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Abstract: Capsule endoscopy is a common method for detecting digestive diseases. The
location of a capsule endoscope should be constantly monitored through a visual inspection
of the endoscopic images by medical staff to confirm the examination’s progress. In this
study, we proposed a computer-aided analysis (CADx) method for the localization of
a capsule endoscope. At first, a classifier based on a Swin Transformer was proposed to
classify each frame of the capsule endoscopy videos into images of the stomach, small
intestine, and large intestine, respectively. Then, a K-means algorithm was used to correct
outliers in the classification results. Finally, a localization algorithm was proposed to
determine the position of the capsule endoscope in the alimentary tract. The proposed
method was developed and validated using videos of 204 consecutive cases. The proposed
CADx, based on a Swin Transformer, showed a precision of 93.46%, 97.28%, and 98.68%
for the classification of endoscopic images recorded in the stomach, small intestine, and
large intestine, respectively. Compared with the landmarks identified by endoscopists,
the proposed method demonstrated an average transition time error of 16.2 s to locate
the intersection of the stomach and small intestine, as well as 13.5 s to locate that of the
small intestine and the large intestine, based on the 20 validation videos with an average
length of 3261.8 s. The proposed method accurately localizes the capsule endoscope in
the alimentary tract and may replace the laborious real-time visual inspection in capsule
endoscopic examinations.

Keywords: capsule endoscopy; deep learning; computer-aided analysis; transformer

1. Introduction

Despite the high prevalence of alimentary tract diseases, small intestinal diseases are
difficult to visualize using conventional diagnostic modalities, e.g., radiography. Alterna-
tive endoscopic techniques such as push enteroscopy, ileocolonoscopy, and intraoperative
enteroscopy have been developed; however, these procedures are invasive and distressing
for the patients [1]. Capsule endoscopy has established itself as a minimally invasive,
low-risk tool that offers a comprehensive visualization of the entire gastrointestinal tract
with advanced sensors [2,3].

Capsule endoscopy offers essential advantages for the inspection of the gastrointestinal
tract, as it allows for access to regions that are difficult to visualize with conventional
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endoscopy [4]. The accurate localization of specific gastrointestinal intersections in capsule
endoscopy videos is critical for endoscopists to confirm the progress of capsule endoscopic
examinations. In clinical practice, the location of a capsule endoscope should be constantly
monitored through a visual inspection of the endoscopic images by medical staff to confirm
the examination’s progress. The automatic localization of a capsule endoscope remains
challenging due to the unpredictable movement of the capsule within the gastrointestinal
tract. Most of the current localization methods rely on external devices such as antenna
arrays despite non-real-time localization [5]. Therefore, an automated and unconstrained
localization solution is crucial for improving the overall efficiency of capsule endoscopy
inspection [6].

Recent advancements in Al have increasingly contributed to capsule endoscopy analy-
sis, demonstrating its high accuracy and reliability for medical image analysis. For example,
Li et al. proposed a video segmentation method based on color features, achieving an
average accuracy of 91.2% for stomach/small intestine classification and 89.2% for small
intestine/large intestine classification [7]. Wang et al. developed a classification algorithm
for the stomach and small intestine, reaching a sensitivity of 99.7% by introducing a clas-
sifier based on the color-texture fusion feature of visual perception [8]. Srivastava et al.
proposed a high-speed intestinal image classification model named FocalConvNet. For the
Kvasir-Capsule dataset, the model achieved a weighted F1-score of 0.6734. Additionally, it
demonstrated a throughput of over 148 images per second on a Tesla V100 GPU [9]. Bai et
al. proposed a classification algorithm based on the Vision Transformer, which achieved
an accuracy of 79.15% on the multi-class classification tasks of the Hyper-Kvasir capsule
endoscopy disease dataset [10]. Ganesh et al. proposed a model that combines a convo-
lutional neural network (CNN) with a Vision Transformer. The model first uses the CNN
as a feature extractor and then feeds the extracted features into the Vision Transformer for
further classification. The model achieved a classification accuracy of 94% on the Kvasir-V1
dataset [11]. Xiao et al. proposed a lesion detection algorithm for gastrointestinal diseases
based on YOLOVS as the backbone network and integrated with the Swin Transformer
module. In the detection task including 23 classes of lesions, the algorithm achieved an
mAP50 of over 91%, with an mAP50 exceeding 99.4% for 11 classes of lesions [12]. Son et al.
proposed an organ intersection localization algorithm based on ResNet for spatial feature
extraction and temporal filtering for noise reduction [13]. Their algorithm achieved a transi-
tion time error of 70.85 s. Chung et al. proposed a visualization system for gastrointestinal
organ classification and transitional areas based on a code-free platform [14].

