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Abstract: Caching the contents of unmanned aerial vehicles (UAVs) could significantly
improve the content fetching performance of request users (RUs). In this paper, we study
UAV trajectory design, content fetching, power allocation, and content placement problems
in multi-UAV-aided networks, where multiple UAVs can transmit contents to the assigned
RUs. To minimize the energy consumption of the system, we develop a constrained opti-
mization problem that simultaneously designs UAV trajectory, power allocation, content
fetching, and content placement. Since the original minimization problem is a mixed-
integer nonlinear programming (MINLP) problem that is difficult to solve, the optimization
problem was first transformed into a semi-Markov decision process (SMDP). Next, we
developed a new technique to solve the joint optimization problem: option-based hier-
archical deep reinforcement learning (OHDRL). We define UAV trajectory planning and
power allocation as the low-level action space and content placement and content fetching
as the high-level option space. Stochastic optimization can be handled using this strategy,
where the agent makes high-level option selections, and the action is carried out at a low
level based on the chosen option’s policy. When comparing the proposed approach to the
current technique, the numerical results show that it can produce more consistent learning
performance and reduced energy consumption.

Keywords: unmanned aerial vehicles (UAVs); UAV trajectory design; content fetching;
content placement; power allocation

1. Introduction
Unmanned aerial vehicles (UAVs), commonly referred to as drones, are anticipated

to be a major component of future communication networks [1,2]. UAVs can act as aerial
base stations (BSs) to increase network capacity and coverage, especially in areas with
inadequate infrastructure or high demand. They are adaptable and can provide short-term
connectivity for events, disaster recovery operations, and isolated regions [3,4].

In recent years, content provisioning services have grown rapidly due to the increasing
popularity of multimedia and video applications [5]. Content caching technology is a
potential solution to meet this demand. By maintaining popular content at geographically
distributed servers, such as cellular system BSs, caching technology can improve data
delivery efficiency [6–8].

Sensors 2025, 25, 898 https://doi.org/10.3390/s25030898

https://doi.org/10.3390/s25030898
https://doi.org/10.3390/s25030898
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0000-4860-6253
https://orcid.org/0000-0002-0957-7792
https://orcid.org/0009-0007-2601-5939
https://orcid.org/0000-0002-4125-2840
https://doi.org/10.3390/s25030898
https://www.mdpi.com/article/10.3390/s25030898?type=check_update&version=2


Sensors 2025, 25, 898 2 of 27

Designing UAV trajectories and resource allocation strategies is crucial for UAV-
enabled wireless networks. These efforts can enhance system performance, ensure effective
data delivery, and maintain dependable communication links [9].

1.1. Related Work

This subsection provides an overview of the relevant research, including joint re-
source allocation and UAV trajectory planning in UAV-assisted networks and joint caching
placement and UAV trajectory design.

1.1.1. Joint Resource Allocation and UAV Trajectory Planning Problem in
UAV-Assisted Networks

Recent work on UAV-assisted networks has focused on issues related to UAV trajectory
planning and resource allocation [10–22].

Resource allocation and UAV trajectory planning strategies were designed by the
authors of [10,11] to maximize system capacity or throughput. In [10], by using the internet
of remote things (IoRT), the authors propose a technique for node scheduling, power
control, and UAV trajectory planning to maximize system capacity while considering the
data transmission of smart devices. In [11], the authors propose a strategy that combines
UAV trajectory planning, subchannel allocation, power allocation, and communication
modes to increase user throughput near the cell edge while ensuring user fairness. Although
the authors of [10,11] consider throughput, they fail to address data transmission time,
which is very important.

In order to reduce data transmission time, the work in [12–14] addresses resource allo-
cation and UAV trajectory design. The work in [12] discusses the difficulties of deploying
UAVs to collect data in urban environments. The authors propose a suboptimal method
that simultaneously optimizes UAV trajectory, user scheduling, and subcarrier assignment
to minimize data transmission time. However, the approach does not consider the energy
consumption aspect of the UAVs. The problem of UAV trajectory and resource allocation is
framed in [13] as a time consumption minimization problem, and it is solved by applying
the block co-ordinate descent (BCD) algorithm. Although this method is efficient for time
minimization, it does not account for varying channel conditions and energy efficiency. In
order to meet the quality of service requirements of all user equipment (UE) while reducing
the serving duration of a UAV, the authors of [14] address the trajectory design and resource
allocation challenges for UAV-aided communications. They develop a deep reinforcement
learning (DRL) algorithm based on proximal policy optimization (PPO). Although the
authors develop DRL-based methods, they do not sufficiently focus on optimizing energy
consumption alongside service duration.

In addition to the intended high transmission rate and shorter serving time, energy
consumption is a major concern, particularly for energy-sensitive networks [15–22]. To
reduce energy consumption, the authors of [15–18] designed UAV trajectory and resource
allocation strategies. The authors of [15] examined the problem of joint resource allocation
and UAV trajectory planning for UAV-assisted wireless networks using non-orthogonal
multiple access (NOMA) for uplink communications. They propose a user association,
power allocation, and UAV trajectory design strategy to minimize overall energy consump-
tion. In [16], the authors frame the problem of UAV trajectory design, transmit power, joint
task offloading ratio, and computing resource allocation as a total energy consumption
minimization problem. A top-layered strategy based on DRL principles was proposed to
design the UAV trajectory, with an underlying algorithm to optimize the multi-domain
resource allocation problem. The authors of [17] aim to minimize the total energy con-
sumption of UAV-enabled data-gathering systems by optimizing the trajectory, clustering,
and hovering techniques of UAVs. According to [18], bit allocation, transmit power, CPU
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frequency, bandwidth allocation, and UAV trajectory design are taken into account while
optimizing the weighted sum energy consumption of UAVs.

Although the research work in [15–18] reduces energy consumption, the reduction in
energy may incur low energy efficiency. The authors of [19–22] develop resource alloca-
tion and UAV trajectory optimization methods to maximize energy efficiency (EE). The
research in [19] presents an energy-efficient data-gathering technique for UAV-assisted
ocean monitoring networks. The authors aim to maximize EE by jointly optimizing the
transmit power of buoys and sensors, transmission scheduling, and UAV trajectory. In [20],
the authors simultaneously optimize power allocation, user grouping, and UAV trajectory.
A layerwise quantum-based DRL method is applied to address the problem. In [21], an
efficient EE optimization problem for a cognitive UAV communication system is studied,
where a moving UAV reuses the spectrum of a ground primary user to send acquired data
to a leading UAV. To maximize the system’s EE, the authors propose a combined approach
for resource allocation and UAV trajectory design. In [22], the authors develop a joint
problem of resource allocation and UAV trajectory planning for system EE optimization.
The problem is formulated as a mixed-integer nonlinear programming (MINLP) problem
and involves transmit power, subchannel allocation, UAV trajectory, and speed control. It
is divided into two subproblems and addressed iteratively.

1.1.2. Caching Placement and UAV Trajectory Design

Recently, researchers have examined the caching placement and UAV trajectory design
problem [23–35].

