponding adjustments to the mannequin subject. Curtains were also employed to
occlude external light sources that could potentially compromise the measurement
accuracy of Visualeyez.

• Experimental data extraction: The data acquisition frequency of the Kinect was set to
30 Hz, while that of the Visualeyez was set to 60 Hz. In static test tasks, the Kinect
continuously acquired 500 frames of valid data, which were directly averaged. The
Visualeyez, on the other hand, continuously acquired over 1000 frames of data, from
which, after preliminary screening and filtering, 100 high-quality frames were selected
for averaging. In dynamic test tasks, if the Visualeyez software momentarily failed
to effectively detect a visual marker due to occlusion or other factors, the last valid
data point corresponding to that marker was used as the current data record. This
approach aimed to maximize the integrity of data during dynamic testing. Through
this processing, the data for each skeletal node obtained from both devices were
refined to minimize the influence of environmental disturbances, such as random
infrared interference and occlusion.

• Synchronization of experimental data: Compared to static tests, data acquired from
the two devices in dynamic tests required further temporal synchronization. To ensure
low-latency data processing, the software systems of the two testing devices were
operated on separate computer systems, both of which exhibited startup delays. This
presented challenges for strict hardware-based synchronization. Consequently, an
offline data synchronization method based on timestamps and pose comparison was
adopted. Specifically, we first selected the most recent 500 frames of valid data acquired
by the Kinect and designated the first frame as the Kinect’s starting frame. Then, based
on the timestamp, the Visualeyez data frame closest in time to the Kinect’s starting
frame was identified. Next, within a range of 60 frames before and after this identified
Visualeyez frame, the frame exhibiting the closest human pose to the starting data was
selected and designated as the Visualeyez starting frame. Through this process, the
starting points of the two data sequences were aligned. Subsequently, all data frames
were matched based on their respective actual time intervals. The method used to
assess the similarity of human posture will be described in the following section.

2.3.3. Visualization of the Human Skeleton

Based on the three-dimensional coordinates of the 16 selected joint nodes and their
parent–child relationships, a three-dimensional model of the human skeleton can be ren-
dered for explicit analysis. It is important to note that, given the selected set of joint nodes,
the extremities in rendered human model correspond to wrist, ankle, and neck positions.

2.4. Motion Capture Data Correction

The spatial positions of joint nodes acquired by Visualeyez were treated as the ground
truth data. The discrepancies between these ground truth data and those acquired by
Kinect were defined as deviations. This section introduces a correction method for the
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Kinect data, predicated on the availability of ground truth data. It is essential to emphasize
that this study does not delve into optimal correction methodologies or data prediction
techniques. Rather, it aims to investigate the potential for post-processing the correction of
the inherent deviations in Kinect data.

The correction method is detailed as follows: After transforming the Kinect data into
the Visualeyez coordinate system using Equation (1), the transformed data are treated as
the independent variables, and the ground truth data as the dependent variables. Fitting is
performed separately for each corresponding coordinate axis component. The multivariate
linear regression function in Origin 2022 software was employed to perform the fitting
calculations and obtain the coefficient and intercept parameters.

∼
xki = −yki − ∆x
∼
yki = xki − ∆y
∼
zki = zki − ∆z

(1)

In Equation (1), {xki, yki, zki} represents the raw data in the Kinect coordinate system,{∼
xki,

∼
yki,

∼
zki

}
denotes their transformed values in the Visualeyez coordinate system, the

subscript i is the joint node index, and {∆x, ∆y, ∆z} are the offset values, which are obtained
using Equation (2), 

∆x = −yk5 − xv5

∆y = xk5 − yv5

∆z = zk5 − zv5

(2)

where {xvi, yvi, zvi} represents the raw data acquired by the Visualeyez, i.e., the ground
truth data. The index i = 5 signifies that the data of the pelvis joint node were used
for calculating the offset values. This transformation ensures that

{∼
xk5,

∼
yk5,

∼
zk5

}
and

{xv5, yv5, zv5} have identical values, meaning that the corrected position of the pelvis node
coincides with the reference position.

Multivariate linear regression treats each joint node as an independent model. Based
on the calculated coefficients

{
axi, ayi, azi

}
and the intercept parameters

{
bxi, byi, bzi

}
, the

relationship between the corrected data {xfi, yfi, zfi} and the data
{∼

xki,
∼
yki,

∼
zki

}
is further

established, as shown in Equation (3).
xfi = axi ∗

∼
xki + bxi

yfi = ayi ∗
∼
yki + byi

zfi = azi ∗
∼
zki + bzi

(3)

2.5. Evaluation Method for Motion Capture Data

For a consumer-grade motion capture system such as Kinect, directly evaluating the
spatial positional accuracy of skeletal nodes does not have obvious reference significance.
On the other hand, the spatial orientation of individual skeletal segments aligns more
closely with human intuitive perception, and joint angles between adjacent segments are
frequently employed in motion tracking tasks for humanoid characters [39,40]. Therefore,
this paper utilizes the similarity of spatial orientations of skeletal segments to quantify the
similarity of skeletal images and evaluate the accuracy of motion capture data. Specifically,
cosine similarity is adopted as the metric to measure the discrepancy between two vectors.
A cosine value approaching 1 indicates a corresponding angle approaching 0◦, signifying a
higher degree of similarity in the spatial orientation of the two vectors. Furthermore, we
introduce weighting factors for skeletal segment cosine similarities to reflect the varying
contributions of individual segment similarities to the overall skeletal similarity.
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First, the matrices
{∼

Xk,
∼
Yk,
∼
Zk

}
and {Xv, Yv, Zv}, previously arranged according to

joint index order, are transformed into matrices Mk and Mv, and arranged according

to skeletal segment order using Equation (4). Note that
{∼

Xv,
∼
Yv,
∼
Zv

}
is equivalent to

{Xv, Yv, Zv}. Subsequently, the cosine similarity COSj for each skeletal segment and the
overall skeletal cosine similarity COSH are obtained using Equations (5) and (6), respec-
tively, where the subscript j denotes the skeletal segment index. The average cosine
similarity of the upper limb segments (forearm, upper arm, and shoulder) COSHU and the
average cosine similarity of the lower limb segments (shank, thigh, and hip) are calculated
analogously to COSH. Similarly, based on the corrected values {Xf, Yf, Zf}, the corrected
cosine similarity for each segment COSfj and the corrected overall skeletal cosine similarity
COSfH can be obtained.

M{k,v} =


∼
x{k,v}1

∼
y{k,v}1

∼
z{k,v}1

∼
x{k,v}2

∼
y{k,v}2

∼
z{k,v}2

...
...

...
∼
x{k,v}16

∼
y{k,v}16

∼
z{k,v}16

−



∼
x{k,v}2

∼
y{k,v}2

∼
z{k,v}2

∼
x{k,v}7

∼
y{k,v}7

∼
z{k,v}7

∼
x{k,v}4

∼
y{k,v}4

∼
z{k,v}4

∼
x{k,v}8

∼
y{k,v}8

∼
z{k,v}8

∼
x{k,v}5

∼
y{k,v}5

∼
z{k,v}5

∼
x{k,v}5

∼
y{k,v}5

∼
z{k,v}5

∼
x{k,v}5

∼
y{k,v}5

∼
z{k,v}5

∼
x{k,v}5

∼
y{k,v}5

∼
z{k,v}5

∼
x{k,v}10

∼
y{k,v}10

∼
z{k,v}10

∼
x{k,v}16

∼
y{k,v}16

∼
z{k,v}16

∼
x{k,v}12

∼
y{k,v}12

∼
z{k,v}12

∼
x{k,v}13

∼
y{k,v}13

∼
z{k,v}13

∼
x{k,v}14

∼
y{k,v}14

∼
z{k,v}14

∼
x{k,v}15

∼
y{k,v}15

∼
z{k,v}15

∼
x{k,v}6

∼
y{k,v}6

∼
z{k,v}6

∼
x{k,v}14

∼
y{k,v}14

∼
z{k,v}14



(4)

COSj =
Mkj ∗Mvj∥∥Mkj
∥∥× ∥∥Mvj

∥∥ (5)

COSH =
∑16

j=1
(
COSj ∗Wj

)
∑16

j=1 Wj
(6)

where Wj represents the weight matrix corresponding to each skeletal segment, with its
values detailed in Table 3. Considering that the Kinect exhibits relatively higher recognition
accuracy for the torso region and larger deviations at the extremities, such as hands and
feet, the weights of the terminal skeletal segments are set to the highest values. This
weighting scheme aims to reflect the contribution of each skeletal segment to the overall
recognition accuracy and to more prominently demonstrate the recognition and correction
status of the limbs.
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Table 3. Skeletal weights for whole–body cosine similarity computation.