Despite the progress that Al has made in the analysis of capsule endoscopy, to the
best of our knowledge, few studies have focused on the automatic localization of a capsule
endoscope. The development of an automated localization system without external devices
would not only reduce the constraint required for inspection but also increase the overall
efficiency of gastrointestinal inspections.

The goal of this research is to propose a novel capsule endoscope localization system
to address the limitations of the existing approaches. The main contributions of this paper
are as follows:

1. Evaluating the performance of classification models in capsule endoscope images:
This study systematically evaluated the classification performance of multiple classification
models for capsule endoscope images;

2. Proposing a localization system based on inspection videos: This method locates the
position of the capsule endoscope in the alimentary tract only using the complete inspection
video, without requiring any additional equipment;
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3. Demonstrating the adaptability of the localization system: The system’s perfor-
mance was evaluated by integrating it with different classification models, demonstrating
its strong adaptability across various models.

In this paper, Section 2 (Materials and Methods) describes the details of the dataset
used in this study, the architecture of the proposed localization system, and relevant
hyperparameter settings. Section 3 (Results) presents the experimental results and the
performance of the proposed system. Section 4 (Discussion) includes the discussion on the
advantages and the limitations of the proposed method. Finally, Section 5 (Conclusion)
concludes the paper with a summary of the findings.

2. Materials and Methods
2.1. Data

In this study, the capsule endoscopy videos of 204 cases recorded in 2014-2021 were
consecutively collected from the Division of Proctology, Aizu Medical Center, Fukushima
Medical University. The PillCam™ SB 3 Capsule or the COLON 2 System was used
to perform capsule endoscopy. These systems included capsule endoscopes, sensor
belts, sensor arrays, and recorders. The size of the individual frames in each video was
576 x 576. The frames per second (FPS) of the PillCam COLON 2 and the SB 3 capsule
System were 4-35 and 2-6 FPS, respectively. This study was approved by the Institutional
Review Board of Fukushima Medical University and was conducted in accordance with the
relevant guidelines and regulations of the Declaration of Helsinki. Figure 1 shows the data
used in this study, including the intersection points of the stomach to the small intestine
and the small intestine to the large intestine. These intersection points were annotated by
experienced endoscopists.

Stomach Small Intestine Large Intestine

Stomach - Small Small Intestine - Large
Intestine Intersection Intestine Intersection

Video timeline

Figure 1. Frames from three capsule endoscopy videos. The intersections between the stomach and
small intestine and between the small intestine and colon are indicated by a red dashed line.

The endoscopists first prescreened all the data and removed eight incomplete and
incorrect videos. Thus, 196 videos were used for the development. Two experienced
endoscopists annotated all videos. The annotation included the following two landmarks:
(1) the intersection of the stomach and the small intestine and (2) the intersection of the
large and small intestines. Private patient information was removed from the videos for
the training, validation, and testing. The frame size of all the videos was 576 x 576 pixels.

All cases were randomly grouped into 156 (80%), 20 (10%), and 20 (10%) cases for
training, validation, and testing, respectively. The training set contained 13,734,139 images,
of which 1,040,114, 11,153,742, and 1,540,283 were from the stomach, small intestine,
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and large intestine, respectively. The numbers of training images obtained from the stomach,
small intestine, and large intestine were unbalanced. Therefore, the data in the training
were sampled and set to 22,130 (1/47), 22,307(1/500), and 22,004 (1/70) images for the
stomach, small intestine, and large intestine, respectively, to accelerate training and reduce
the effects of imbalance in the data.

The validation set included 1,749,098 images, of which 161,203, 1,249,867, and 338,028
were obtained from the stomach, small intestine, and large intestine, respectively. The test
set comprised 1,957,051 images, including 191,670, 1,550,400, and 214,981 images from the
stomach, small intestine, and large intestine, respectively.

2.2. Methods
2.2.1. Classification Method and Data Augmentation

The feasible backbone networks were selected from six pre-trained models—ResNet50,
DenseNet121, Swin Transformer, Vision Transformer, VGG19, and Inception v4 [15-18]. Each
model was pretrained using approximately one million images in ImageNet. ResNet50,
DenseNet121, VGG19, and Inception v4 are CNNs, which mainly extract image features through
convolution and pooling operations. In contrast, the Swin Transformer and Vision Transformer
are models based on the attention mechanism [19,20]. Unlike CNNs, transformers can use the
global information of an image and focus on larger receptive fields simultaneously [21]. These
properties have led to their widespread application in medical image data [22].