In [23–28], the authors designed UAV trajectory and caching placement to maximize
throughput. The joint cache placement and UAV trajectory planning problem is addressed
in [23] to increase throughput, where a two-timescale DRL algorithm is proposed to solve
the problem. While the method is effective in maximizing throughput, it does not explicitly
consider the associated energy consumption or the practical constraints of real-world de-
ployments. In [24], the authors jointly optimize transmit power allocation, cache placement,
and UAV trajectory design in time division multiple access (TDMA) networks to maximize
throughput. However, the method fails to fully address dynamic changes in the network,
which could lead to suboptimal performance in fast-evolving environments. In [25], the
problem of throughput maximization is formulated for cache placement, resource allocation,
and UAV trajectory planning and is solved using BCD and successive convex approxi-
mation techniques. To enhance overall network throughput, the study in [26] develops
a co-operative content distribution and UAV trajectory planning strategy. For vehicular
networks, the authors of [27] develop a hybrid caching and trajectory optimization method
to maximize overall network throughput. In cache-enabled UAV networks, the authors
of [28] study a radio resource control and trajectory design problem. They propose an
actor-critic-based online reinforcement learning (RL) system to simultaneously optimize
transmit power, UAV trajectory, and cache content scheduling to maximize throughput.

To maximize the system secrecy rate, the authors of [29–31] develop UAV trajectory
and cache placement strategies. In [29], the authors discuss secure transmission in a cache-
enabled UAV-relaying wireless network. In the presence of terrestrial eavesdroppers, the
primary objective of this work is to optimize the minimum secrecy rate by simultaneously
optimizing cache placement and UAV flight trajectory. In [30], the minimum secrecy rate is
maximized over a finite time by jointly optimizing cache placement, power control, and
UAV trajectory in the presence of hostile eavesdroppers. The authors of [31] optimize the
number of UAVs, their 3D placements, and the cache placement probability of contents to
improve the secure cache throughput of internet of things mobile devices.
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In [32], the authors study energy-efficient content fetching strategies in cache-enabled
device-to-device (D2D) networks. They jointly formulate a content fetching and caching
problem to minimize the network’s overall energy consumption. An actor-critic RL al-
gorithm is proposed to optimize the content fetching decisions while ensuring efficient
resource utilization. The research work in [33,34] designs joint user association, cache loca-
tion, UAV trajectory, and transmit power to minimize the users’ overall content acquisition
latency. While effective in reducing latency, the methods do not fully consider energy
consumption, which is a key factor in the sustainability of UAV networks. To maximize the
cache utility of all files in the network, an iterative strategy based on matching and dynamic
programming is proposed in [35]. In a D2D communication system, the authors investigate
the joint optimization of UAV flight trajectory and the locations of users and UAVs.

The above studies focus on throughput maximization and cache placement but often
overlook key factors such as energy consumption and dynamic system conditions. The
reliance on static models and approximations, alongside the lack of real-time adaptability,
underscores the need for energy-aware and dynamic UAV trajectory and caching solutions.

1.2. Motivation and Contributions

In recent years, a large-scale investigation of resource allocation, UAV trajectory
design, and caching placement has been conducted. Yet, the existing work [10,11], as
well as [23–28], mainly develops joint strategies to optimize throughput and fails to address
energy consumption extensively. However, energy consumption is a significant issue,
especially for UAV-enable networks that have limited energy sources. Although the authors
of [19–22] study energy consumption optimization, the majority of their studies take a static
approach. However, in practical scenarios, the data transmission and channel characteristics
may involve dynamic change, so designing efficient resource allocation and UAV trajectory
to address environmental change is important. The research work in [23,32–34] develops
DRL-based methods to determine UAV trajectory and a resource allocation strategy in
dynamic scenarios; however, the formulated Markov decision process (MDP) may consist
of a large action space, which may cause complexity and low accuracy.

In this article, we consider a content fetching delivery problem in a multi-UAV-aided
network, where request users (RUs) have certain content requests and UAVs are capable of
offering content delivery to the RUs. In order to enhance the content fetching performance
of RUs, we compute the total energy consumption of the system and formulate the joint
UAV trajectory design, content fetching, transmit power allocation, and content placement
problem as an energy consumption minimization. Since the formulated problem is mixed-
integer nonlinear programming (MINLP), which cannot be addressed conveniently, the
problem is modeled as a semi-MDP (SMDP). To address the SMDP optimization problem,
we propose an option-based hierarchical DRL (OHDRL) framework.

The main contributions of this paper are summed up as follows:

• In this paper, we investigate the content delivery problem in a multi-UAV-aided
network, where multiple UAVs collaborate to serve the content requests of RUs
distributed across a target area. To address the energy consumption of the sys-
tem, we formulate the joint UAV trajectory design, transmit power allocation, con-
tent fetching, and content placement problem as a constrained energy consumption
minimization problem.

• The formulated problem is a MINLP, which is difficult to solve using conventional
methods. To tackle this difficulty, we model the problem as an SMDP. In particular, to
model the state of the SMDP, we take into account the co-ordinates of the UAVs; the
channel state information; the remaining amount of data of the UAVs and RUs; and
the caching capacity. The action space is formulated by taking into account the flying
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distances and directions of UAVs; the flight and hovering variable; and the transmit
power of UAVs and BSs. To model the option space, we take into account the content
fetching strategies of RUs and UAVs and the content placement strategy of UAVs. We
introduce penalty factors to ensure optimization constraints and formulate the reward
as the combination of the objective function and penalty factors.

• To enable dynamic information interaction in high dimensional states and action
spaces, we propose an OHDRL-based algorithm to handle the sparse reward and
non-stationary problem. In the proposed OHDRL-based framework, the original
action space is divided into high-level and low-level. Specifically, we define content
fetching and content placement strategies as high-level option space and define tra-
jectory design and resource allocation strategies as low-level action space. During a
specific time period, the agents make higher-level option selections, and the actions
are carried out at a lower level in accordance with the option’s internal policy. The
joint strategy can be obtained by combining off-policy within options and on-policy
between options.

• To evaluate the performance of the proposed algorithm, we use Python to build
neural networks. In the OHRDL-based algorithm, we choose the network parameters
reasonably so that the algorithm convergence can be achieved and content fetching and
UAV trajectory strategies can be obtained. The simulation results demonstrate that the
proposed OHDRL-based algorithm improves the learning efficiency of complex tasks.
In terms of energy consumption, our proposed OHDRL-based approach performs
better than the reference algorithms.

The rest of the paper is structured as follows. The system model, which comprises
the network model and channel model, is introduced in Section 2. In Section 3, the energy
consumption optimization problem is formulated. We develop an algorithm based on the
OHDRL framework in Section 4 to solve the formulated problem. Section 5 is dedicated to
the performance evaluation of the proposed strategy. Section 6 concludes the paper. The
parameters and symbols of the main notations appearing in this paper are shown in Table 1.

Table 1. Table of the main notations.

Parameter Symbol

I Number of RUs
M Number of UAVs
N Total number of time slots
qm(t) The locations of Um at time slot t
qi The co-ordinates of RUi
qb The co-ordinates of BS
hm(t) BS-UAV channel gain at time slot t
hm,i(t) UAV-RU channel gain at time slot t
dm(t) Distance between BS and Um
dm,i(t) Distance between Um and RUi
Rm(t) Data transmission rate between BS and Um
Rm,i(t) Data transmission rate between Um and RUi
Pt

m(t) Transmit power of BS
Pt

m,i(t) Transmit power of Um

Pf
m(t) Power consumption of Um

vmax
m Maximum speed of Um

K Number of contents
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Table 1. Cont.