Skeletal
Segment
Index (j)

Skeletal Segment
Name Terminating Node (i) Originating Node (i)

Weight
(Pelvis

Weight = 1)

Normalized
Weight

(Wj)

1 Right Shank Ankle_Right (1) Knee_Right (2) 10 0.130
2 Right Thigh Knee_Right (2) Hip_Right (7) 5 0.065
3 Left Shank Ankle_Left (3) Knee_Left (4) 10 0.130
4 Left Thigh Knee_Left (4) Hip_Left (8) 5 0.065
5 Pelvis Pelvis (5) Pelvis (5) 1 0.013
6 Lumbar Spine Spine_Naval (6) Pelvis (5) 1 0.013
7 Right Hip Hip_Right (7) Pelvis (5) 3 0.039
8 Left Hip Hip_Left (8) Pelvis (5) 3 0.039
9 Left Forearm Wrist_Left (9) Elbow_Left (10) 10 0.130

10 Left Upper Arm Elbow_Left (10) Shoulder_Left (16) 5 0.065
11 Right Forearm Wrist_Right (11) Elbow_Right (12) 10 0.130
12 Right Upper Arm Elbow_Right (12) Shoulder_Right (13) 5 0.065
13 Right Scapula Shoulder_Right (13) Neck (14) 3 0.039
14 Cervical Spine Neck (14) Spine_Chest (15) 2 0.025
15 Thoracic Spine Spine_Chest (15) Spine_Naval (6) 1 0.013
16 Left Scapula Shoulder_Left (16) Neck (14) 3 0.039

3. Results
3.1. Results of Static Tests
3.1.1. Cosine Similarity Data

The cosine similarity data obtained from static tests are presented in Figures 3 and 4,
with the raw data provided in Appendix A Tables A1–A4.
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Figure 3. Variation in cosine similarity with distance in static tests when the subject faced the
Kinect. The figure includes COSj, COSH, COSfH, COSHU, and COSHL data. COSj data are separately
visualized for the upper and lower limbs to correspond to the distinct data variation ranges.
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Figure 4. Variation in cosine similarity with orientation in static tests when the subject maintained an
arms-outstretched pose at a fixed position. The figure includes COSj, COSH, COSfH, COSHU, and
COSHL data. COSj data are separately visualized for the upper and lower limbs to correspond to the
distinct data variation ranges.

3.1.2. Visualized Skeletal Data

(1) Distance variation
The visualized skeletal data obtained from static tests when the subject faced the

Kinect are shown in Figure 5, with the raw data provided in Appendix A Table A1.
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(2) Orientation variation
The visualized skeletal data obtained from static tests when the subject maintained an

arms-outstretched pose and a specific orientation are shown in Figure 6. The raw data for
the 2000 mm distance are provided in Appendix A Table A2.
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3.2. Analysis of Static Test Results
3.2.1. Data Accuracy Analysis

(1) Influence of Distance

As shown in Figure 5, the recognized values
{∼

Xk,
∼
Yk,
∼
Zk

}
from the Kinect exhibit

three-dimensional spatial deviations from their ground truth {Xv, Yv, Zv}, with relatively
larger deviations observed along the x-axis. However, for a variety of static poses, the
skeletal morphology directly obtained by the Kinect (red) generally resembles the ground
truth skeletal morphology (blue). Combined with the cosine similarity results in Figure 3,
it can be inferred that within the distance range of 2000 mm to 3500 mm, the Kinect
demonstrates good recognition accuracy. Both excessively close and excessively distant
positions may lead to a decline in the accuracy of the Kinect’s skeletal recognition.

For example, in the test involving the arms swinging (left arm forward) pose, when
the distance was less than 3300 mm, COSH remained at an excellent level of approximately
0.97. However, when the distance exceeded 3300 mm, it decreased to approximately
0.94. In the experiments with the arms-outstretched pose, COSH gradually increased from
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0.95 at 1500 mm to 0.98 at 2000 mm and then stabilized around 0.98. This suggests that
both excessively close and excessively distant positions relative to the Kinect camera can
potentially reduce recognition accuracy.

(2) Influence of Orientation
The cosine similarity results in Figure 4 demonstrate that changes in orientation di-

rectly influence the COSH values. For instance, the curves of COS9 (Left Forearm) and
COS11 (Right Forearm) exhibit a pattern of being higher in the middle (when the yaw
angle is near 0◦) and lower at the extremes (when the yaw angle deviates further from 0◦).
This indicates that as the yaw angle increasingly deviates from 0◦, the accuracy of skele-
tal morphology recognition decreases, which is consistent with the skeletal morphology
recognition results shown in Figure 6.

Figure 6 also clearly shows that within the range of ±[0◦~15◦], particularly at 0◦, the
recognition of the human skeleton is good. Within the range of ±[15◦~30◦], the recognition
of most joints is good. However, as the distance increases, some joints exhibit larger
recognition errors. For example, at a distance of 4000 mm and an orientation of 30◦, the
position of one of the wrists exhibited a significant unexpected deviation. As the yaw
angle further increases, this phenomenon becomes more prevalent. For instance, at an
orientation of ±45◦, significant deviations in the position of one of the wrists appear across
all distances. This significant deviation in joint position recognition can also affect the
representation of skeletal joint angles. For example, at an orientation of +45◦, the Kinect’s
recognition of the spatial position of the left wrist node showed a large error, which also
led to a deviation in the left elbow joint angle.

This phenomenon of significant recognition deviations at large orientation angles
occurs more frequently at distances exceeding 3000 mm. However, even within the 2000 mm
to 3000 mm range, which is empirically considered to generally provide good recognition,
a small number of experimental groups exhibited this issue.

(3) Influence of Skeletal Distribution
The COSj data reveal that the Kinect demonstrates good recognition accuracy for the

human torso, while larger errors and a corresponding decrease in accuracy are more likely
to occur in the limbs. Notably, the recognition accuracy of the Kinect for the upper limbs
is significantly lower than that for the lower limbs, as clearly evidenced by the results
presented in Figures 3 and 4. For example, in the first two tests in Figure 3, COS11 (Right
Forearm) and COS12 (Right Upper Arm), and in the latter two tests, COS9 (Left Forearm)
and COS10 (Left Upper Arm), each exhibited poor performance and significantly impacted
the overall cosine similarity.

The standard deviation data corresponding to the different joint values
{∼

Xk,
∼
Yk,
∼
Zk

}
reveal the direct cause of the deviations that tend to occur at the terminal joints of the
limbs. Figure 7 sequentially presents the standard deviation data for the spatial distances
of two torso joint nodes (Spine_Chest, Neck), two lower limb joint nodes (Knee_Right,
Ankle_Right), and three upper limb joint nodes on the same side as the lower limbs
(Shoulder_Right, Elbow_Right, and Wrist_Right). In the results shown in Figure 7 for a yaw
angle of 30◦, the standard deviations of all data are very small. However, as the yaw angle
increases to 45◦, the fluctuation in the standard deviation of the spatial position data of
limb joints, especially the terminal joints, increases significantly, leading to a corresponding
decrease in the recognition accuracy of these joints. The significant bending of the terminal
bones of the arm in the skeletal morphology shown in Figure 6 can be attributed to this
phenomenon. Furthermore, this high standard deviation also implies that instantaneous
results for the terminal joints of the limbs should not be overly relied upon when the yaw
angle is large, even if they appear to be relatively accurate at that moment.
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Moreover, the joint position standard deviation data shown in Figure 7 further confirm
that the Kinect’s recognition accuracy for the torso remains consistently high. This is
because, under various distance and orientation configurations, the standard deviation of
the position data of torso joints remains consistently low.

3.2.2. Effectiveness of Data Correction

The effectiveness of the correction applied to the Kinect data is clearly observable from
the graphical representation of the skeletal data. In Figure 5, the corrected human skeletal
data, represented by black lines, although still retaining the characteristic bending at the
arms, are significantly closer to the ground truth morphology represented by blue lines
than the original morphology represented by red lines. Moreover, the magnitude of this
unexpected bending is also markedly reduced. Additionally, the forward-leaning deviation
present in the original data is mitigated to a certain extent. Similar results are observed
in Figure 6, where the initially pronounced arm deviations are substantially suppressed.
Therefore, the Kinect recognition deviations, influenced by multiple factors such as distance
and orientation, can be reduced to varying degrees through fitting-based correction.