Figure 2 illustrates the flowchart of this study. The main steps to achieve the primary
objective are as follows: (a) A deep learning-based classification model was developed
to predict the probability of each video frame belonging to the stomach, small intestine,
or large intestine; (b) the composite predicted value (CPV) and K-means algorithms were
applied to mitigate the noise from the errors of the classification model; (c) the proposed
localization algorithm (OPLA) was used to identify the stomach-small intestine and small
intestine-large intestine intersections using thresholding.

Original Capsule Endoscopy Videos N Dataset
(204 Cases, 196 Cases
Aizu Medical Center,Fukushima Medical University,
2014-2021) i i
Training Set Validation Set Test Set
156 Cases 20 Cases 20 Cases

Stomach: 1,040,114 Stomach:161,203 Stomach:191,670
Small Intestine:11,153,742| | Small Intestine: 1,249,867 || Small Intestine: 1,550,400

Pre—-Processing

Data Selecting
Exclude abnormal 8 videos

v

Video Extracting
Extracting the video into images frame by frame.

Image Processing
Removing image edges, patient and device information.

Large Intestine: 1,540,283

Large Intestine:338,028

Large Intestine:214,981

Downsampling

Training Set
Stomach:22,130
Small Intestine:22,307
Large Intestine:22,004

!

Classification Models

K-means Algorithm

Intersection Localization System

Localization Algorithm

Output of Intersection Localization System

The intersection of stomach and small intestine
The intersection of small intestine and large intestine

Figure 2. Flowchart of this study including data pre—processing, dataset division, and intersec-
tion localization.
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A mixup algorithm was used for data augmentation [23] as a state-of-the-art method for
data enhancement [24]. Compared to the conventional data augmentation methods, mixup
is effective in expanding the dataset in the case of a small dataset [25]. Related studies have
shown that mixup can significantly improve the performance of image classification [26].

2.2.2. Composite Predicted Value and K-means Algorithm

Initially, the capsule endoscopy videos were extracted into frames. Each extracted
frame was then processed using our trained classification model, which outputs a classifica-
tion probability (CP) consisting of probabilities for the stomach, small intestine, and large
intestine, and the corresponding predicted class labels. To improve the robustness of our
classification results, a novel metric called the CPV is presented, which combines the classi-
fication probabilities of all categories into a single informative value. The purpose of the
CPV is to reduce the dimensionality of the classification model output and to encode posi-
tional codes for the (1) stomach, (2) small intestine, and (3) large intestine. The computed
CPV sequences were processed using a K-means clustering algorithm to detect potential
outliers. Equation (1) demonstrates the calculation of the CPV as follows:

3
CPV =) W;xCp, (1)
i=1
where W; represents the encoded positional codes 1, 2, and 3 for the stomach, small intestine,
and large intestine, respectively. CP; represents the classification probability for each class.
Figure 3 presents the visualization results for the CPV and K-means algorithms.
Figure 3a—e show the different visualization techniques to intuitively display the confidence
and prediction results of the model in different gastrointestinal regions. Using color-coding
schemes, stacked bar representations, and continuous color gradients, Figure 3 illustrates
the performance of the algorithm for the stomach, small intestine, and large intestine. This
visualization allowed for a quick understanding of the model’s prediction process and the
distribution of results across the different gastrointestinal regions.

(c)CP of class in each frame Example
. Stomach ! f Original image: small intestine| |
D Small Intestine :l : :
ﬁ Large Intestine | ! Classification Result: e
P . - ;
y . 1 :
! | | CPofclass !
(a)Capsule endoscopy images ' — - . S\u“\‘lﬂlut‘. 0{_1 04 i
1 | Small Intestine: 0. 1
_ ' i ! \Large Intestine: 0.5
| ; T
'
)] ' : —
H ' [
> - - » |Classification 2 ' [
= . - 1
- model ' H b D
' . o]
onEm - RS oe| W
)] : I g
' ' D x SE |--p !
Capsule endoscopy videos ! : ‘ 1 = = ES -
1 n 1
—— @ B = B
' O ' o D
' '
@ mE
I : =
. '
2 '
g 2 ! (d) CPV of each frame (e) NCPV of each frame
oL -
[
® 8

(b) Classification result of each frames

Figure 3. Visualization of the results of CPV and K-means algorithm in different gastrointestinal
regions. (a,b) use colors to represent the stomach (brown), small intestine (orange), and large intestine
(blue). (c) uses stacked bars to show CP values for each region per frame. (d,e) represent the CPV
using a color gradient, where each square represents a frame and its color intensity correlates with the
CPV magnitude, indicating the confidence of the model and the prediction of the predominant class.