Parameter Symbol

δm,k Content placement variable of Um for content k
αm,i(t) Content fetching variable of RUi from Um
ϕm,k(t) Content fetching variable of Um for content k
Et(t) Transmission energy consumption
Ef(t) Flight energy consumption of UAVs
Eh(t) Hovering energy consumption
Et

m(t) Transmission energy consumption of Um
Et

m,i(t) Transmission energy consumption of Um while
delivering contents to RUi

Et
b,m(t) Transmission energy consumption of BS while

delivering contents to Um
Si(t) Remaining data that RUi fetches from UAVs at

time slot t
S̄m(t) Remaining data that Um fetches from BS at time

slot t
Tm,i(t) Transmission delay from Um to RUi at time slot t
Tm(t) Transmission delay from BS to Um at time slot t

2. System Model
In this section, we discuss the network model and channel model.

2.1. Network Model

As shown in Figure 1, we consider content delivery in a UAV-assisted network com-
posed of a BS and a number of UAVs and RUs. Suppose the RUs have certain content
requests, and the BS retrieves the requested content from the core network through wired
backhaul links and pre-caches the contents on its collocated content server. Considering
the scenario where the RUs might be far from the BS, resulting in undesired transmission
performance, we employ UAVs as mobile BSs that provide content delivery service to
the RUs.

To enhance content delivery performance, we assume that UAVs fetch certain contents
from the BS, store them in their local caches, and transmit them to the RUs upon request.
Assuming that the UAVs are allowed to fetch and send contents simultaneously, self-
interference may exist. For simplicity, we assume that by using particular schemes, the
self-interference can be canceled. For data delivery, UAVs are assumed to hover at fixed
locations during data transmission to ensure stable communication with the RUs. In the
considered system, we apply an orthogonal frequency division multiple access (OFDMA)
scheme where multiple RUs may access the UAVs using orthogonal subcarriers. We
suppose that the entire bandwidth is divided into a number of equal-length bandwidth
subchannels. Let B denote the bandwidth of each subchannel and ω denote the number of
subchannels. It is assumed that the UAVs fly from their initial positions to certain target
areas in order to serve the RUs and then return to their starting places after the content
delivery service is finished. Let I and M represent the number of RUs and the number of
UAVs, respectively; we denote RUi as the i-th RU and Um as the m-th UAV, 1 ≤ i ≤ I,
1 ≤ m ≤ M.

We divide the system time T into equal-length time slots for simplicity. The length
of each time slot is denoted by τ, and the total number of time slots is represented by N,
i.e., T = N τ. It is assumed that the positions of the UAVs remain fixed during each time
slot. The location of Um at time slot t is given as qm(t) = (xm(t), ym(t), H), where H
is the fixed flight altitude of Um. Let q̃i = (x̃i, ỹi, 0) and qb = (xb, yb, 0) represent the
co-ordinates of RUi and the BS, respectively.
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Figure 1. System model.

Assume that the RUs can obtain content from a limited content library without loss of
generality. Let Fk represent the k-th content, let Lk denote the size of Fk, 1 ≤ k ≤ K, and
let K denote the total number of contents. A binary variable µi,k ∈ 0, 1 is introduced to
indicate whether RUi requests content, Fk. More specifically, each RU demands content
based on its popularity and individual preferences. Thus, µi,k is treated as a constant and is
predetermined in this work. For simplicity, we assume that each RU requests only a single
piece of content, i.e., ∑K

k=1 µi,k = 1, ∀i. Let δm,k represent the content placement variable of
Um, δm,k = 1 if Fk is cached in Um, and δm,k = 0; otherwise, ∀m, k.

2.2. Channel Model

In this subsection, we discuss the channel models of BS-UAV links and UAV-RU links
and then formulate the data rates of the transmission links.

2.2.1. Channel Model of BS-UAV Links

Since the line-of-sight (LoS) link dominates the UAV-to-ground channel, UAV commu-
nications typically have better channel conditions compared to terrestrial communications.
Let hm(t) be the channel gain between the BS and Um at time slot t, which can be written as

hm(t) = β(dm(t))−α10ηe /10, (1)

where β denotes the reference channel gain at a distance of 1 m, α denotes the path loss
coefficient, ηe ∼ N

(
0, σ2

e
)

is modeled as a Gaussian random variable, e ∈ {LoS, NLoS} is
the propagation parameter, and dm(t) represents the distance between BS and Um at time
slot t, which can be formulated as

dm(t) =

√
(xm(t)− xb)

2 + (ym(t)− yb)
2 + H2 . (2)

Let Rm(t) represent the data transmission rate of the link between BS and Um at time
slot t, which can be written as

Rm(t) = Blog2

(
1 +

Pt
m(t)hm(t)

σ2

)
, (3)
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where Pt
m(t) denotes the transmit power of the BS when sending contents to Um at time

slot t, and σ2 denotes the noise power.

2.2.2. Channel Model of UAV-RU Links

Let hm,i(t) represent the channel gain between Um and RUi at time slot t, which can be
formulated as

hm,i(t) = β(dm,i(t))−α10ηe /10, (4)

where dm,i(t) is the distance between Um and RUi at time slot t, which can be written as

dm,i(t) =
√
(xm(t)− xi)

2 + (ym(t)− yi)
2 + H2 . (5)

Let Rm,i(t) denote the data transmission rate of the link between Um and RUi at time
slot t, which can be formulated as

Rm,i(t) = Blog2

(
1 +

Pt
m,i(t)hm,i(t)

σ2

)
, (6)

where Pt
m,i(t) represents the transmit power of Um while delivering the content to RUi at

time slot t.

3. Energy Consumption Optimization Problem
In this section, we examine the energy consumption of RUs in retrieving content from

UAVs and formulate the problem of UAV trajectory, content fetching, and power allocation
as an energy consumption minimization problem.

3.1. Objective Function

The deployment of UAVs benefits the RUs by improving content fetching performance.
However, UAVs are energy-sensitive devices. In this subsection, we formulate the energy
consumption of the system, which is defined as the total energy consumed during the flying,
hovering, and data transmission of the UAVs. Consequently, the total energy consumption
of the system at time slot t, denoted by E(t), can be formulated as follows:

E(t) = Ef(t) + Eh(t) + Et(t), (7)

where Ef(t) and Eh(t) are, respectively, the flight and hovering energy consumption of the
UAVs at time slot t, and Et(t) represents the energy consumption of the UAVs resulting
from data transmission at time slot t. Ef(t) can be computed as

Ef(t) =
M

∑
m=1

θm(t) Ef
m(t), (8)

where θm(t) denotes the flight variable of Um; if Um flies at time slot t, θm(t) = 1; if Um

hovers at a certain position at time slot t, θm(t) = 0. Ef
m(t) denotes the flight energy

consumption of Um at time slot t, which is modeled as

Ef
m(t) = Pf

m(t)τ, (9)
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where Pf
m(t) indicates the propulsion power of Um during flight at time slot t, which can be

formulated as

Pf
m(t) = P0

(
1 +

3v2
m(t)

v2
tip

)
+

1
2

f0ρsAv3
m(t) + P1

(√
1 +

v4
m(t)
4v4

0
− v2

m(t)
2v2

0

)1/2

, (10)

where P0 and P1 are constants representing, respectively, the blade profile power and
induced power in the hovering status; vm(t) denotes the velocity of Um at time slot t, vtip

represents the tip speed of the rotor blade, and v0 is the mean rotor induced velocity in the
hovering status; f0 and s are the fuselage drag ratio and rotor solidity, respectively; ρ and A
denote the air density and rotor disc area.