The changes in cosine similarity before and after correction also corroborate this
effect (detailed data are provided in Appendix A Tables A3 and A4). The COSfH values
after fitting correction show an improvement rate ranging from 26% to 74% compared
to the COSH values before correction, indicating an effective enhancement in recognition
accuracy across all test groups. However, it should be noted that with the multivariate
linear regression method employed in this study, certain characteristics of the original data
are still partially retained, meaning that deviations cannot be completely eliminated.
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3.3. Results of Dynamic Tests

The cosine similarity results obtained from the various dynamic tests are presented
in Figure 8, while the graphical skeletal data are provided in video format in the
Appendix A Materials. The marching in place and forward and backward walking tests
were performed by a 24-year-old male subject with a height of 1.85 m and a weight of
70 kg. The lateral walking and in-place body rotation tests were performed by another
25-year-old male subject with a height of 1.78 m and a weight of 71 kg. These two human
subjects had comparable heights and physiques to the aforementioned static mannequin
and wore clothing similar to that of the mannequin, thereby facilitating the correlation and
comparative analyses between the dynamic and static test results.
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Figure 8. Cosine similarity results of dynamic tests, where (a) corresponds to the forward and back-
ward walking test, (b) corresponds to the marching in place test, (c) corresponds to the lateral walking
test, and (d) corresponds to the in-place body rotation test. The data frame index corresponding to
the data sampling time is used as the horizontal axis, uniformly arranged to facilitate retrieval of
data records. In total, 500 frames correspond to a sampling duration of approximately 17 s. The
figure includes COSH, COSfH, and COSj data, with COSj data presented separately for the upper
and lower limbs for comparison with static test results.
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3.4. Analysis of Dynamic Tests

(1) Influence of Distance in the Depth Direction
The results of the forward and backward walking test provide the most direct evi-

dence of the correlation between distance in the depth direction and recognition accuracy.
In Figure 8a, the data frame index on the horizontal axis corresponds to the complete
process of the subject walking forward from a distance of 3500 mm to 1500 mm and then im-
mediately retrogressing to 3500 mm. When the subject was within the intermediate distance
range of [2000 mm~3500 mm], the recognition results are stable and good (COSH > 0.9).
However, when the subject was too close or too far, the recognition results exhibit signif-
icant fluctuations, and the accuracy decreased (COSH > 0.75). The trend of recognition
accuracy with respect to distance in the depth direction and the stable range is consistent
with the results of the static tests, although the accuracy is slightly lower than that of the
static standing tests.

The marching in place test further demonstrates the sensitivity of recognition accuracy
to distance variations in the depth direction under dynamic conditions. In the results
of the marching in place test at a distance of 2500 mm (the first 300 frames) shown in
Figure 8b, as the arms swing back and forth, the accuracy variations of the arm on the
same side are consistent. For example, the variations in the left forearm and the left upper
arm are synchronized, and the accuracy of the forearm is significantly lower than that
of the upper arm (COS9 < COS10), which is consistent with the difference in the range
of motion in the depth direction between these two skeletal segments. Moreover, the
variation patterns of the two arms alternate. However, it should be noted that when the
depth distance is reduced to 2000 mm, the recognition accuracy of the shoulder joint begins
to decrease as the shoulder data approaches the upper edge of the image. At this point,
the recognition deviation of the shoulder bones (Left Scapula, Right Scapula) becomes
significantly higher than that of the upper arm and close to that of the forearm. This is also
the reason why the recognition accuracy of the hip bones (Left Hip, Right Hip), which are
closer to the center of the image, does not change significantly as the distance changes from
2500 mm to 2000 mm.

(2) Influence of Lateral Distance
The trend of recognition accuracy with respect to lateral distance also reveals the

existence of an optimal range of [−0.5 m~0.5 m], corresponding to the position directly in
front of the Kinect lens. As the subject moves laterally away from the lens, the recognition
accuracy decreases. In the lateral walking experiment shown in Figure 8c, the subject
initially faced the Kinect lens. The test began with the subject taking a sidestep to the left
boundary, then walking to the right, passing the initial position, and continuing to the
right boundary, and finally walking back to the left to the initial position. Taking the test
at a z-direction distance of 2500 mm as an example, during this process, the recognition
performance in the central region [−0.5 m~0.5 m] was excellent (COSH > 0.95), while at
the two extreme sides, the recognition accuracy significantly decreased (COSH > 0.74).

The lateral walking test further validates the influence of image edge factors on
recognition accuracy. At distances of 2500 mm and 3000 mm, since the ankle joint is closer
to the bottom of the image than the knee joint, the recognition accuracy of the lower leg
bones is generally lower than that of the upper leg bones (consistent with the results of
the static tests), i.e., COS1 < COS2 and COS3 < COS4. However, when the distance is
further reduced to 2000 mm, as the subject moves laterally, both the ankle and knee joints
approach the side edges of the image, causing the recognition deviation of the upper leg
bones to become similar to, and in some areas even exceed, that of the lower leg bones, i.e.,
COS1 ≥ COS2 and COS3 ≥ COS4.
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(3) Influence of Occlusion
Occlusion is another important factor that directly affects recognition accuracy, as

demonstrated in the in-place body rotation test. When the human body is oriented sideways
to the Kinect lens, some body regions are occluded by the body itself, leading to recognition
deviations. In the in-place body rotation experiment shown in Figure 8d, the subject
initially faced the Kinect lens, then rotated to the left and returned to the initial position,
and then rotated to the right and returned to the initial position. The rotation angle was
approximately [−15◦~15◦]. Furthermore, unlike the static tests, the upper limbs remained
naturally hanging down during the rotation. During this process, the overall trend of
COSH was similar to that of the static tests, with the highest recognition accuracy when
facing the Kinect directly (COSH > 0.95) and the lowest at the maximum rotation angle
(COSH ≈ 0.76). During rotation, the hip and shoulder regions are most susceptible to
occlusion due to their minimal corresponding body area and their location on the opposite
side of the body. This is directly reflected in the lowest recognition accuracy of the hip and
shoulder bones, with the accuracy directly correlating with the rotation angle.

In the aforementioned process, although the subject was positioned directly in front
of the Kinect lens and was not near the lateral edges of the image, the phenomenon of
the recognition deviation of the upper leg bones exceeding that of the lower leg bones,
as observed in the lateral walking test, occurred again. We believe that as the rotation
angle increases, not only is the hip joint most affected by occlusion, but partial occlusion
of the upper leg region also leads to deviations in the Kinect’s recognition of the knee
joint position. These factors directly affect the recognition accuracy of the upper leg bones.
During rotation, the variation in recognition accuracy of the upper leg bones showed a
certain consistency with that of the hip bones, such as the right hip bone (Right Hip) and
the right upper leg bone (Right Thigh), which is consistent with our analysis.

(4) Effectiveness of Correction
Observing COSH and COSfH in Figure 8, it can be seen that after correcting the

dynamic test data, the overall cosine similarity results improved by about 2% (calculation
data are provided in Appendix A Table A5), indicating a very limited improvement. This is
partly because, in the dynamic test results, COSH itself maintained a relatively high level in
most cases, leaving limited room for improvement. On the other hand, in regions with poor
test results, the data fluctuate more drastically, which significantly limits the effectiveness
of the linear fitting correction method employed in this study.

4. Discussion
(1) Recognition Accuracy
At the outset of this study, we were intrigued by the question of whether a body in

absolute rest or a body in continuous motion corresponds to higher recognition accuracy
for the Kinect. By comparing the results of the in-place body rotation test in dynamic
tasks (Figure 8d) and the orientation test in static tasks (Figure 4, 2000 mm), it can be
observed that the COSHL value for the lower limbs in the static condition remains above
0.95 within the [−45◦~45◦] range. In contrast, even within the [−15◦~15◦] range in the
dynamic condition, the COSHL partially drops to 0.9. Therefore, it is evident that the Kinect
camera exhibits higher recognition accuracy for a human skeleton in a static state. It is
important to note that this comparison is based on the COSHL value, representing the
comprehensive cosine similarity of the six skeletal segments of the lower limbs, rather than
the whole-body cosine similarity COSH. This is because the upper limb postures in the
two test tasks were not consistent.

Furthermore, regardless of whether the subject’s body is in a static or dynamic state,
factors such as the distance and orientation relative to the Kinect camera, as well as



Sensors 2025, 25, 1047 19 of 26

self-occlusion, have a direct impact on recognition accuracy. The regions of high COSH

values, which were experimentally determined, are recommended for preferential use.
Specifically, these include maintaining a distance in the depth direction within the range
of [2000 mm~3000 mm], keeping the lateral distance as close as possible to [−0.5 m~0.5 m],
and maintaining an orientation directly facing the Kinect or within the range of [−15◦~15◦].
Under these conditions, the COSH value can typically be maintained above 0.9.

The recognition accuracy of bones located at the extremities of the limbs is generally
lower than that of their parent bones. However, under certain circumstances, the opposite
may occur, with the recognition accuracy of the parent bones significantly decreasing. These
circumstances include the occurrence of visual occlusion (e.g., during rotation), excessively
close depth distances (shoulder approaching the upper edge of the image), and excessively
large lateral displacement (limbs approaching the side edges of the image).