Sensors 2025, 25, 746

6 of 16

After computing the CPV for each video frame, a K-means clustering algorithm was
applied for outlier detection. The K-means algorithm was chosen for its computational
efficiency and effectiveness in partitioning data into different clusters [27]. In this study,
the K-means algorithm refers to the K-means++ implementation in the scikit-learn li-
brary, which improved the original K-means by addressing issues such as sensitivity to
initialization [28]. Additionally, we fixed the random seed to ensure the consistency and
reproducibility of the model results. This step first identified the possible misclassifications
and was critical for locating the intersections of the alimentary tract. K-means clustering
was applied to sets of 200 consecutive frames, with a window size chosen to strike a balance
between the spatial resolution and the computational efficiency. This method enables
the detection of local anomalies while maintaining high sensitivity to gradual transitions
between gastrointestinal regions.

2.2.3. Localization Algorithm

In this step, a localization algorithm was proposed to localize the intersections between
the stomach and the small intestine and between the small intestine and the large intestine.

Figure 4 illustrates the flowchart of our proposed localization algorithm (OPLA). The
waiting area (WA) enables the localized analysis of frame sequences without altering the
original data. The waiting area slide size (WASS) defines the overlap between consecutive
WAs, so that the algorithm can seamlessly transition between adjacent WAs during the
subsequent processing. The waiting area average value (WAAV) is the key indicator used
by the algorithm to detect the intersections between the stomach—small intestine and small
intestine-large intestine, which are determined through threshold processing.

The OPLA algorithm consists of the following steps:

Step 1: The CPV of each frame in the capsule endoscopy video is processed using the
K-means algorithm to obtain the NCPV. The purpose of this step is to reduce the noise in
the CPV.

Step 2: For the first WA, which spans from the first frame to the (1+WAS)th frame,
the new composite predict value (NCPV) of each frame was stored, its average was calcu-
lated, and it was saved as WAAV1. The purpose of this step was to smooth the short-term
CPV variations.

Step 3: The second WA was created, spanning from frame (1+WASS) to frame
(1+ WASS + waiting area size (WAS)) of the video. Following the same process as in
Step 2, the average NCPV for this WA was computed and stored as WAAV,.

Step 4: Steps 2 and 3 were repeated iteratively until the remaining video frames
were insufficient to form a complete WA. This WA was directly deleted from the final
incomplete WA.

Step 5: The location algorithm used all the WAAYV values to identify the two intersec-
tions. First, the stomach—small intestine intersection was located using the small intestine
threshold (ST) and the small intestinal continuous threshold (SCT). The intersection of
the small intestine-large intestine was determined using the large intestine threshold (LT)
and the large intestine continuous threshold (LCT). ST represents the WAAV value at the
stomach—small intestine intersection, and SCT confirms that this is a continuous transition
and reduces false positives due to short-term fluctuations in WAAV. The principles of the
LT and LCT are similar.

Step 6: The time point that marks the stomach-small intestine intersection was defined.
The intersection of the stomach and small intestine (ISS) was determined when it satisfied
Equations (2) and (3) and its value remained stable.

ISS < ST )
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Step 7: The time point that marks the small intestine-large intestine intersection was
defined. This intersection of the small and large intestines (ISL) was determined when it
satisfied Equations (4) and (5) and its value remained stable.

ISL < LT (4)
1 ISL+LCT
cr L i>IT (5)
i=ISL+1
Processing
Steps
1SS
v
- ) ) I IR 200 e (f)
Threshold
,,,,,,,,,, (e)
WA Final
Start: FrameM | e (d)
End: Frame M+WAS
|::>
I::>
WA 2
(Stan: Frame 1 + WASS ( ------------------------------------------------------------------------------ (c)
' A\End: Frame 1+ WAS + WASS
"Distance: WASS"
WA 1
SHAM: FTAME 1 | ooeeeeeeeeemmm e e e e e e e (b)
End: Frame 1+WAS
‘ . . -‘ . . -— - -------------- (a)
NCPV of each frame in videos Frames

Figure 4. Example of our proposed localization algorithm. (a) New composite predict value for each
processed frame, obtained from the CPV after K-means clustering. (b) First waiting area (WA(1)) and
waiting area size. (¢) Second waiting area (WA(2)) and waiting area slide size. (d) Final waiting area
(WA(Final)) of the video. (e) Waiting area average value (WAAV) for all WAs in a video. WAAV is the
key indicator for detecting the intersection of the stomach—small intestine and small intestine-large
intestine. (f) Intersection of stomach and small intestine (ISS) and intersection of small intestine and
large intestine (ISL). Arrows indicate the ISS and ISL.