Eh(t) in (7) can be written as follows

Eh(t) =
M

∑
m=1

(1− θm(t))(P0 + P1)τ, (11)

Et(t) in (7) can be formulated as

Et(t) =
M

∑
m=1

Et
m(t), (12)

where Et
m(t) is the transmission energy consumption of Um at time slot t, which can be

calculated as

Et
m(t) =

I

∑
i=1

αm,i(t)Et
m,i(t)+ϕm,k(t)Et

b,m(t) (13)

where αm,i(t) indicates the content fetching variable of RUi. If RUi is receiving contents
from Um at time slot t, then αm,i(t) = 1; otherwise, αm,i(t) = 0, and ϕm,k(t) indicates
the content fetching variable of Um. If Um fetches content k from the BS at time slot t,
ϕm,k(t) = 1; otherwise, ϕm,k(t) = 0. Et

m,i(t) indicates the transmission energy consumption
of Um while delivering the contents to RUi at time slot t, which is computed as

Et
m,i(t) = Pt

m,i(t) Tm,i(t), (14)

where Tm,i(t) indicates the transmission delay when Um sends contents to RUi at time slot
t. Let Si(t) indicate the remaining amount of data that RUi fetches from UAVs at time slot t,
which can be written as

Si(t) = max

{
K

∑
k=1

µi,kLk −
M

∑
m=1

t−1

∑
t0=1

αm,i(t0)Rm,i(t0)Tm,i(t0), 0

}
(15)

Tm,i(t) can further be formulated as

Tm,i(t) =

τ, if Si(t)
Rm,i(t)

≥ τ

Si(t)
Rm,i(t)

, otherwise.
(16)

In (13), Et
b,m(t) indicates the transmission energy consumption of the BS while deliver-

ing the uncached contents to Um at time slot t, which is formulated as

Et
m(t) = Pt

m(t) Tm(t), (17)
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where Tm(t) indicates the transmission delay during data transfer from the BS to Um. Let
S̄m(t) indicate the remaining amount of data that Um fetches from BS at time slot t, which
can be expressed as

S̄m(t) = max

{
K

∑
k=1

(1− δm,k)Lk −
M

∑
m=1

t−1

∑
t0=1

ϕm,k(t0)Rm(t0)Tm(t0), 0

}
(18)

where ϕm,k is the content fetching variable of Um, Tm(t), which can be calculated as

Tm(t) =

 τ, if S̄m(t)
Rm(t) ≥ τ

S̄m(t)
Rm(t) , otherwise.

(19)

3.2. Optimization Constraints

In this subsection, we outline the optimization constraints that must be satisfied to
design a joint UAV trajectory and content fetching strategy.

3.2.1. Content Fetching Constraints

We assume that at any given time slot, only one RU can be served by a single UAV;
thus, we obtain

C1 :
M

∑
m=1

αm,i(t) ≤ 1, ∀i, t. (20)

To enable a multi-subchannel content fetching scheme, we assume that one UAV may
serve different RUs with different subchannels, i.e.,

C2 :
I

∑
i=1

αm,i(t) ≤ ω, ∀m, t. (21)

We assume that at a given time slot, only one UAV can fetch the contents from the BS;
we obtain

C3 :
M

∑
m=1

ϕm,k(t) ≤ 1, ∀t. (22)

3.2.2. Transmission Rate Constraint

In order to ensure the effective transfer of contents, we assume that the data transmis-
sion rate should be greater than a threshold, i.e.,

C4 : R̄i(t) ≥
M

∑
m=1

K

∑
k=1

αm,i(t)µi,kRth
k , (23)

where Rth
k denotes the data transmission rate threshold of Fk, and R̄i(t) represents the data

rate of RUi, which can be written as

R̄i(t) =
M

∑
m=1

αm,i(t)Rm,i(t) (24)

3.2.3. Transmit Power Constraints

The transmit power is limited by the maximum transmit power, i.e.,

C5 :
I

∑
i=1

αm,i(t)Pt
m,i(t) ≤ Pmax

m , ∀m, t, (25)
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where Pmax
m represents the maximum transmit power of Um.

C6 :
M

∑
m=1

ϕm,k(t)Pt
m(t) ≤ Pmax, ∀t, (26)

where Pmax denotes the maximum transmit power of the BS.

3.2.4. Flight Trajectory Constraints

The flight distance of UAVs in adjacent time slots is limited by the following con-
straint, i.e.,

C7 : ∥qm(t + 1)− qm(t)∥2 ≤ vmax
m τ, ∀m, t (27)

where vmax
m is the maximum speed of Um.

In order to prevent collisions between multiple UAVs, we have the following constraint:

C8 : ∥qm(t)− qm′(t)∥2 ≥ lth, ∀m ̸= m′, t, (28)

where lth is the safe distance of UAVs.
We assume each UAV has the same flight cycle with the initial and end locations as

C9 : qm(0) = qm(T), ∀m. (29)

3.2.5. Content Placement Constraint

Due to the restricted cache space, the contents cached in UAVs should adhere to the
maximum cache capacity constraint, i.e.,

C10 :
K

∑
k=1

δm,kLk ≤ ψm, ∀m, (30)

where ψm is the maximum cache capacity of Um.

3.3. Optimization Problem Formulation

Given the constraints of the content fetching, transmit power, and flight trajectory of
the UAVs, the UAV trajectory design and content fetching problem is formulated as an
energy consumption minimization problem, which can be written as

min
qm(t),Pt

m,i(t),P
t
m(t),αm,i(t),ϕm,k(t),δm,k

1
T

T
∑

t=1
E(t)

s.t. C1−C10.
(31)

4. Solution to the Optimization Problem
Since the optimization problem described in (31) is MINLP, it is difficult to solve opti-

mally using traditional approaches. In order to address this challenge, we first formulated
the problem as an SMDP and, subsequently, proposed an OHDRL framework to determine
UAV trajectory, content fetching, and a power allocation strategy.

4.1. An Introduction to SMDP

MDP is a probabilistic decision-making instrument based on the Markov property
theory. It is used to determine optimal decisions for dynamic systems while taking into
account both their operating environment and current state. MDPs operate on a rigid
framework of fixed, discrete time steps, where state transitions occur immediately after
each time step. At each time step, an agent, also known as a decision-maker, examines the
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current state of the system, chooses an action from a set of available actions, and moves
to a new state according to the chosen action’s stochastic transition probabilities. As a
result of its actions, the agent is rewarded numerically, and the objective is to identify an
optimal policy that prescribes the best action to take in each state in order to maximize the
cumulative expected rewards over time.

In an MDP, there are several fundamental components and concepts. Namely, states
represent the different situations or configurations of the environment, and the set of all
possible states is denoted as S . Actions represent the choices or decisions that the agent
can make within the environment, and the set of all possible actions is denoted as A.
The reward functionR assigns a numerical value to each state-action pair, indicating the
immediate desirability of taking a specific action in a given state. The reward function
serves as a key component in MDPs, enabling the agent to learn and modify its policies
to successfully accomplish its long-term objectives. Transition probabilities describe a
function that defines the probability of moving from one state to another after taking a
specific action. They describe how the environment responds to the agent’s actions and
incorporate uncertainty.

The policy function π guides the agent’s behavior and determines its actions in
response to the environment’s stochastic transitions. In an MDP, there are different types
of policies, including deterministic and stochastic policies. Deterministic policies select
a single action for each state, while stochastic policies assign probabilities to each action,
allowing for exploration and handling uncertainty. The value function V(s) in an MDP is
a fundamental concept that quantifies the expected return an agent can achieve starting
from a given state. It is important in decision-making because it represents the long-term
desirability of a state. Specifically, the value function provides a way to rank states based
on their expected cumulative rewards, guiding the agent towards more favorable states
and actions. See Figure 2.