(2) Limitations of the Tests
It is worth noting that this study did not employ a large number of human subjects, and

the tested movements were relatively conventional. This was constrained by the diversity
and uncertainty of the issues discussed in this paper. Subjects with varying individual
characteristics exhibit personalized manifestations in terms of body morphology, movement
behaviors, and preferred movement patterns. This paper primarily focuses on analyzing the
impact of active, usage-related factors on the accuracy of Kinect’s built-in motion capture
for a given adult user. These factors include relative distance and orientation to the device,
occlusion, and typical movement behaviors. Factors associated with passive individual
physical characteristics were not examined under a systematic testing and analysis in this
study. Consequently, we intentionally selected static mannequins and human subjects
with similar physiques and statures, which facilitated the analysis of the aforementioned
active factors in the extensive datasets. It is worth noting that the relatively small sample
size of subjects may introduce certain limitations to the generalizability of our findings.
Nevertheless, we conducted some additional exploratory tests, and preliminary results
indicate that the findings and discussions regarding the active factors demonstrate good
robustness, provided that height and physique do not undergo substantial variations.

Furthermore, the tests were conducted under essentially constant indoor lighting
conditions, primarily illuminated by artificial light sources. While this condition is similar
to typical scenarios with ample natural light and aligns with the common usage of the
device, it is acknowledged that conclusions drawn from this single condition may have
potential limitations. Although we have considerable confidence in the robustness of the
aforementioned conclusions regarding accuracy, variations in lighting and scene conditions
could potentially influence the overall findings.

In summary, this paper focuses on investigating the overall performance of Azure
Kinect DK in terms of motion recognition accuracy. In the future, with more specific and
refined test objectives, a larger number and variety of subjects, as well as more diverse
movements, will be considered. Specifically, further evaluation is needed regarding Kinect’s
performance in capturing more complex or faster movements.

(3) Data Correction
After applying linear regression correction to the spatial position data of skeletal

nodes obtained by the Kinect, the COSfH in static tests showed a significant improvement
compared to COSH, while the improvement in dynamic tests was very limited. This is
mainly attributed to two reasons. First, the static tests covered a wider range of distances
and orientations, resulting in a more pronounced decrease in recognition accuracy at the
respective boundary regions. This provided more potential for accuracy optimization. In
contrast, the dynamic tests had a smaller test range, and the recognition accuracy remained
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relatively high throughout. Second, in dynamic tests, the continuously reciprocating
ground truth data limited the effectiveness of the linear fitting method.

Although the data correction method employed in this study demonstrated overall
effectiveness, its rapid deployment and application are clearly restricted. This is due to
factors such as the need for additional equipment and steps, as well as inter-individual
variability in correction parameters, all of which are contrary to the “plug-and-play” and
“anytime, anywhere” advantages of the Kinect device. Nevertheless, we believe that this
fundamental correction method and its preliminary results still hold value for informing
the future development of more intelligent and convenient correction methods. It should
be reiterated that the primary purpose of data correction in this study was to assess
whether the accuracy of raw data obtained from the Kinect motion capture device can
be significantly improved when precise ground truth data are available. The results of
this study provide an affirmative answer to this question. Moreover, in future in-depth
studies on the dynamic performance of Kinect, advanced methods for improvement will
be concurrently considered.

(4) Implications of the Results for Kinect Application Research
The latest Azure Kinect DK device boasts advancements in camera resolution and

depth data accuracy compared to its predecessors. However, it remains a consumer-grade,
cost-effective motion capture device. When deployed extensively and independently in real-
world applications such as medical treatment, rehabilitation, and real-time robot control,
its inherent limitations in human skeletal recognition accuracy cannot be overlooked.

The results presented in this paper realistically reflect these limitations. For example,
a subject maintaining a walking motion while regressing from 2000 mm to 3500 mm in
the depth direction relative to the Kinect can experience an approximately 17% difference
in recognition accuracy. This should be taken into account in applications that demand
precise motion capture.

To pursue high-precision Kinect motion capture, this paper proposes recommended
usage regions based on experimental results, providing actionable guidelines for researchers
and developers utilizing this device. For instance, while Microsoft, the manufacturer of
the Kinect device, suggests an optimal depth range of [0.5 m~3.86 m], this study further
refines this range to [2 m~3.5 m] to acquire the most accurate representation of the complete
human skeleton.

Furthermore, in application tasks where high-precision reference values can be obtained,
such as in specific large-area human motion capture scenarios involving a high-precision
professional motion capture system and multiple Kinect devices, the skeletal data directly
acquired by the Azure Kinect DK can be further corrected based on its pre-acquired reference
values to achieve higher accuracy. Even if the raw Kinect data are difficult to correct directly,
their accuracy performance and potential for improvement can still be assessed.

Finally, it should be noted that the analysis of whole-body cosine similarity in this
paper introduced weighting factors for different skeletal segments. However, the specific
setting of these weights may depend on the researcher’s specific task and interests. There-
fore, the raw data of unweighted joint nodes from multiple tests are also provided for
researchers to utilize.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s25041047/s1, Video S1: Accuracy performance of Azure Kinect
DK in multiple dynamic tests.
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Appendix A

Table A1. Spatial positioning data of body nodes for the mannequin maintaining an arms-
outstretched pose and facing the Kinect camera directly in static tests.

Distance
(mm) Node Index (i) Node Name

Kinect Measurements Visualeyez Measurements Corrected Kinect Values
~
xki

(mm)

~
yki

(mm)

~
zki

(mm)
xvi

(mm)
yvi

(mm)
zvi

(mm)
xfi

(mm)
yfi

(mm)
zfi

(mm)

1500

1 Ankle_Right −1181.91 −79.75 1565.90 −945.49 9.29 1352.81 −966.19 8.06 1490.07
2 Knee_Right −762.39 −76.92 1351.41 −645.44 −14.54 1305.08 −663.76 −20.16 1398.85
3 Ankle_Left −1171.43 143.46 1577.87 −947.15 189.16 1400.66 −970.04 194.94 1506.22
4 Knee_Left −747.49 154.39 1384.04 −643.39 197.34 1313.86 −660.91 203.10 1393.28
5 Pelvis −272.35 17.07 1302.66 −237.66 85.70 1243.17 −248.41 84.80 1274.80
6 Spine_Naval −64.36 11.12 1239.58 77.10 55.12 1187.34 70.21 52.67 1209.00
7 Hip_Right −278.87 −82.18 1290.54 −235.36 1.53 1238.37 −246.64 −4.78 1273.75
8 Hip_Left −265.12 127.14 1316.11 −221.42 159.01 1260.53 −232.98 163.02 1289.47
9 Wrist_Left 217.50 753.55 1218.26 275.09 759.95 1311.03 263.01 757.06 1297.46

10 Elbow_Left 276.75 506.28 1341.67 301.80 507.06 1285.75 306.25 513.11 1377.20
11 Wrist_Right 136.45 −690.55 1082.30 172.24 −632.04 1212.12 180.39 −628.13 1208.42
12 Elbow_Right 245.52 −507.94 1273.79 249.26 −382.55 1222.50 258.53 −403.27 1326.40
13 Shoulder_Right 284.20 −189.53 1152.06 357.67 −103.52 1232.79 358.65 −112.37 1233.73
14 Neck 367.47 5.60 1168.39 408.86 47.26 1227.52 413.65 48.41 1244.67
15 Spine_Chest 104.77 4.85 1200.00 199.85 49.11 1173.96 197.29 45.50 1190.52
16 Shoulder_Left 284.85 215.78 1171.49 358.02 215.53 1237.51 358.60 226.91 1243.46

2000

1 Ankle_Right −1016.73 −125.23 1971.81 −920.77 −5.35 1873.28 −915.52 −14.01 1901.04
2 Knee_Right −622.24 −105.71 1795.11 −619.80 −29.72 1825.31 −616.54 −33.76 1842.45
3 Ankle_Left −1008.72 56.36 1988.34 −922.10 175.26 1918.26 −917.52 160.04 1927.88
4 Knee_Left −614.77 88.59 1823.68 −588.03 182.16 1832.79 −585.62 173.24 1835.99
5 Pelvis −171.81 −9.58 1780.61 −211.96 69.96 1762.81 −209.90 68.89 1759.34
6 Spine_Naval 21.34 −9.79 1729.99 102.54 37.97 1707.32 104.79 39.16 1706.74
7 Hip_Right −175.64 −100.41 1766.37 −209.87 −14.81 1759.38 −207.30 −16.10 1755.45
8 Hip_Left −167.56 91.15 1796.40 −196.20 143.03 1778.89 −194.73 142.01 1776.99
9 Wrist_Left 263.87 726.84 1725.54 297.23 742.99 1823.48 288.25 742.88 1812.57

10 Elbow_Left 321.61 474.87 1748.98 327.25 491.17 1800.85 326.41 494.07 1795.62
11 Wrist_Right 139.72 −711.43 1628.11 197.53 −648.90 1740.66 181.54 −641.17 1755.08
12 Elbow_Right 298.69 −508.78 1680.13 274.45 −399.28 1748.29 282.42 −403.92 1744.10
13 Shoulder_Right 342.82 −197.11 1665.62 382.95 −120.35 1755.42 381.05 −117.76 1754.38
14 Neck 418.65 −17.57 1666.19 434.28 30.41 1748.57 437.31 32.63 1751.23
15 Spine_Chest 178.09 −11.68 1699.94 225.62 31.75 1694.56 228.14 34.32 1698.10
16 Shoulder_Left 339.89 175.64 1672.99 383.64 198.84 1755.97 381.10 199.85 1751.66
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Table A1. Cont.