2.3. Evaluation Criteria
In this study, precision was used as a metric to evaluate the performance of the image

classification model. Precision is defined by Equation (6) as follows:

TP
Precision = ———
recision = o5 (6)
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where true positive (TP) represents correctly classified positive frames, and false positive
(FP) represents incorrectly classified frames.

To evaluate the performance of the localization algorithm, the following three metrics
were used: (a) the number of error frames (NEF); (b) the mean absolute error frames
(MAEF); and (c) the median absolute error frames (Md AEF).

In this study, the errors were quantified by calculating the absolute difference between
the algorithm-predicted and endoscopist-determined time points for the gastrointestinal
intersections. NEF is calculated using Equation (7) as follows:

NEF = [STP — OPTP| )

where STP is the standard time point specified by the endoscopist and OPTP is the time
point determined by our proposed algorithm. MAEEF is the mean value of NEF across all
the videos. MdAEEF is the median value of NEF across all the videos.

2.4. Implementation Details

The following training hyperparameters were used: learning rate of 1 x10~4, batch
size of 32, and 50 training epochs. These parameters were determined through trials
and errors. All experiments, including the training, validation, and testing of the model,
were performed on a workstation equipped with an 11th Gen Intel® Core™ i7-11700F
CPU (2.5 GHz, 16 cores) and an NVIDIA RTX™ 3080Ti GPU, while the inference speed
was evaluated on a workstation equipped with a 13th Gen Intel® Core™ i7-13700F CPU
(2.1 GHz, 24 cores) and an NVIDIA RTX™ 4070 GPU.

The proposed network model was implemented using the PyTorch framework (ver-
sion 1.11). Classification models based on the Swin Transformer, Vision Transformer,
ResNet50, DenseNet121, InceptionV4, and VGG19 were also trained and tested using the
same data for comparison.

For the K-means algorithm, a box size of 200 with a stride of 200 was used. In the
localization algorithm, the WAS parameter was set to 200 and the WASS parameter to 100.
The ST and LT were set to 1.35 and 2.4, respectively. The SCT and LCT were set to 8.

3. Results

This section presents the classification performance of the different deep learning
models on our capsule endoscopy dataset, together with the MAEF and MdAEEF for locating
the stomach-small intestine and small intestine-large intestine intersections in the different
experiments. In addition, ablation studies were conducted to evaluate the effects of the
different components of the proposed method on locating the intersection of the alimentary
tract. Table 1 lists the settings used in the ablation studies.

Table 1. Overview of the ablation setting.

Method

Backbone Network Post-Processing

ST

VT RN DN IvV4 VGG K OPLA

Classification Model

ST v
VT

RN

DN

1v4

VGG
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Table 1. Cont.

Backbone Network Post-Processing
Method
ST VT RN DN Iv4 VGG K OPLA
Classification Model with K-means
ST+K v v
VT +K v v
RN + K v v
DN + K v v
V4 + K v v
VGG + K v v
Classification Model with OPLA
ST + OPLA v v
VT + OPLA v v
RN + OPLA v v
DN + OPLA v v
IV4 + OPLA v v
VGG + OPLA v v
Classification Model with Proposed Method
ST + PM v v v
VT + PM v v v
RN + PM v v v
DN + PM v v v
IV4 + PM v v v
VGG + PM v v v
ST: Swin Transformer, VT: Vision Transformer, RN: ResNet50, DN: DenseNet121, IV4: InceptionV4, VGG: VGG19,
CM: Classification Model, K: K-means algorithm, OPLA: Our Proposed Localization Algorithm, PM: Pro-
posed Method.
3.1. Performance of the Proposed Algorithm in the Classification of Images and the Localization
of Intersections
Table 2 lists the parameter counts (in millions) and inference speeds (in FPS) of six
classification models. Among the CNN-based models, DenseNet121 has the smallest
number of parameters, at only 6.96 million, while ResNet50 achieves the fastest inference
speed at 585.70 FPS. Among the Transformer-based models, although the Swin Transformer
has a relatively small number of parameters, its inference speed is still slower than that of
the Vision Transformer, reaching only 184.78 FPS.
Table 2. Overview of Parameters and Inference Speed.
Model Swin Vision ResNet50 DenseNet121  InceptionV4 VGG19
Transformer Transformer
Parameters (Million) 48.84 87.46 23.51 6.96 42.68 139.58
Inference Speed (FPS) 184.78 502.34 585.70 233.50 195.52 279.31