Figure 2. A graphical representation of the MDP model.

As an extension of MDPs, an SMDP is an advanced mathematical framework that
combines the concepts of both MDPs and semi-Markov processes. SMDPs are designed to
model decision-making problems where actions are taken by an agent in an environment
with stochastic state transitions. In contrast to traditional MDPs, the time spent in each
state is modeled by a more general distribution [36]. SMDPs introduce flexibility by
allowing variable time intervals between state transitions, accommodating scenarios where
actions may require different amounts of time to complete. Additionally, in SMDPs, states
can endure for variable durations, which are stochastic and follow specific probability
distributions, offering a more nuanced representation of how states evolve over time.

Similar to traditional MDPs, an SMDP can also be characterized by states, actions,
rewards, and probabilities. Unlike an MDP, in an SMDP, the state transition probabilities
depend not only on the current state and the chosen action but also on the time spent in
the current state. This accounts for the variable duration of time spent in a state before
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transitioning to a new one. Rewards can be time-dependent, and an agent may accumulate
rewards over time within a state.

SMDPs are preferred over standard MDPs in specific scenarios. They excel when
actions within an environment take varying amounts of time to complete, as they can
accurately model this temporal variability, resulting in a more realistic problem repre-
sentation. Additionally, SMDPs are well-suited for problems with continuous or semi-
continuous state spaces, as they can effectively handle both variable durations and con-
tinuous state changes [37]. When decision-making involves complex sequences of ac-
tions with varying time constraints, SMDPs provide a more precise depiction of the
decision-making process [38].

4.2. An Introduction to DRL and OHDRL

In this subsection, we present a brief overview of DRL and OHDRL.

4.2.1. An Overview of DRL

DRL is a subdiscipline of artificial intelligence and machine learning that focuses on
teaching machines to learn and make decisions in complex environments. By combining
RL with deep learning techniques, DRL can tackle challenging problems that involve
sequential decision-making in MDPs. The DRL framework operates at the primitive action
level and does not explicitly incorporate temporal abstractions or higher-level actions. DRL
typically uses a flat, single-level structure for decision-making, where actions are selected
at the atomic level based on the current state. In DRL, the agent must learn to manage
the complexity of tasks at the atomic action level, which can be challenging for tasks with
long time horizons or large action spaces. Learning can be less sample-efficient in DRL,
particularly for tasks with high-dimensional state spaces and complex dynamics.

In order to evaluate the Q-values, DQN, which combines deep learning techniques
with Q-learning, is proposed. In the DQN framework, two important networks are crucial.
The prediction network is responsible for predicting the Q-values for different actions in a
given state. These Q-values indicate the expected cumulative future rewards for taking a
specific action in the current state. On the other hand, the target network serves as a stable
reference for generating target Q-values during the training process. It provides a more
consistent and less volatile set of Q-value targets compared to the Q-network. Let Q (s, a; θ)

and Q (s′, a′; θ̄) represent the Q-values of the prediction network and the target network,
respectively. Q (s, a; θ) can be computed as

Q (s, a; θ) = r(s, a) + γ ∑
s′∈S

T(s, a, s′)
[

max
a′∈A

Q (s′, a′; θ̄)

]
,

= Es′∼T(s,a,s′)

[
R(s, a, s′) + γ max

a′∈A
Q(s′, a′; θ̄)

]
, (32)

where θ represents the weights of the prediction network, which are updated after each
iteration; θ̄ represents the weights of the target network, which are periodically synchro-
nized with the parameters of the prediction Q-network; R(s, a, s′) denotes the immediate
reward from state s to state s′ when taking action a; T(s, a, s′) is the transition probability
from state s to state s′ when taking action a; and γ denotes the discount factor.

The mean squared error (MSE) is utilized as the loss function to optimize the prediction
network parameters. The loss function calculates the difference between the predicted
values (e.g., state-action values or policy probabilities) and the target values (e.g., target
state-action values or advantages). It quantifies how far off the agent’s current estimates
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are from the desired values. This error estimation is crucial for guiding the learning process.
The loss function L(θ) can be written as

L(θ) = Es′∼T(s,a,s′)

[(
Q(s, a; θ)− R(s, a, s′)− γ max

a′∈A
Q(s′, a′; θ̄)

)2]
. (33)

4.2.2. An Overview of OHDRL

OHDRL extends traditional hierarchical RL by integrating DRL techniques to ad-
dress the scalability challenges of conventional DRL methods in complex tasks. This ap-
proach enhances RL practicality for long-term planning, complex environments, and high-
dimensional state spaces. By structuring agents to learn and execute subpolicies, OHDRL
enables tackling challenging problems that traditional RL methods struggle to solve.

In OHDRL, options are introduced as subpolicies or temporally extended actions
learned and utilized at a higher level of abstraction [39]. An option is defined as a tuple
(ξ, πo, λo(s)), where ξ is the initiation set, πo is the option’s policy, and λo(s) represents the
termination condition. The termination condition indicates the probability of an option,
o, ending in state s. By explicitly modeling temporal abstractions, OHDRL simplifies
complex tasks by decomposing them into subtasks represented by options. This hierarchical
structuring leads to more efficient exploration and faster learning, particularly for tasks
with inherent hierarchical structures [40,41].

The OHDRL architecture operates on two levels: a high-level policy and a low-level
policy. The high-level policy selects options based on the current state and internal goals,
which may be predefined by the task or learned during training. Once an option is chosen,
the associated low-level policy determines the sequence of actions to execute until the
subgoal is achieved or the termination condition is met. This dual-layer approach enables
the agent to manage both long-term and short-term decision-making effectively.

In the OHDRL algorithm, the intra-option policy πo(a|s) specifies the probability of
taking action, a, in state s under the current option o. πo(a|s) can be calculated as

πo(a|s) = softmax(Qo(s, a)), (34)

where Qo(s, a) represents the option Q-value function. This function estimates the expected
cumulative reward when starting in state s, executing option o, taking action a, and
following the option policy πo. Qo(s, a) can be given by

Qo(s, a) = r(s, a) + γ ∑
s′

T(s, a, s′)max
a′

Qo(s′, a′), (35)

The termination function λo(s) can be calculated as

λo(s) = sigmoid( fλo (s)), (36)

where fλo (s) is a learned function mapping states to values in [0, 1]. The intra-option value
function Vo(s) represents the expected cumulative reward of executing option o, starting
from state s and following the option’s policy until termination, which can be expressed as

Vo(s) = ∑
a

πo(a|s)Qo(s, a). (37)

4.3. SMDP Modeling

In this subsection, we first transform the problem formulation in (31) into an SMDP
and then provide an OHDRL-based algorithm to solve the optimization problem. The
summary of the dimensions of the state, action, and option variables are shown in Table 2.
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The details of the state, action, option, and reward in the proposed OHDRL architecture are
described below.

(a) State space S : The state space consists of four main components, which can be
written as follows:

S(t) ∆
= {S1(t),S2(t),S3(t),S4(t)}, (38)

where S1(t)
∆
= {qm(t)} denotes the co-ordinates of the UAVs, S2(t)

∆
= {hm,i(t), hm(t)}

indicates the channel state information, S3(t)
∆
=
{

Si(t), S̄m(t)
}

represents the remaining

amount of data of UAVs and RUs, and S4(t)
∆
= {ψm} represents the caching capacity state.

