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Abstract: In complex indoor environments, target tracking performance is impacted by
non-line-of sight (NLOS) noises and other measurement errors. In order to fix NLOS errors,
a double extended Kalman filter (DEKF) algorithm is proposed, which refers to a kind of
cascaded structure composed of two Kalman filters. In the proposed algorithm, the first
filter is a classic Kalman filter (KF) and the second is an extended Kalman filter (EKF). Time
of arrival (TOA) measurements collected by multiple stationary ultra-wideband (UWB)
sensors are used. The residual errors between the measured TOA and that of the first KF
are predicted, and the covariance of the first KF is adjusted correspondingly. Then, we
use the estimated distance state of the first KF as a measurement vector for the second
EKF in order to obtain a smoother observation. One of the advantages of the proposed
algorithm is that it is able to perform target tracking with good accuracy even without
or with only one LOS TOA measurement for a period of time without prior information
about the NLOS noise, which may be difficult to obtain in practical applications. Another
advantage is that the accuracy does not greatly decrease when NLOS noises exist for a long
period of time. Finally, the proposed DEKF can maintain the high-precision positioning
characteristics in both the constant velocity (CV) model and the constant acceleration (CA)
model in the LOS/NLOS environment. Our simulation and experimental results show that
the proposed algorithm performs much better than other algorithms in SOTA, particularly
in severe mixed LOS/NLOS environments.

Keywords: ultra-wideband (UWB); non-line-of-sight (NLOS); time of arrival (TOA);
Kalman filter (KF); residual classification; covariance adjustment

1. Introduction
With the development of wireless communication technology, the demand for location-

based services (LBSs) is rapidly increasing [1–5]. Currently, there are several technolo-
gies for indoor positioning, such as Bluetooth Low Energy (BLE) [6–8], WiFi [9–11],
Radio Frequency Identification (RFID) [12–14], and Impulse Radio–Ultra Wideband
(IR-UWB) [15–18]; IR-UWB is superior to the others with its centimeter positioning ac-
curacy in complex indoor environments.

The UWB signals are impacted by multipath effects, which may lead to great measure-
ment errors, especially in NLOS environments. The algorithm proposed in [19] keeps the
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LOS pseudo-measurement results, discarding the NLOS ones, and calculates the average
of all the selected LOS measurements. The limitation of this tracking algorithm is that,
when there is no LOS BaseStation within a period of time, the estimation of states can
only rely on predictions. The Kalman filter and its enhancements, such as EKF, cubature
Kalman filter (CKF), unscented Kalman filter (UKF), adaptive Kalman filter (AKF), or
particle filter (PF), are used [20–27] to reduce NLOS noise-introduced errors in complex
indoor environments [28,29]. To reduce measurement errors, forms of extended KF (EKF)
with robust estimation, such as M-estimation and fuzzy-tuning M-estimation EKF, were
proposed in [30]. However, the above filtering technologies are still limited by their accu-
racy, especially in complex LOS and NLOS mixture conditions. A time-of-flight (ToF)-based
NLOS indoor tracking method incorporating adaptive ranging error mitigation techniques
is presented in [31]. However, due to its high computational complexity, it is difficult
to appropriately apply this method to scenarios with high real-time requirements. The
classification of LOS and NLOS conditions using deep learning (DL) models was mentioned
in [32]. However, the study does not discuss the performance of the model in complex
indoor environments in detail. Deep-learning-based NLOS/LOS classification methods
for indoor positioning systems were also mentioned in [33]. However, the training of deep
learning models requires a large amount of data support, and it may be a challenge to
obtain enough labeled data in some indoor environments.

In order to further improve target tracking performance in complex LOS and NLOS
mixture conditions, a double Kalman filter with a residual classification and covariance
adjustment (RCCA) algorithm is proposed to mitigate NLOS-introduced errors. In this
algorithm, two Kalman filters are cascaded, where the first filter is a KF and the second is
an EKF. The RCCA process is applied on the KF system, whose states are distances and
velocities. Residual classification means that the residuals between the first KF’s observed
measurements and its system predictions are calculated, and then, the covariance of the
first KF system is adjusted for the Kalman gain according to the error ranges. After that, the
distance vectors are used as measurements of the second EKF, and the estimated variance
of the first KF is input as the measurement covariance. This completes the RCCA process.