Table 3 lists the classification precision, MAEF, and MdAEF obtained with the follow-
ing four different methods: (a) the classification model alone; (b) the classification model
with K-means; (c) the classification model with OPLA; and (d) the classification model with
both K-means and OPLA, respectively.
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Table 3. Performance comparison of different models and methods.

Classification Precision (%)

Stomach to Small Intestine to

Small Intestine (Frames)  Large Intestine (Frames) Total (Frames)

Model

Stomach Small - Large MAEF MJAEF  MAEF MJAEF MAEF  MJAEF

Intestine Intestine

Swin Transformer
ST 93.46 97.28 98.68 97.06 6384 4640 77,463 69,308 83,847 73,948
ST +K - - - 3461 355 62,019 60,447 65,480 60,802
ST + OPLA - - - 555 85 471 110 1026 195
ST + PM - - - 485 80 406 110 891 190
Vision Transformer
VT 93.79 94.58 97.26 94.80 3635 2276 79,833 75,327 83,468 77,603
VT +K - - - 2739 296 55,189 46,306 57,928 46,602
VT + OPLA - - - 734 140 1956 795 2690 935
VT + PM - - - 758 140 1027 360 1785 500
ResNet50
RN 96.79 97.32 97.81 97.32 4152 1165 73,826 69,028 77,978 70,193
RN + K - - - 2423 162 4677 340 7100 502
RN + OPLA - - - 583 95 1682 250 2265 345
RN + PM - - - 574 100 1235 110 1809 210
DenseNet121
DN 94.21 97.32 98.26 97.12 4663 3310 79,921 75,332 84,584 78,642
DN + K - - - 3859 186 36,991 27,114 40,850 27,300
DN + OPLA - - - 537 100 2269 110 2806 210
DN + PM - - - 541 120 1883 110 2424 230
InceptionV4
v4 96.56 94.80 98.93 95.42 3793 224 79,249 72,979 83,042 73,203
V4 +K - - - 1393 102 33,371 23,170 34,764 23,272
IV4 + OPLA - - - 570 120 988 125 1558 245
1V4 + PM - - - 562 120 998 130 1560 250
VGG19
VGG 95.55 96.92 97.82 96.88 4981 2662 78,685 73,373 83,666 76,035
VGG + K - - - 2024 218 62,902 65,965 64,926 66,183
VGG + OPLA - - - 594 230 1871 145 2465 375
VGG + PM - - - 583 190 1295 135 1878 325

ST: Swin Transformer, VT: Vision Transformer, RN: ResNet50, DN: DenseNet121, IV4: InceptionV4, VGG: VGG19;
K: K-means algorithm, OPLA: Our Proposed Localization Algorithm, PM: Proposed Method; MAEF: Mean
Absolute Error Frames, MdAEF: Median Absolute Error Frames.

ResNet50, DenseNet121, and InceptionV4 achieved the highest accuracies for the
stomach (96.79%), small intestine (97.32%), and large intestine (98.93%) classifications,
respectively. Of all the classification models used to analyze the capsule endoscopy videos,
ResNet50 achieved the lowest MAEF of 77,978 frames. This high MAEF indicates that
the use of classification models alone is insufficient for accurate localization. Figure 5a
illustrates a stomach frame misclassified as the small intestine; Figure 5b shows a stomach
frame misclassified as the large intestine; Figure 5c¢ presents a small intestine frame misclas-
sified as the stomach; Figure 5d displays a small intestine frame misclassified as the large
intestine; Figure 5e shows a large intestine frame misclassified as stomach; and Figure 5f
presents a large intestine frame misclassified as the small intestine.

The integration of the K-means algorithm with the classification models reduced the
MAEF and MdAEF of all the models by an average of 37,590 and 37,494 frames, respectively.
In the capsule endoscopy analysis using this method, ResNet50 with K-means achieved the
lowest MAEF and MdAEEF of 7100 and 502 frames, respectively.