Distance
(mm) Node Index (i) Node Name

Kinect Measurements Visualeyez Measurements Corrected Kinect Values
~
xki

(mm)

~
yki

(mm)

~
zki

(mm)
xvi

(mm)
yvi

(mm)
zvi

(mm)
xfi

(mm)
yfi

(mm)
zfi

(mm)

2500

1 Ankle_Right −1060.83 −152.40 2542.82 −896.70 −25.53 2397.84 −919.05 −27.20 2479.15
2 Knee_Right −640.00 −142.17 2343.19 −594.88 −49.29 2351.18 −622.53 −50.99 2390.42
3 Ankle_Left −1045.13 26.53 2584.71 −896.53 154.42 2448.32 −919.27 148.08 2540.50
4 Knee_Left −631.37 61.69 2384.41 −593.07 162.40 2365.70 −621.28 161.03 2400.63
5 Pelvis −155.17 −42.60 2326.97 −186.89 50.98 2292.21 −203.52 49.17 2313.24
6 Spine_Naval 50.90 −43.01 2265.70 128.16 18.96 2237.43 116.72 17.69 2250.44
7 Hip_Right −158.93 −140.87 2314.97 −184.96 −33.98 2287.68 −200.93 −41.23 2310.82
8 Hip_Left −150.99 66.39 2340.28 −170.90 123.50 2310.15 −188.23 127.56 2329.06
9 Wrist_Left 331.05 678.31 2242.97 337.60 720.33 2368.43 324.83 717.11 2337.98

10 Elbow_Left 386.29 441.51 2380.56 353.28 469.49 2340.65 355.47 473.84 2444.42
11 Wrist_Right 247.05 −747.45 2113.13 219.94 −670.37 2262.48 219.23 −663.67 2240.85
12 Elbow_Right 350.42 −560.28 2298.51 300.10 −419.90 2273.81 305.66 −443.84 2379.75
13 Shoulder_Right 397.92 −243.96 2185.47 407.49 −141.17 2285.11 402.10 −151.02 2281.42
14 Neck 478.36 −51.11 2199.62 460.13 9.30 2281.55 464.91 9.77 2294.06
15 Spine_Chest 218.20 −44.62 2226.38 251.19 12.35 2226.67 245.02 12.04 2232.58
16 Shoulder_Left 404.24 159.23 2204.88 409.50 178.08 2291.34 407.40 188.78 2290.65

3000

1 Ankle_Right −852.08 −175.45 2945.98 −863.94 −50.71 2905.30 −855.01 −38.38 2887.33
2 Knee_Right −469.95 −171.32 2800.78 −573.06 −74.61 2859.93 −565.23 −64.76 2847.92
3 Ankle_Left −847.49 18.44 2967.13 −874.69 128.28 2958.82 −865.47 144.84 2933.34
4 Knee_Left −460.19 24.55 2850.29 −541.29 136.12 2875.86 −532.86 144.18 2869.76
5 Pelvis −42.88 −69.37 2806.34 −165.84 25.53 2803.62 −160.51 33.18 2799.22
6 Spine_Naval 137.46 −70.52 2750.90 147.82 −6.32 2750.15 151.66 −0.08 2742.88
7 Hip_Right −47.41 −155.23 2793.38 −163.57 −59.57 2798.66 −158.42 −50.15 2795.13
8 Hip_Left −37.86 25.84 2820.70 −150.30 98.17 2822.96 −143.88 103.89 2816.72
9 Wrist_Left 390.15 630.44 2756.54 359.58 696.72 2878.24 357.00 691.69 2859.47

10 Elbow_Left 426.71 387.99 2762.76 374.98 444.69 2852.62 373.64 441.40 2837.05
11 Wrist_Right 313.27 −776.63 2623.61 242.92 −695.69 2775.43 242.49 −681.90 2752.12
12 Elbow_Right 379.16 −544.15 2681.01 320.50 −445.11 2786.35 318.57 −431.34 2772.94
13 Shoulder_Right 439.92 −252.98 2695.11 353.53 −165.63 2795.52 418.14 −157.43 2798.10
14 Neck 511.48 −84.14 2684.57 482.28 −15.80 2793.51 480.22 −12.73 2787.55
15 Spine_Chest 284.53 −73.24 2717.53 271.50 −12.78 2738.84 272.92 −7.32 2731.24
16 Shoulder_Left 458.51 102.08 2711.38 430.74 149.87 2805.81 429.59 150.24 2803.92

3500

1 Ankle_Right −843.76 −188.58 3469.32 −847.25 −48.32 3422.10 −852.46 −44.75 3417.18
2 Knee_Right −449.80 −191.14 3328.33 −555.82 −73.82 3375.94 −558.44 −74.12 3375.36
3 Ankle_Left −831.07 −13.75 3492.16 −856.42 131.37 3474.51 −860.17 131.94 3472.68
4 Knee_Left −437.04 0.81 3365.65 −522.68 136.17 3392.06 −524.96 133.40 3388.72
5 Pelvis −11.58 −88.51 3321.31 −148.71 23.03 3320.42 −148.51 21.76 3321.30
6 Spine_Naval 173.23 −92.70 3265.50 165.49 −10.89 3266.01 166.10 −14.41 3265.16
7 Hip_Right −17.71 −176.22 3307.60 −146.40 −62.23 3314.63 −147.10 −63.18 3315.69
8 Hip_Left −4.78 8.77 3336.52 −131.41 95.26 3337.56 −130.91 93.92 3340.30
9 Wrist_Left 462.71 624.60 3279.20 381.98 690.61 3394.92 396.50 688.59 3390.20

10 Elbow_Left 487.60 374.90 3274.94 395.81 437.69 3370.75 401.00 433.47 3363.19
11 Wrist_Right 366.77 −829.63 3213.35 255.05 −700.46 3288.55 261.28 −715.02 3342.78
12 Elbow_Right 420.85 −581.35 3206.38 335.94 −450.80 3306.32 337.30 −460.17 3312.98
13 Shoulder_Right 487.41 −284.03 3200.72 441.76 −172.73 3314.69 436.29 −179.48 3310.70
14 Neck 555.48 −110.10 3194.40 499.63 −22.98 3310.59 500.56 −30.42 3306.36
15 Spine_Chest 323.87 −98.02 3232.18 288.13 −18.27 3255.94 289.48 −24.07 3253.74
16 Shoulder_Left 505.21 81.12 3221.72 449.92 143.06 3322.03 448.67 136.11 3321.07

4000

1 Ankle_Right −801.31 −253.34 3978.51 −825.34 −81.38 3935.26 −839.44 −76.18 3932.71
2 Knee_Right −406.94 −248.46 3836.56 −532.70 −106.28 3889.84 −543.99 −101.20 3883.49
3 Ankle_Left −788.13 −90.61 4027.84 −833.97 95.88 3989.49 −846.31 101.13 4022.95
4 Knee_Left −402.93 −46.36 3880.45 −501.10 101.16 3911.69 −513.32 111.99 3907.12
5 Pelvis 27.92 −141.49 3834.27 −126.30 −9.39 3836.04 −133.38 −9.89 3841.33
6 Spine_Naval 214.01 −136.95 3781.66 187.21 −42.88 3781.51 182.55 −43.00 3789.03
7 Hip_Right 25.93 −229.41 3819.62 −123.78 −95.23 3830.22 −130.47 −96.22 3834.03
8 Hip_Left 30.12 −44.00 3850.51 −109.25 62.14 3856.45 −117.22 63.12 3862.03
9 Wrist_Left 470.53 591.76 3800.17 405.81 656.28 3925.66 400.75 671.15 3919.20

10 Elbow_Left 519.99 345.26 3795.94 418.25 402.75 3895.16 415.55 415.50 3898.40
11 Wrist_Right 341.20 −814.03 3663.16 276.58 −734.50 3795.31 252.30 −705.27 3793.28
12 Elbow_Right 446.42 −594.31 3700.88 356.54 −484.36 3812.61 348.79 −470.21 3821.30
13 Shoulder_Right 563.46 −315.18 3711.85 463.59 −206.19 3825.51 465.35 −201.60 3828.89
14 Neck 598.04 −136.93 3715.04 521.04 −56.24 3825.01 520.23 −48.70 3836.17
15 Spine_Chest 365.04 −134.83 3748.48 309.80 −50.18 3769.54 306.80 −48.97 3777.93
16 Shoulder_Left 562.55 53.83 3740.89 481.37 101.56 3838.78 472.11 117.71 3847.18
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Table A2. Spatial positioning data of body nodes for the mannequin maintaining an arms-
outstretched pose at a 2000 mm distance directly in front of the Kinect camera in static tests.