The remainder of this article is organized as follows. In Section 2, we introduce the
system framework of this methodology. In Section 3, we discuss the residual classification
and variance adjustment process. Section 4 presents the details of the DEKF algorithm. In
Section 5, the simulation results are shown and experimental verification is carried out.
Finally, Section 6 presents the conclusions.

2. System Model
2.1. Extended Kalman Filter Modeling

A system containing one target and M stationary UWB anchors is considered in this
section. For generality, the constant acceleration (CA) model is used, so the state of target
can be defined as follows:

Xk = [xk, yk, zk, ẋk, ẏk, żk, ẍk, ÿk, z̈k]
T , (1)

where [xk, yk, zk]
T is the coordinate of the target, [ẋk, ẏk, żk]

T is the velocity of the target,
[ẍk, ÿk, z̈k]

T is the acceleration of the target, and k stands for the present moment. The
stationary UWB anchors are located at XU

i = [xU
i , yU

i , zU
i ]

T , i = 1, . . . , M. In order to
simplify the analysis, a constant velocity (CV) model is used for formula derivation, which
is essentially equivalent to the CA model with acceleration equal to zero. Thus, the state of
the target is defined as follows:

Xk = [xk, yk, zk, ẋk, ẏk, żk]
T , (2)



Sensors 2025, 25, 740 3 of 18

The measured distances between the target and the anchors are calculated using the
received time of flight (TOF), which is expressed as Zk = c · TOFk, c = 3 × 108 (m/s). The
state evolution model of the EKF system is as follows:

Xk = AXk−1 + wk, (3)

Zk = h(Xk) + vk, (4)

where A is the transition matrix of the states in the CV model:

A =



1 0 0 Ts 0 0
0 1 0 0 Ts 0
0 0 1 0 0 Ts

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (5)

where Ts is the observation time of the system and h(Xk) = [h1(Xk), . . . , hM(Xk)]
T

is a non-linear transfer function of state and measurement, where
hi(Xk) =

√
(xk − xU

i )
2 + (yk − yU

i )
2 + (zk − zU

i )
2. The essence of EKF is to transform the

non-linear case into a locally linear case. For non-linear functions, the properties of deriva-
tives can be exploited for local linearization by a Jacobian matrix. The Jacobian can be
obtained by taking the partial derivative with respect to each dimension of hi(Xk). It is
shown below:

Hk =


xk−xU

1
h1(Xk)

yk−yU
1

h1(Xk)

zk−zU
1

h1(Xk)
0 0 0

...
...

...
...

...
...

xk−xU
M

hM(Xk)

yk−yU
M

hM(Xk)

zk−zU
M

hM(Xk)
0 0 0

 (6)

The non-linear function hi(Xk) does not contain [ẋk, ẏk, żk]
T , and thus, the right-hand

side of the matrix is an M × 3 zero matrix.
In (3), wk is a process noise vector with a covariance matrix Qx

k . In (4), vk is a measure-
ment noise vector with a covariance matrix Rx

k , which is determined by the measurement
accuracy of the anchors. As for the value of Qx , which is mentioned in [34], it takes
different values in different models. In the CV model, it is defined as follows according
to [34]:

Qx = Φs1

[
T3

s
3 I3

T2
s

2 I3
T2

s
2 I3 TsI3

]
. (7)

where Φs1 is the spectrum density of the process noise for the KF system and I3 is a
3 × 3 unit matrix.

The iterative computation process for the EKF system is as follows [20,35,36]:

X̂k|k−1 = AX̂k−1, (8)

P̂x
k|k−1 = AP̂x

k−1AT + Qx
k , (9)

Kx
k = P̂x

k|k−1HT
k (HkP̂x

k|k−1HT
k + Rx

k )
−1, (10)

X̂k = X̂k|k−1 + Kx
k (Zk − h(X̂k|k−1)), (11)

P̂x
k = (I − Kx

k Hk)P̂
x
k|k−1. (12)

Equations (8) and (9) are update equations from the k − 1 state to the k state,
and (10), (11), and (12) are measurement update equations. P̂x

k−1 is the error covariance
matrix of X̂k−1, A is the state transition matrix, Qx

k is the process noise covariance matrix,
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Rx
k is the measurement noise covariance matrix, Hk is the measurement transition matrix,

Zk is the measurement matrix, and the weighting matrix Kx
k is generally referred to as the

Kalman gain matrix.