The combination of the Swin Transformer and OPLA achieved the lowest MAEF
and MdAEEF values of 1026 and 195 frames, respectively. In contrast, DenseNet121 with
the OPLA exhibited the highest MAEF of 2806 frames among all classification networks,
whereas the combination of a Vision Transformer and OPLA yielded the highest MAAEF of
935 frames. Compared to using the classification network alone or in combination with
K-means, the addition of OPLA significantly reduced MAEF and MdAEF. On average, this
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method reduced the MAEF by 80,629 frames and the MAAEF by 74,553 frames compared
to the classification network alone.

(e) (f)

Figure 5. Examples of misclassified frames from capsule endoscopy videos. (a) shows a stomach
frame incorrectly classified as the small intestine; (b) shows a stomach frame misclassified as the
large intestine; (c) shows a small intestine frame misclassified as the stomach; (d) shows a small
intestine frame misclassified as the large intestine; (e) shows a large intestine frame misclassified as
the stomach; and (f) shows a large intestine frame misclassified as the small intestine.

The integration of the classification network, K-means algorithm, and OPLA signif-
icantly reduced the MAEF and MdAEF. The Swin Transformer, when combined with K-
means and OPLA, achieved the lowest MAEF and MdAEEF values of 891 and 190 frames, re-
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spectively. This corresponds to a reduction of 82,956 frames in the MAEF and 73,758 frames
in the MdAEF compared to using the Swin Transformer alone.

3.2. Visualization of Alimentary Tract Intersection Points in Capsule Endoscopy

The accurate localization of capsule endoscope is crucial for lesion detection and
location marking in capsule endoscopy video analysis. A method is proposed based on the
Swin Transformer classification model, combined with the K-means and OPLA algorithms,
for post-processing the classification results to improve the precision of organ intersection
localization. Figure 6 presents a comparison of organ intersection localization results in the
capsule endoscopy videos obtained with different methods.

The gradient color bar at the bottom of the image represents a continuous spectrum
of organ classifications, with values ranging from 1 to 3. Red, yellow, and blue denote the
stomach (1), small intestine (2), and large intestine (3), respectively.

In Figure 6a,b, only solid colors are used to represent the experts” annotations and the
direct outputs of the Swin Transformer model, respectively. Figure 6c—e show the results
of the different processing stages, where the color variations reflect subtle differences in
the method outputs. This visualization method allows us to intuitively view the results
obtained through different processing techniques, which facilitates the identification of
organ intersection points and the evaluation of the effectiveness of different methods.

As shown in Figure 6b, using the Swin Transformer model alone leads to some mis-
classifications, such as misclassifying the stomach as the small or large intestine. The results
also showed discrete features and fluctuations, making it difficult to accurately locate
the intersections of the alimentary tract. Our proposed method introduces the K-means
and OPLA algorithms to postprocess the classification results, effectively improving the
precision and clarity in visualizing the localization of the organ intersections.

As the original video contains thousands of frames, when mapped to a single image,
some minor classification errors or color gradients may not be fully represented, owing
to limitations in the image resolution. To improve the visualization, post-processing
was performed on Figure 6b,c to obtain a clearer representation. This procedure helps
to demonstrate the effectiveness of the methods while preserving the integrity of the
original data.

Figure 6¢c—e show that these methods progressively improve the clarity of the visualiza-
tion of the organ intersections. The proposed combination method (see Figure 6e) indicates
the time points closest to the expert annotations in Figure 6a, demonstrating its superiority
in localizing capsule endoscope. This hybrid approach provides a reliable solution for
capsule endoscope localization in capsule endoscopy video analysis.

Intersection of Stomach and Intersection of Small Intestine
Small Intestine and Large Intestine

[ value = 1
Small Intestine Area Large Intestine Area 1 vaue=2
I Valve=3

(a)
Original WCE Video
Labeled by
Endoscopist

(b)
Swin Transformer
A A
()
Swin Transformer
+
K-means
A A
(d)
Swin Transformer
+
o

A

(e)
Swin Transformer
+
PM
|

Stomach Small Intestine Large Intestine

Figure 6. Comparison of the results of localization of organ intersection points in capsule endoscopy
videos using different methods. (a) Expert annotations from an experienced endoscopist; (b) Results
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from the Swin Transformer model; (c) Results combining the Swin Transformer model with the K-
means algorithm; (d) Results from combining the Swin Transformer model with the OPLA algorithm;
(e) Results combining the Swin Transformer model with both the K-means and OPLA algorithms.
Red, yellow, and blue represent the stomach, small intestine, and large intestine, respectively. Yellow
and blue arrows indicate the intersections between stomach and small intestine and small intestine
and large intestine intersections, respectively. The gradient color bar at the bottom represents
the continuous spectrum of organ Swin Transformer, with values ranging from 1 (stomach) to
3 (large intestine).