Orientation
(◦)

Node
Index (i) Node Name

Kinect Measurements Visualeyez Measurements Corrected Kinect Values
~
xki

(mm)

~
yki

(mm)

~
zki

(mm)
xvi

(mm)
yvi

(mm)
zvi

(mm)
xfi

(mm)
yfi

(mm)
zfi

(mm)

−45◦

1 Ankle_Right −1002.88 32.67 1944.30 −912.39 −49.86 1903.94 −913.48 −30.96 1915.92
2 Knee_Right −611.03 −31.96 1789.64 −617.12 −87.00 1869.38 −619.78 −80.45 1859.18
3 Ankle_Left −1019.26 123.63 1807.77 −933.89 107.49 1814.97 −934.16 114.50 1832.25
4 Knee_Left −610.39 112.46 1704.93 −613.17 76.26 1739.73 −609.15 81.33 1740.91
5 Pelvis −171.08 29.98 1717.98 −231.22 −35.49 1747.50 −229.53 −32.78 1757.14
6 Spine_Naval 17.85 4.95 1669.41 93.81 −85.34 1720.11 95.79 −87.21 1724.48
7 Hip_Right −171.88 −51.81 1757.03 −227.17 −101.16 1801.83 −226.21 −93.19 1807.13
8 Hip_Left −170.19 120.68 1674.68 −219.66 28.57 1707.60 −216.79 30.60 1722.37
9 Wrist_Left 197.28 500.94 1114.13 239.60 474.76 1266.09 247.25 478.59 1239.42
10 Elbow_Left 264.65 346.36 1306.31 276.56 286.76 1443.42 284.31 285.30 1430.12
11 Wrist_Right 244.73 −421.35 1742.77 239.95 −514.38 2250.50 252.38 −489.63 2255.87
12 Elbow_Right 314.49 −350.70 1981.76 298.73 −341.52 2079.83 328.91 −321.21 2197.32
13 Shoulder_Right 361.22 −152.56 1747.47 383.80 −143.28 1857.09 386.83 −136.40 1870.65
14 Neck 409.08 −27.55 1613.72 424.83 −43.35 1739.21 431.27 −45.70 1746.07
15 Spine_Chest 172.57 −8.29 1644.84 219.83 −93.25 1712.80 219.86 −97.72 1716.92
16 Shoulder_Left 323.62 106.88 1485.11 370.54 60.56 1632.37 375.35 53.35 1633.43

−30◦

1 Ankle_Right −1027.16 −6.46 2005.28 −912.53 −63.77 1902.22 −912.58 −48.33 1945.99
2 Knee_Right −628.36 −48.36 1844.79 −616.33 −97.55 1861.02 −618.37 −87.02 1863.72
3 Ankle_Left −1035.24 125.13 1843.72 −932.03 104.59 1837.98 −935.44 117.76 1849.36
4 Knee_Left −623.73 113.94 1726.69 −611.69 83.66 1758.95 −613.72 95.90 1760.02
5 Pelvis −182.53 21.48 1738.70 −230.55 −29.99 1749.61 −231.45 −16.89 1750.38
6 Spine_Naval 9.69 −6.01 1692.63 94.73 −79.55 1716.96 94.49 −65.33 1715.91
7 Hip_Right −188.09 −65.68 1767.53 −227.40 −103.37 1793.43 −228.21 −89.90 1789.75
8 Hip_Left −176.37 118.14 1706.73 −218.23 39.54 1720.44 −219.07 53.82 1726.17
9 Wrist_Left 223.48 574.36 1211.85 244.81 546.26 1355.94 235.99 569.39 1348.24
10 Elbow_Left 275.81 383.91 1380.07 280.29 332.42 1500.62 277.64 352.66 1494.91
11 Wrist_Right 227.67 −531.99 2026.58 239.14 −580.10 2177.82 241.67 −583.75 2174.6
12 Elbow_Right 314.40 −426.56 1950.92 299.25 −384.63 2025.80 298.35 −377.30 2021.02
13 Shoulder_Right 356.32 −182.46 1756.34 384.42 −159.90 1843.82 386.61 −147.36 1842.95
14 Neck 406.71 −39.92 1638.10 425.76 −43.83 1743.00 427.29 −28.59 1743.18
15 Spine_Chest 166.07 −24.46 1666.99 221.24 −85.02 1707.89 221.79 −72.08 1706.12
16 Shoulder_Left 327.91 118.67 1530.04 372.93 79.53 1652.55 374.77 98.46 1651.75

−15◦

1 Ankle_Right −942.66 −81.31 1901.17 −912.67 −81.43 1889.45 −896.32 −62.12 1890.94
2 Knee_Right −555.20 −95.50 1787.27 −616.96 −106.27 1843.09 −606.35 −90.28 1829.14
3 Ankle_Left −934.45 115.29 1857.14 −930.04 98.13 1874.26 −916.18 119.70 1878.45
4 Knee_Left −551.72 93.39 1743.29 −609.89 95.19 1794.02 −598.06 111.90 1794.09
5 Pelvis −136.24 9.08 1744.51 −229.85 −15.51 1754.82 −222.57 3.19 1751.84
6 Spine_Naval 43.26 −5.66 1696.18 94.88 −58.69 1711.41 100.99 −38.06 1707.85
7 Hip_Right −138.47 −75.06 1761.87 −227.96 −97.95 1777.76 −220.05 −78.65 1771.85
8 Hip_Left −133.76 102.39 1725.26 −216.37 59.28 1745.58 −209.05 78.55 1746.32
9 Wrist_Left 281.34 640.75 1414.72 255.48 637.33 1528.04 275.03 651.59 1582.82
10 Elbow_Left 311.36 418.12 1505.85 287.28 393.16 1611.74 291.95 413.50 1628.86
11 Wrist_Right 284.02 −687.56 1889.89 229.53 −662.53 2023.94 235.90 −657.39 2019.26
12 Elbow_Right 318.46 −454.31 1821.72 294.19 −435.84 1933.16 277.73 −427.49 1937.79
13 Shoulder_Right 348.34 −184.93 1707.01 383.02 −172.12 1815.31 385.52 −154.98 1804.95
14 Neck 410.80 −36.42 1623.69 426.52 −34.47 1748.00 430.28 −15.48 1748.50
15 Spine_Chest 188.19 −16.37 1662.91 221.63 −62.53 1702.20 226.70 −43.22 1697.91
16 Shoulder_Left 343.78 139.67 1575.41 375.68 108.79 1691.75 379.76 128.73 1701.92

0◦

1 Ankle_Right −1016.73 −125.23 1971.81 −910.77 −5.35 1873.28 −905.52 −14.01 1901.04
2 Knee_Right −622.24 −105.71 1795.11 −619.80 −29.72 1825.31 −616.54 −33.76 1842.45
3 Ankle_Left −1008.72 56.36 1988.34 −922.10 175.26 1918.26 −917.52 160.04 1927.88
4 Knee_Left −614.77 88.59 1823.68 −588.03 182.16 1832.79 −585.62 173.24 1835.99
5 Pelvis −171.81 −9.58 1780.61 −211.96 69.96 1762.81 −209.90 68.89 1759.34
6 Spine_Naval 21.34 −9.79 1729.99 102.54 37.97 1707.32 104.79 39.16 1706.74
7 Hip_Right −175.64 −100.41 1766.37 −209.87 −14.81 1759.38 −207.30 −16.10 1755.45
8 Hip_Left −167.56 91.15 1796.40 −196.20 143.03 1778.89 −194.73 142.01 1776.99
9 Wrist_Left 263.87 726.84 1725.54 297.23 742.99 1823.48 288.25 742.88 1812.57
10 Elbow_Left 321.61 474.87 1748.98 327.25 491.17 1800.85 326.41 494.07 1795.62
11 Wrist_Right 139.72 −711.43 1628.11 197.53 −648.90 1740.66 181.54 −641.17 1755.08
12 Elbow_Right 298.69 −508.78 1680.13 274.45 −399.28 1748.29 282.42 −403.92 1744.10
13 Shoulder_Right 342.82 −197.11 1665.62 382.95 −120.35 1755.42 381.05 −117.76 1754.38
14 Neck 418.65 −17.57 1666.19 434.28 30.41 1748.57 437.31 32.63 1751.23
15 Spine_Chest 178.09 −11.68 1699.94 225.62 31.75 1694.56 228.14 34.32 1698.10
16 Shoulder_Left 339.89 175.64 1672.99 383.64 198.84 1755.97 381.10 199.85 1751.66
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Table A2. Cont.