(b) Option space O: The options are chosen as the content fetching strategies of RUi

and Um and the content placement strategy of Um, 1 ≤ m ≤ M. Accordingly, the option
space can be expressed as

O ∆
=
{

αm,i(t), ϕm,k(t), δm,k
}

. (39)

Note that choosing αm,i(t) in the option space allows the UAV to optimize its delivery
strategy and determine which RUs to serve and when to serve the RUs; choosing ϕm,k(t) in
the option space allows the UAVs to optimize their fetching strategy and determine when
the UAVs should fetch content from the BS; choosing δm,k in the option space allows for
determining which content the UAVs should cache. In (39), each option has a terminal
condition. Let λ =

{
λαm,i(t), λϕm(t), λδm,k

}
indicate the termination condition, where λαm,i(t),

λϕm(t) and λδm,k are the terminal conditions of αm,i(t), ϕm(t) and δm,k, respectively.
(c) Action space A: The action space of the SMDP is hybrid in nature, comprising both

discrete and continuous variables; A can be expressed as

A(t) ∆
= {a1(t), a2(t), a3(t)}, (40)

where a1(t) is a discrete action representing the movement of Um at time slot t. It is
expressed as a1(t) = {κm(t), εm(t)}, where κm(t) and εm(t) indicate the flying distance and
direction of Um at time slot t. a2(t) is a discrete action representing the operational state of
the UAV, defined as a2(t) = {θm(t)}, where θm(t) determines whether Um is in a flying or
hovering state. a3(t) is a continuous action representing the transmit power of the BS and
Um, defined as a3(t) =

{
Pt

m,i(t), Pt
m(t)

}
. By selecting the flight action am(t), the position of

Um at slot t can be updated as

xm(t + 1) = xm(t) + κm(t) cos(εm(t)), (41)

ym(t + 1) = ym(t) + κm(t) sin(εm(t)). (42)

Note that the actions κm(t) and εm(t) should be chosen to ensure that constraints C7
and C8 hold. Given a specific option over a relatively long time scale, the actions can be
chosen in a relatively short time scale. For instance, for a given content fetching strategy,
the UAV trajectory can be designed for each time slot.

(d) Reward: When all the options are terminated, the agent can obtain a reward. Let
R(t) represent the cumulative rewards at time slot t, which can expressed as

R(t) = −E(t)− εcf − εp − εq − εcp, (43)

where εcf represents the content fetching penalty associated with constraints C1–C4, εp

represents the power allocation penalty associated with constraints C5 and C6, εq represents
the flight trajectory penalty associated with constraints C7 and C8, and εcp represents the
content placement penalty associated with constraint C10.
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Table 2. Summary of the dimensions of the state, action, and option variables.

Variable Description Dimension

States
S1(t) Co-ordinates of the UAVs 2M
S2(t) Channel state information M(I + 1)

S3(t)
Remaining amount of data of

UAVs and RUs I + M

S4(t) Caching capacity state M
Actions

a1(t) Flying distance and direction 2M
a2(t) Flying and hovering variable M

a3(t)
Transmit power of the BS and

Um
M(I + 1)

Options

αm,i(t)
Content fetching variable of

RUi
M× I

ϕm,k(t)
Content fetching variable of

Um
M× K

δm,k
Content placement variable of

Um
M× K

In the realm of solving sequential decision-making problems, the application of
OHDRL proves to be a promising framework. The optimization objective in SMDPs
is typically to find a policy that maximizes the expected cumulative reward over time.

4.4. OHDRL Framework

Based on the modeled SMDP, we propose an OHDRL framework to determine the
actions leading to long-term reward maximization. In the proposed OHDRL framework,
we employ a multi-agent RL framework, where multiple agents collaborate to optimize the
global system objectives. Each UAV is equipped with its own dedicated agent; however,
these agents are not independent. Instead, they operate in a co-ordinated and interdepen-
dent manner to achieve a unified objective. The agents exchange critical state information,
allowing them to make informed decisions that align with the overarching goals of mini-
mizing energy consumption and enhancing operational efficiency. At time slot t, the agent
selects the option o(t) ∈ O based on state s(t) ∈ S and the option policy π. Then, the
action a(t) ∈ A is executed. When option o(t) is terminated and action a(t) is executed,
the rewardR is received. At time slot t + 1, the agent selects option o(t + 1) based on intra-
option policy Φ and state s(t + 1). This procedure is repeated until the end of the process.
By using the Bellman function, the option value function of the agent corresponding to the
action value function on state s(t) can be written as

Qπ(s(t), o(t)) = ro(t)

+ ∑
t+1

po(t, t + 1) ∑
o(t+1)

π(s(t + |o(t)|), o(t + 1))Qπ(s(t + |o(t)|), o(t + 1)), (44)

where |o(t)| represents the option’s time length, and ro(t) is the reward associated with the
chosen option based on the intra-option policy Φ, which is described as follows

ro(t) =

∑
a(t)∈A

Φ(s(t), a(t))

ra(t) + ∑
s(t+1)

pa(t, t + 1)(1− λ(s(t + 1))ro(t + 1))

. (45)
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In (44), po(t, t + 1) denotes the option transition probability, which can be expressed as

po(t, t + 1) =

∑
a(t)∈A

Φ(s(t), a(t)) ∑
s(t+1)

(pa(t, t + 1)((1− λ(s(t + 1))po(t + 1) + λ(s(t + 1)))), (46)

where λ(s(t + 1)) indicates the termination condition. By using the termination condition,
we define the following parameter to adjust option exploration:

a(t + 1) = a(t)− b(r(t) + γVπ(s(t + 1))−Vπ(s(t)))∂∇λ(s(t)), (47)

where b indicates the positive step size; the value function can be defined as follows:

Vπ(s(t)) = ∑
o(t)∈O

Φ(s(t)|a(t))Qπ(s(t), o(t)). (48)

Our final goal is to find the optimal option value function Q∗π(s(t), o(t)), which is
formulated as follows:

Q∗π(s(t), o(t)) = ro(t) + ∑
s(t)

po(t, t + 1)
(

max
o(t)

Q∗π(s(t + 1), o(t + 1))
)

, (49)

In the next subsection, we use the above derivation to describe the training procedure.

4.5. Training Algorithm of the Proposed OHDRL Method

In this subsection, we describe the training algorithm of the proposed OHDRL frame-
work, which is shown in Figure 3. As can be observed, the proposed OHDRL includes two
parts: one for options and the other for actions. Each part relies on two fully connected
DNNs to stabilize the learning.

Target-value network Qtarget
π (s, o|θ̄) is used to estimate the optimal option value func-

tion, with θ̄ indicating the target-value network’s parameters. Similar to this, the option-
value network Qoption

π (s, o|θ̂) sets the value function of the current option-state, with θ̂

indicating the option-value network’s parameters. A replay buffer is used to store the
transition experience {s(t), o(t), a(t), r(t), s(t + |o(t)|)}. Then, by using a mini-batch, sam-
ples from the replay buffer are used to train the DNNs. The loss function to evaluate the
proposed model is given by

L(θ) = E
[
(r(t) + γ max

o(t+1)
Qtarget

π (s(t + 1), o(t + 1); θ̄)−Qoption
π (s(t), o(t); θ̂))2

]
, (50)

where γ is a discount parameter. By using the gradient descent method, the network’s
parameters are updated as follows

θnew = θold − η∇θL(θ), (51)

where η is the learning rate, θold and θnew, respectively, indicate the network parameters
before and after the update of the option-value network. The network parameters are
continuously updated until the following condition is satisfied:

Qoption
π

(
·|θ̂
)
≈ Qtarget

π

(
·|θ̄
)
≈ Q∗π . (52)
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The optimal option is obtained using a ε− greedy algorithm with random probability,
0 ⩽ ε ⩽ 1. Hence, the option is selected as

o(t) = arg max
o(t)

Qoption
π

(
s(t), o(t); θ̂

)
. (53)

Figure 3. Structure of the proposed OHDRL.