4. Discussion

In this study, we proposed a hybrid method involving a deep neural network-based
classifier, a K-means algorithm, and a localization algorithm for the localization of a capsule
endoscope in the alimentary tract. The proposed method significantly improved the
precision and efficiency of capsule endoscope localization using images as compared to the
previous studies. In this study, when ResNet50 was selected as the classification network,
we achieved precision values of 96.79%, 97.32%, and 97.81% for the stomach, small intestine,
and large intestine classification, respectively. In addition, when the Swin Transformer
model was selected as the backbone, MAEF was reduced from 83,847 frames to 891 frames
and MdAEF from 73,948 frames to 190 frames. This improvement may be attributed to the
ability of the K-means algorithm to effectively cluster the classification results, whereas the
OPLA further optimizes the localization of intersection points. Therefore, the proposed
algorithm provides the precise time points of alimentary tract intersections using images,
thereby reducing interpreting time.

To better understand the factors contributing to misclassification, we analyzed the
structural and imaging features associated with different regions of the alimentary tract,
as shown in Figure 5 in the Section 3. The reasons for misclassification can be summarized
as follows: The unique structural features of the large intestine facilitated its recognition.
However, the presence of stool in the large intestine may have caused unexpected mis-
classification, as shown in Figure 5e f. The classification precision for the small intestine
was higher than that for the stomach. The villous structure of the small intestine was
more easily recognized by the classification network than the smoother and more variable
gastric mucosa. However, the small intestine may be misclassified at its intersection with
the stomach and large intestine, where the villous structure is not typical. In contrast,
images captured by capsule endoscopy in the stomach may change significantly due to
the inner appearance of the stomach, as well as the patient’s posture, making it difficult
to extract consistent features thus reducing the classification precision. These findings
highlight the critical role of structural and imaging conditions in classification precision,
which ultimately impacts the reliability of the localization system.

The limitations of the proposed method are as follows. First, the external validity
of this research is not performed because all the data were from a single center. Second,
the classification network in our study relied on conventional single-frame classification,
where the temporal features in the capsule endoscopy videos were not used. To address
these limitations and improve the robustness of the system, future work will include
performing a multiple center study to validate the generalization of the proposed method,
as well as integrating temporal information into our classification framework, such as
combining conventional 2D CNNs and 3D CNN .

5. Conclusions

We proposed a system for localizing the position of a capsule endoscope within
the alimentary tract using computer-aided analysis of endoscopic images. Using a Swin
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Transformer-based classification, we achieved a precision of 97.06% for capsule endoscope
images. Using the results from the Swin Transformer model as input, the proposed local-
ization system successfully identified the organ intersections, which were then utilized to
locate the capsule endoscope. Experiments on images from 20 participants demonstrated
that the transition time errors, calculated by converting 891 frames (485 frames for the stom-
ach to small intestine intersection and 406 frames for the small intestine to large intestine
intersection) into a total of 29.7 s (16.2 s and 13.5 s, respectively), were within the clinically
acceptable range. These results were obtained from validation videos with an average
length of 3,261.8 s. The proposed method demonstrates the potential to assist endoscopists
in monitoring the capsule endoscopy process.
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Abbreviations

The following abbreviations are used in this manuscript:

CADX  Computer-aided Analysis

CNN Convolutional Neural Network

FPS Frames Per Second

CPV Composite Predicted Value

OPLA Our Proposed Localization Algorithm

CP Classification Probability
NCPV New Composite Predict Value
WA Waiting Area

WAS Waiting Area Size
WASS Waiting Area Slide Size
WAAV  Waiting Area Average Value

1SS The Intersection of the Stomach and Small Intestine

ISL The Intersection of the Small Intestine and Large Intestine
ST Small Intestine Thresholds

SCT Small Intestine Continuous Thresholds

LT Large Intestine Thresholds

LCT Large Intestine Continuous Thresholds

NEF Number of Error Frames

MAEF  Mean Absolutely Error Frames
MJAEF Median Absolutely Error Frames
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