Orientation
(◦)

Node
Index (i) Node Name

Kinect Measurements Visualeyez Measurements Corrected Kinect Values
~
xki

(mm)

~
yki

(mm)

~
zki

(mm)
xvi

(mm)
yvi

(mm)
zvi

(mm)
xfi

(mm)
yfi

(mm)
zfi

(mm)

15◦

1 Ankle_Right −984.67 −121.62 1882.06 −929.25 −26.82 1825.63 −927.29 −34.47 1851.35
2 Knee_Right −595.03 −109.03 1707.27 −634.96 −41.66 1777.48 −636.81 −36.43 1774.68
3 Ankle_Left −974.33 60.96 1990.39 −930.93 142.59 1893.71 −924.32 146.16 1935.49
4 Knee_Left −592.47 83.01 1810.49 −612.19 157.37 1840.44 −606.64 157.57 1837.52
5 Pelvis −153.99 −5.12 1751.85 −233.15 78.98 1744.09 −229.19 85.16 1739.42
6 Spine_Naval 33.73 −1.54 1691.71 90.07 43.08 1685.89 94.77 53.49 1685.95
7 Hip_Right −154.85 −95.62 1743.78 −234.93 −1.03 1722.72 −231.39 4.01 1717.35
8 Hip_Left −153.04 95.24 1760.79 −219.39 149.73 1772.24 −215.18 156.45 1770.56
9 Wrist_Left 228.25 722.38 1771.50 240.26 731.07 1880.25 251.22 739.53 1840.89
10 Elbow_Left 298.19 476.90 1748.38 278.60 480.96 1831.46 286.02 490.25 1818.82
11 Wrist_Right 273.34 −723.05 1474.17 296.09 −653.51 1632.49 320.39 −629.03 1625.09
12 Elbow_Right 316.36 −480.41 1555.63 310.44 −409.42 1673.01 350.78 −378.84 1689.04
13 Shoulder_Right 358.32 −179.00 1620.47 378.35 −116.20 1714.08 377.62 −103.38 1717.54
14 Neck 424.77 0.88 1623.38 426.06 44.12 1730.31 432.48 56.47 1735.69
15 Spine_Chest 186.90 0.31 1654.60 215.67 41.38 1672.70 221.02 52.58 1671.88
16 Shoulder_Left 357.27 190.75 1659.61 381.81 194.42 1747.79 387.72 205.48 1752.88

30◦

1 Ankle_Right −961.56 −127.33 1843.05 −930.58 −13.37 1796.87 −924.88 −14.38 1828.54
2 Knee_Right −584.75 −90.11 1672.12 −635.62 −19.11 1747.83 −636.64 −16.27 1742.99
3 Ankle_Left −943.11 46.52 1997.76 −930.74 135.16 1904.42 −920.25 142.21 1944.43
4 Knee_Left −574.94 85.26 1818.96 −611.52 158.80 1857.32 −605.24 165.05 1856.77
5 Pelvis −152.81 −10.48 1724.53 −232.25 102.16 1748.15 −230.40 107.45 1750.23
6 Spine_Naval 33.21 −2.09 1678.98 91.12 77.99 1684.94 94.33 79.62 1686.50
7 Hip_Right −155.77 −94.38 1697.00 −234.66 29.75 1708.09 −234.70 35.17 1709.94
8 Hip_Left −149.54 82.55 1755.07 −217.69 163.87 1792.63 −213.86 168.67 1796.54
9 Wrist_Left 245.88 556.86 1635.89 247.38 697.02 2043.84 258.79 711.82 1912.97
10 Elbow_Left 286.85 435.28 1849.49 282.86 465.68 1935.11 288.07 464.29 1934.20
11 Wrist_Right 241.91 −654.73 1367.10 290.47 −587.02 1462.72 316.28 −565.36 1494.09
12 Elbow_Right 293.88 −425.33 1458.58 306.85 −360.10 1562.81 324.58 −366.68 1579.94
13 Shoulder_Right 356.87 −151.10 1569.83 377.42 −86.35 1675.26 379.49 −88.08 1675.85
14 Neck 414.21 18.92 1619.28 427.06 64.93 1731.18 430.84 62.95 1736.03
15 Spine_Chest 183.30 2.68 1648.34 216.77 78.71 1672.56 220.64 81.01 1672.99
16 Shoulder_Left 355.78 190.08 1696.86 383.68 206.97 1784.32 390.44 206.70 1791.37

45◦

1 Ankle_Right −988.68 −122.79 1823.42 −931.72 8.07 1767.61 −925.22 7.84 1774.56
2 Knee_Right −604.83 −72.16 1657.31 −636.24 11.19 1720.32 −633.59 17.25 1715.18
3 Ankle_Left −965.66 6.29 1993.24 −930.76 125.95 1908.22 −919.36 109.26 1939.91
4 Knee_Left −588.76 65.84 1824.38 −610.89 157.01 1869.75 −603.10 161.93 1870.89
5 Pelvis −164.75 −11.89 1695.88 −231.34 124.34 1752.69 −228.31 129.73 1751.49
6 Spine_Naval 24.49 1.23 1652.35 92.25 112.53 1687.45 95.75 118.38 1683.65
7 Hip_Right −169.19 −89.72 1653.51 −234.20 63.86 1696.64 −232.17 67.97 1698.83
8 Hip_Left −159.82 74.42 1742.87 −216.72 173.34 1810.98 −212.65 179.41 1806.20
9 Wrist_Left 223.74 467.21 1706.84 252.34 625.12 2188.58 258.00 628.87 2177.64
10 Elbow_Left 302.89 368.26 1921.51 286.44 426.35 2026.10 290.77 430.41 2010.70
11 Wrist_Right 225.72 −545.64 1161.43 285.49 −481.78 1310.37 287.23 −484.87 1321.89
12 Elbow_Right 291.07 −379.30 1341.14 303.53 −285.62 1463.11 303.46 −261.94 1466.59
13 Shoulder_Right 343.78 −133.40 1511.05 377.11 −47.77 1640.17 376.33 −36.74 1635.05
14 Neck 413.13 14.64 1600.52 427.54 85.08 1731.03 429.60 93.46 1721.73
15 Spine_Chest 177.98 6.12 1627.35 217.77 115.14 1675.48 221.16 121.32 1671.19
16 Shoulder_Left 365.38 170.77 1709.64 385.60 210.49 1817.69 391.93 216.10 1807.59

Table A3. Cosine similarities calculated from the data in Appendix A Table A1.

Distance 1500 mm 2000 mm 2500 mm 3000 mm 3500 mm 4000 mm

Orientation COSH COSfH COSH COSfH COSH COSfH COSH COSfH COSH COSfH COSH COSfH

0◦ 0.4283 0.7327 0.7127 0.9849 0.4168 0.6579 0.7698 0.9214 0.8127 0.9796 0.7872 0.9841

Table A4. Cosine similarities calculated from the data in Appendix A Table A2.

Distance 2000 mm 2500 mm 3000 mm 3500 mm 4000 mm

Orientation COSH COSfH COSH COSfH COSH COSfH COSH COSfH COSH COSfH

−45◦ −0.1362 0.9853 −0.0504 0.9845 −0.0363 0.9728 0.5672 0.9507 −0.0368 0.9596
−30◦ 0.0724 0.8493 0.7436 0.9243 0.7660 0.9375 0.7504 0.9226 0.0286 0.7229
−15◦ 0.7112 0.9653 0.7313 0.9527 0.7427 0.9732 0.7343 0.9569 −0.0776 0.9753

0◦ 0.7127 0.9849 0.4168 0.6579 0.7698 0.9214 0.8127 0.9796 0.7872 0.9841
15◦ 0.7928 0.9726 0.8122 0.9888 0.7561 0.9526 0.6730 0.9290 0.5998 0.9351
30◦ −0.1009 0.9770 −0.0833 0.9667 0.1693 0.9267 0.6941 0.9531 0.7011 0.9866
45◦ −0.2969 0.8619 0.5375 0.9203 0.2850 0.2859 0.1841 0.6947 0.0205 −0.0486
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Table A5. Average cosine similarities in dynamic tests.