Before choosing the next option, the current option is executed for a certain period of
time in different states, depending on the option type. The training procedure is repeated
until the end of the task. Algorithm 1 presents the details of the procedure.

4.6. Complexity Analysis

In this work, we formulate the joint UAV trajectory design, transmit power allocation,
content fetching, and content placement problem as a constrained energy consumption
minimization problem. To tackle the NP-hard problem, we formulate the problem as an
SMDP and the proposed OHDRL framework.

Note that to conduct the proposed OHDRL, we need to initialize the DNNs and replay
buffers and then perform two rounds of iterations in various episodes and steps. The
complexity analysis of the proposed algorithm can be analyzed below. Let TD denote the
time consumed for DNN initialization, let TB denote the time required to initialize the replay
buffer in each episode, and let Tc represent the time consumed for computation operations
in each step. In addition, we denote TE and TS as the number of training episodes and
steps, respectively. The total time complexity of the OHDRL algorithm can be expressed as
TOHDRL = TD + TE · (TB + TS · Tc).

Since the OHDRL algorithm employs a multi-agent framework, the complexity is
linear with respect to the number of UAV agents M. Therefore, the final computational
complexity is O(TOHDRL) = O(M · TETS).
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Algorithm 1: OHDRL Algorithm
1: Input: Episodes E, training steps T, batch size, structure of option-state neural

network,a.
2: Output: Optimal option set, target-value network parameters.
3: Initialization: Evaluation option-state network Qoption

π with θ̂, target option-state
network Qtarget

π

(
s, o|θ̄

)
with θ̄, options flag F, and replay buffer with capacity C.

4: for e = 1 : E do
5: Get initial state s0 and set s← s0.
6: for t = 1 : T do
7: if F = 1 then
8: if c < C then
9: Generate random value f(t);

10: if f(t) ⩽ ε then
11: Selected option randomly;
12: Update a via (47);
13: else
14: Use option via greedy method;
15: end if
16: Set F = O;
17: end if
18: else
19: Execute current option;
20: Choose action a(t) based on Φ(a(t)|s(t));
21: Calculate the reward for the current option ro(t) and the state s(t + 1);
22: if λ(s(t)) terminates then
23: Set F = 1;
24: Calculate the reward for the current option ro(t) and the state s(t + 1);
25: Store the transitions {s(t), o(t), a(t), r(t), s(t + |o(t)|)} to the replay buffer;
26: end if
27: end if
28: Get random samples from the replay buffer;
29: Calculate the loss function via (50);
30: Update the network’s parameters (51);
31: end for
32: end for

5. Simulation Results
In this section, the effectiveness of our proposed OHDRL-based algorithm is evaluated

using values from the numerical simulations. The size of the simulation region was
set to 0.35 km × 0.4 km, with a number of users randomly distributed within the area.
The number of UAVs was set to M = 4, with all UAVs flying at a given altitude of H
= 200 m. The number of contents was set to K = 5, with the content sizes given by
F = {72, 81, 88, 76, 103}. At each time slot, each user randomly demands one content item
from the content library. The DNNs were implemented based on the PyTorch framework,
and the training processes were executed on a GPU, Gen Intel i5-12400. We utilized five
fully connected hidden layers, with sizes of [400, 300, 256, 128, 64] for the prediction
network and [800, 600, 512, 256, 128] for the target network. A list of additional parameters
used in the simulation is provided in Table 3.
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Table 3. Simulation parameters.

Parameter Value

Carrier frequency ( fc) 28 GHz
Link Bandwidth (B) 5 MHz
Maximum transmit power of the BS (Pmax) 40 dBm
Maximum transmit power of Um (Pmax

m ) 30 dBm
Noise power (σ2) −114 dBm
Path loss coefficient (α) 2.7
Maximum speed of Um (vmax

m ) 20 m/s
Number of UAVs 4
Number of contents (K) 5
Set of the size contents (Fk) {72, 81, 88, 76, 103}
Maximum cache capacity {150, 80, 90, 110}
Blade profile power 0.12
Induced power 0.18
Default number of RUs 24
Learning rate (α) 0.001
Discount parameter (γ) 0.99
Time slots (τ) 20 s
Replay buffer size 100,000
Number of episodes 2000
Steps per episode 2000
Batch size 64
Optimizer Adam

Figure 4 illustrates the cumulative reward achieved by the proposed OHDRL frame-
work compared with the 2TDRL and AC-DRL schemes over 2000 training episodes. From
the figure, it can be observed that the OHDRL framework demonstrates superior per-
formance, achieving faster convergence and higher cumulative reward compared to the
baseline methods. This improvement can be attributed to the hierarchical structure em-
bedded in OHDRL, which allows for a more effective balance between exploration and
exploitation. From the figure, we can observe that the 2TDRL framework exhibits slower
convergence and suboptimal results compared to OHDRL. The reason is that the separation
of time scales in the 2TDRL framework may lead to slower convergence since changes
at one scale can impact the other. In contrast, the AC-DRL approach exhibits the lowest
cumulative reward and slower learning progress, indicating its limited ability to handle the
complexities of joint trajectory design and content fetching. These results demonstrate the
effectiveness of the proposed OHDRL algorithm. It can also be seen that during the training
phase, the cumulative reward changes, but the algorithm eventually reaches convergence.
Then, during the evaluation phase, the joint content fetching and UAV trajectory strategy
can be obtained.
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Figure 4. Cumulative reward comparison of the OHDRL, 2TDRL, and AC-DRL schemes.
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The trajectories of the four UAVs produced by the proposed OHDRL-based algorithm
are displayed in Figure 5. It is seen that the four UAVs fly in close proximity to the RUs
they are serving and hover above each of them. Under the constraints of content fetching,
we can observe from the figure that one UAV can serve multiple RUs, and one RU can be
served only by one UAV.

0 50 100 150 200 250 300 350 400
X

0

50

100

150

200

250

300

350
Y

UAV1_traj
UAV2_traj
UAV3_traj
UAV4_traj
Base station
RUs

Figure 5. UAV trajectory of the proposed OHDRL-based content fetching.

Figure 6 depicts the average delay versus the number of UAVs for various maximum
transmit powers of UAVs. In the figure, we compare the performance of the algorithm
proposed in this paper with the one proposed in [23]. We set the maximum transmit power
of the UAVs as 10 dBm, 15 dBm, 20 dBm, 35 dBm, and 30 dBm. The figure shows that the
average delay decreases as the number of UAVs increases. This is due to the possibility that
more UAVs may cooperate to serve the RUs, which reduces the average delay. We can also
observe that for different maximum transmit powers of the UAVs, the highest maximum
transmit power results in better performance. The reason is that a higher maximum
transmit power offers more flexibility in selecting the optimal power, thus resulting in a
smaller delay. By contrasting the results obtained from our proposed algorithm with the
one proposed in [23], we can observe that our proposed method technique provides less
delay. The reason is that the decoupling of the usage of different levels during the learning
process, i.e., option level and action level, decreases the impact of the large action space on
the solution complexity, resulting in better performance.
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Figure 6. Average delay versus the number of UAVs for different maximum transmit powers
of UAVs.
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In Figure 7, the average energy consumption versus the number of episodes for
various learning rates is plotted. As can be observed from the figure, the average energy
consumption decreases as the number of episodes increases. This is because various
learning rates have different impacts on the performance of the proposed OHDRL; a lower
learning rate can result in a more stable convergence, which lowers the requirement for
needless computations and, as a result, lowers energy consumption. It can also seen that
the trade-off between learning rate, convergence speed, and final accuracy in the OHDRL
framework involves balancing stability and optimization performance.
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Figure 7. Average energy consumption versus the number of episodes.