Test Scenario Distance (mm) COSH COSfH

Forward and backward
walking - 0.9744 0.9781

Lateral walking
2000 0.9003 0.9162
2500 0.9762 0.9960
3000 0.9820 0.9961

Marching in place 2000 0.9770 0.9949
2500 0.9814 0.9875

In-place body rotation 2000 0.9625 0.9681
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Key Performance Indicators of Physical Training. Hum.-Centric Comput. Inf. Sci. 2020, 10, 51. [CrossRef]

21. Eichler, N.; Hel-Or, H.; Shimshoni, I. Spatio-Temporal Calibration of Multiple Kinect Cameras Using 3D Human Pose. Sensors
2022, 22, 8900. [CrossRef] [PubMed]

https://doi.org/10.1109/TMM.2013.2246148
https://doi.org/10.5772/50093
https://doi.org/10.1126/scirobotics.aav4282
https://www.ncbi.nlm.nih.gov/pubmed/33137732
https://doi.org/10.1109/TIE.2005.855696
https://doi.org/10.3390/s21020413
https://doi.org/10.1038/s41597-022-01188-7
https://www.ncbi.nlm.nih.gov/pubmed/35338164
https://learn.microsoft.com/previous-versions/azure/kinect-dk/about-azure-kinect-dk
https://learn.microsoft.com/previous-versions/azure/kinect-dk/about-azure-kinect-dk
https://doi.org/10.3390/s22218173
https://www.ncbi.nlm.nih.gov/pubmed/36365870
https://doi.org/10.1109/JSEN.2020.3022374
https://doi.org/10.1371/journal.pone.0279697
https://www.ncbi.nlm.nih.gov/pubmed/36701322
https://doi.org/10.3390/s24061770
https://www.ncbi.nlm.nih.gov/pubmed/38544032
https://doi.org/10.1109/IROS45743.2020.9341248
https://doi.org/10.1109/icarm49381.2020.9195342
https://doi.org/10.3390/s20071903
https://doi.org/10.1088/1742-6596/1693/1/012190
https://doi.org/10.3390/s24051350
https://www.ncbi.nlm.nih.gov/pubmed/38474886
https://doi.org/10.3390/s22197662
https://www.ncbi.nlm.nih.gov/pubmed/36236761
https://doi.org/10.1109/IES55876.2022.9888532
https://doi.org/10.1186/s13673-020-00256-4
https://doi.org/10.3390/s22228900
https://www.ncbi.nlm.nih.gov/pubmed/36433493


Sensors 2025, 25, 1047 26 of 26

22. Yeung, L.F.; Yang, Z.; Cheng, K.C.; Du, D.; Tong, R.K.Y. Effects of Camera Viewing Angles on Tracking Kinematic Gait Patterns
Using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2. Gait Posture 2021, 87, 19–26. [CrossRef]

23. Bilesan, A.; Behzadipour, S.; Tsujita, T.; Komizunai, S.; Konno, A. Markerless Human Motion Tracking Using Microsoft Kinect
SDK and Inverse Kinematics. In Proceedings of the 2019 12th Asian Control Conference (ASCC), Kitakyushu, Japan, 9–12 June
2019; pp. 504–509.

24. Bilesan, A.; Komizunai, S.; Tsujita, T.; Konno, A. Improved 3D Human Motion Capture Using Kinect Skeleton and Depth Sensor.
J. Robot. Mechatron. 2021, 33, 1408–1422. [CrossRef]

25. Beshara, P.; Anderson, D.B.; Pelletier, M.; Walsh, W.R. The Reliability of the Microsoft Kinect and Ambulatory Sensor-Based
Motion Tracking Devices to Measure Shoulder Range-of-Motion: A Systematic Review and Meta-Analysis. Sensors 2021, 21, 8186.
[CrossRef]

26. Kurillo, G.; Hemingway, E.; Cheng, M.L.; Cheng, L. Evaluating the Accuracy of the Azure Kinect and Kinect v2. Sensors 2022,
22, 2469. [CrossRef]

27. Büker, L.; Quinten, V.; Hackbarth, M.; Hellmers, S.; Diekmann, R.; Hein, A. How the Processing Mode Influences Azure Kinect
Body Tracking Results. Sensors 2023, 23, 878. [CrossRef] [PubMed]

28. Jamali, Z.; Behzadipour, S. Quantitative Evaluation of Parameters Affecting the Accuracy of Microsoft Kinect in Gait Analysis.
In Proceedings of the 23rd Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 24–25 November 2016;
pp. 306–311. [CrossRef]

29. Martiš, P.; Košutzká, Z.; Kranzl, A. A Step Forward Understanding Directional Limitations in Markerless Smartphone-Based Gait
Analysis: A Pilot Study. Sensors 2024, 24, 3091. [CrossRef] [PubMed]

30. Thomas, J.; Hall, J.B.; Bliss, R.; Guess, T.M. Comparison of Azure Kinect and Optical Retroreflective Motion Capture for Kinematic
and Spatiotemporal Evaluation of the Sit-to-Stand Test. Gait Posture 2022, 94, 153–159. [CrossRef] [PubMed]

31. Steinebach, T.; Grosse, E.H.; Glock, C.H.; Wakula, J.; Lunin, A. Accuracy Evaluation of Two Markerless Motion Capture Systems
for Measurement of Upper Extremities: Kinect V2 and Captiv. Hum. Factors Ergon. Manuf. Serv. Ind. 2020, 30, 315–327. [CrossRef]

32. Antico, M.; Balletti, N.; Laudato, G.; Lazich, A.; Notarantonio, M.; Oliveto, R.; Ricciardi, S.; Scalabrino, S.; Simeone, J. Postural
Control Assessment via Microsoft Azure Kinect DK: An Evaluation Study. Comput. Methods Programs Biomed. 2021, 209, 106324.
[CrossRef] [PubMed]

33. Milosevic, B.; Leardini, A.; Farella, E. Kinect and Wearable Inertial Sensors for Motor Rehabilitation Programs at Home: State of
the Art and an Experimental Comparison. BioMed. Eng. OnLine 2020, 19, 25. [CrossRef]

34. Pfister, A.; West, A.M.; Bronner, S.; Noah, J.A. Comparative Abilities of Microsoft Kinect and Vicon 3D Motion Capture for Gait
Analysis. J. Med. Eng. Technol. 2014, 38, 274–280. [CrossRef]

35. Holland, M. Visual Puppeteering Using the Vizualeyez: 3D Motion Capture System. Master’s Thesis, University of Twente,
Enschede, The Netherlands, 2018.

36. Oztop, E.; Lin, L.-H.; Kawato, M.; Cheng, G. Extensive Human Training for Robot Skill Synthesis: Validation on a Robotic
Hand. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007;
pp. 1788–1793. [CrossRef]

37. PTI Phoenix Technologies Inc. Visualeyez III VZ10K/VZ10K5 Trackers. Available online: https://www.ptiphoenix.com/
products/trackers/VZ10K_VZ10K5 (accessed on 25 December 2024).

38. Sosa-León, V.A.L.; Schwering, A. Evaluating Automatic Body Orientation Detection for Indoor Location from Skeleton Tracking
Data to Detect Socially Occupied Spaces Using the Kinect v2, Azure Kinect, and Zed 2i. Sensors 2022, 22, 3798. [CrossRef]
[PubMed]

39. Cao, Z.; Bao, T.; Jia, W.; Ma, S.; Yuan, J. Towards a More Practical Data-Driven Biped Walking Control. In Proceedings of the
2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 27–31 December 2021; pp. 1058–1064.
[CrossRef]

40. Cao, Z.; Bao, T.; Ren, Z.; Fan, Y.; Deng, K.; Jia, W. Real-Time Stylized Humanoid Behavior Control through Interaction and
Synchronization. Sensors 2022, 22, 1457. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.gaitpost.2021.04.005
https://doi.org/10.20965/jrm.2021.p1408
https://doi.org/10.3390/s21248186
https://doi.org/10.3390/s22072469
https://doi.org/10.3390/s23020878
https://www.ncbi.nlm.nih.gov/pubmed/36679675
https://doi.org/10.1109/ICBME.2016.7890977
https://doi.org/10.3390/s24103091
https://www.ncbi.nlm.nih.gov/pubmed/38793945
https://doi.org/10.1016/j.gaitpost.2022.03.011
https://www.ncbi.nlm.nih.gov/pubmed/35334335
https://doi.org/10.1002/hfm.20840
https://doi.org/10.1016/j.cmpb.2021.106324
https://www.ncbi.nlm.nih.gov/pubmed/34375852
https://doi.org/10.1186/s12938-020-00762-7
https://doi.org/10.3109/03091902.2014.909540
https://doi.org/10.1109/robot.2007.363581
https://www.ptiphoenix.com/products/trackers/VZ10K_VZ10K5
https://www.ptiphoenix.com/products/trackers/VZ10K_VZ10K5
https://doi.org/10.3390/s22103798
https://www.ncbi.nlm.nih.gov/pubmed/35632211
https://doi.org/10.1109/robio54168.2021.9739501
https://doi.org/10.3390/s22041457
https://www.ncbi.nlm.nih.gov/pubmed/35214364

	Introduction 
	Materials and Methods 
	Experimental Setup 
	Experimental Scenarios 
	Static Test Protocol 
	Dynamic Test Protocol 

	Description and Visualization of Human Pose Data 
	Selection of Joint Nodes 
	Ensuring Data Quality of Skeletal Nodes 
	Visualization of the Human Skeleton 

	Motion Capture Data Correction 
	Evaluation Method for Motion Capture Data 

	Results 
	Results of Static Tests 
	Cosine Similarity Data 
	Visualized Skeletal Data 

	Analysis of Static Test Results 
	Data Accuracy Analysis 
	Effectiveness of Data Correction 

	Results of Dynamic Tests 
	Analysis of Dynamic Tests 

	Discussion 
	Appendix A
	References