Figure 8 illustrates the energy consumption performance of the proposed OHDRL-
based algorithm under different numbers of RUs and rate requirements (Rth

k ). As shown in
the figure, energy consumption increases as the number of RUs increases. This is because,
with a larger number of RUs, the UAVs must cover longer trajectories to service all the
RUs. This results in higher propulsion energy costs and greater energy consumption due
to the extended flight path of the UAV, leading to a higher average energy consumption.
Moreover, we observe that the energy consumption also increases as the rate requirement,
Rth

k , increases. The reason is that a higher rate requirement demands the transmission of
larger data volumes in a shorter amount of time, necessitating stronger signal powers. The
increased signal power leads to higher energy consumption because stronger transmitters
are required, and maintaining reliable communication links becomes more energy-intensive,
particularly in the presence of environmental factors or interference. In particular, the
proposed OHDRL-based algorithm outperforms the method of [23] in terms of energy
efficiency. This is primarily due to the multi-level learning approach embedded in OHDRL,
which optimizes UAV trajectories and task allocations more efficiently, thus reducing the
overall energy consumption for both low and high data rate requirements.

In Figure 9, the average energy consumption versus the flying period of UAVs for
various transmit powers of a BS are plotted. In this figure, we compare the performance of
the method proposed in this research with the one proposed in [23]. The graphic shows
that while the flying time increases, the average energy consumption decreases. This
reduction is due to the ability of UAVs to optimize their flight trajectories over a longer
period. With more time, the UAVs can plan more energy-efficient routes, which reduces
the need for abrupt adjustments or inefficient flight paths. The extended flying period
allows for smoother, more gradual maneuvers, reducing the overall energy required for
propulsion and improving task completion efficiency. In addition, the figure illustrates
that an increase in the maximum BS transmit power results in a decrease in the overall
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energy consumption. This occurs because a higher transmit power ensures that data can be
transmitted with greater efficiency, reducing the need for the UAVs to expend additional
energy compensating for weak or fluctuating signals. With a stronger signal, the UAVs
experience fewer communication failures and retransmissions, which, in turn, minimizes
the energy required for flight path adjustments and maintains the link. By comparing the
results obtained from the proposed OHDRL and 2TDRL in [23], we can see that the average
performance gap between the two algorithms is about 5.91%.
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Figure 8. Average energy consumption versus the number of nodes.
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Figure 9. Average energy consumption versus flying period.

Figure 10 depicts the average energy consumption versus the maximum transmit
power of UAVs for various flying periods. The figure presents a comparison between the
method described in this work and the one proposed in [23]. The graph indicates a decrease
in average energy consumption with an increase in UAV maximum transmit power. This
is due to the fact that boosting UAV maximum transmit power provides flexibility in
determining the ideal transmit power, which lowers energy consumption. Furthermore, as
the graphic illustrates, the average energy consumption decreases with increasing flying
time. The reason is that a longer flight time allows the UAVs to adjust their trajectories
appropriately. Therefore, by efficiently enhancing the channel conditions between the RUs
and UAVs, energy consumption can be decreased. By comparing the performance obtained
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from our proposed method and the one proposed in [23], we can observe that our proposed
algorithm offers low energy consumption.
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Figure 10. Average energy consumption versus maximum transmit power of UAVs.

In Figure 11, the performance of the proposed OHDRL framework is compared with
the 2TDRL and AC-DRL schemes in terms of average energy consumption across varying
maximum BS transmit power. The analysis is conducted under the constraints of a time
period of T = 180 s and a rate threshold of Rth

k = 4 Mbit/s. The results show that the
average energy consumption of the OHDRL, 2TDRL, and AC-DRL frameworks decreases
as the maximum transmit power of the BS increases, indicating their ability to optimize
resource allocation under a higher maximum transmit power. This is because higher
transmit power may enable the system to operate at lower transmission rates or fewer
required transmission periods, thus contributing to a reduction in energy consumption.
Additionally, as shown, OHDRL achieves the lowest average energy consumption across all
Pmax levels, indicating its superior efficiency in managing energy resources. 2TDRL follows
closely, demonstrating a slightly higher energy consumption compared to OHDRL, while
AC-DRL consistently exhibits the highest energy consumption, suggesting less energy-
efficient performance. The OHDRL framework consistently outperforms both 2TDRL and
AC-DRL; this is because OHDRL leverages a hierarchical decision-making structure that
enables a more intelligent allocation of resources.
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6. Conclusions and Future Work
6.1. Conclusions

In this paper, we have examined the joint UAV trajectory planning, content fetching,
power allocation, and content placement problem in a UAV-enabled network. The system’s
overall energy consumption was computed, and the joint UAV trajectory design, content
fetching, power allocation, and content placement problem was formulated as an energy
consumption minimization problem. To address the complexity of the problem, we pro-
posed an OHDRL algorithm, which effectively leverages a hierarchical policy to tackle
high-dimensional state and action spaces. Through extensive simulations, we evaluated
the performance of the proposed algorithm under various parameters, such as the number
of RUs, the number of UAVs, the UAV flying period, the maximum power of the UAVs,
and the rate requirement. The results indicate that the proposed OHDRL-based technique
achieves a significant reduction in energy consumption compared to existing method-
ologies, demonstrating its effectiveness in optimizing resource allocation and improving
network performance. Finally, The broader implications of this work lie in its potential
to enhance energy efficiency and scalability in UAV-enabled networks, which is crucial
for supporting the growing demands of modern wireless networks. By reducing energy
consumption, the proposed approach contributes to sustainable network operation and
supports applications in IoT, disaster recovery, remote area connectivity, etc.

6.2. Future Work

In this work, we address the challenges of joint UAV trajectory planning, content
fetching, power allocation, and content placement under the assumption of static RUs
and known environmental parameters. While our framework achieves significant energy
efficiency improvements, there are several important directions for future research:

This work considers static RUs, but in practical applications, such as UAV-assisted
vehicular networks, the targets or RUs may be mobile. For example, the movement of
vehicles could complicate trajectory planning and content delivery. Future work could
investigate the proposed framework in scenarios with mobile RUs, incorporating real-time
trajectory adjustment and dynamic scheduling strategies to handle mobility challenges.

Furthermore, in our current system model, environmental parameters, such as channel
conditions and RU demands, are assumed to be static and known in advance. However,
real-world scenarios often involve dynamic and uncertain conditions. For instance, sudden
changes in RU demands or interference levels may require real-time adaptability. Future
research could focus on designing robust and adaptive algorithms capable of handling
such dynamic environments and uncertainties.

In addition, to further enhance the energy efficiency of UAV networks, incorporating
renewable energy sources or energy harvesting mechanisms is a logical next step. For
instance, UAVs equipped with solar panels or energy-recycling capabilities could sustain
longer operations. The joint optimization of energy harvesting, storage, and resource
allocation would present an interesting challenge for future studies.
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