2.2. Measurement Error Modeling

Generally, measurement errors are made of measurement noise and NLOS noise,
where measurement noise is modeled by Gaussian white noise determined by measured
anchors. NLOS noise is caused by reflected, refracted, or multipath transmission signals.
The measurement error modeling is as follows:

ρk,i = ρ̇k,i + nk,i + wk,i, i = 1, · · · , M. (13)

where ρk,i is the measured distance between the target and anchor i, ρ̇k,i is the real distance,
nk,i is the measurement noise, and wk,i is the NLOS noise. The NLOS noise is usually
modeled with a uniform distribution, mean-shifted Gaussian distribution, or exponential
distribution [19,30,36]. In the modeling, we assume a uniformly distributed NLOS noise in
the following constraints for simplicity, although there are other methods for describing
the NLOS noise, such as the Markov process. For a mixed LOS/NLOS environment, the
probability density function of ηi is defined as:

p(ηi) = (1 − εi)pLOS(ni) + εi pNLOS(wi), (14)

where ηi = ni + wi is defined as in (13), εi is the proportion of NLOS errors at anchor
i, pLOS(ni) is zero mean Gaussian distributed, and pNLOS(wi) is mean-shifted Gaussian
distributed. The mixed LOS/NLOS model is implemented using a two-state Markov
process, which is the same as that mentioned in [19,36–38]. The state transition is shown in
Figure 1.

LOS NLOS

α 

β

1-β1-α

Figure 1. Markov process for LOS/NLOS transition.

The transition probability matrix of the Markov process is:[
1 − α α

β 1 − β

]
, (15)

where α is the probability of transition from state LOS to NLOS and β is the probability of
transition from state NLOS to LOS. εi is related to α and β by:

εi =
α

α + β
. (16)

The proportion of LOS and NLOS noise can be adjusted by the values of α and β, and
there are several sets of values that satisfy one εi. Table 1 shows one possible combination.
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Table 1. Scaling factor of NLOS noise.

εi α β

0.1 0.01 0.09
0.25 0.02 0.06
0.5 0.05 0.05
0.75 0.06 0.02

3. Residual Classification and Covariance Adjustment
For the first Kalman filter of the two cascaded filters, the distances between the target

and the anchors as well as their variation rates of measurement are state variables of KF:

Yk = [ρ1,k, · · · , ρM,k, ρ̇1,k, · · · , ρ̇M,k]
T . (17)

where Yk is the KF state vector in the k-th iteration, ρi,k is the measured distance between
the i-th anchor and the target in the k-th iteration, and ρ̇i,k is the rate of change in the
measured distance.

After calculating the prediction of the states, a residual obtained between measurement
and prediction is shown below:

dk = |Zk − TŶk|k−1|, (18)

where Zk is a set of measurements collected by several stationary UWB anchors and T is a
transition matrix between state and observation.

T =
[
IM 0M

]
. (19)

Then, the range of the obtained residual is classified as follows:

dk



0 < max(dk) < µ1 (20a)

µ1 ≤ max(dk) < µ2 (20b)

µ2 ≤ max(dk) < µ3 (20c)
... (20d)

µN−3 ≤ max(dk) < µN−2 (20e)

µN−2 ≤ max(dk) < µN−1 (20f)

µN−1 ≤ max(dk) < µN (20g)

where µN > µN − 1 > · · · > µ3 > µ2 > µ1 and N is the number of range groups. The
classification criteria are based on the order of µ’s magnitude, and the choice of the first
parameter µ1 in (20a) is based on the LOS measured noise covariance, which is determined
by the UWB ranging accuracy. When the LOS measured noise is Gaussian distributed with
(µ, σ) = (0 m, 0.1 m), the cumulative distribution function (CDF) is defined as [39]:

F(a) = P(X ≤ a). (21)

When a = 0.375, F(a) = 0.9999. This value is already very close to 1. When a is greater
than 0.7, the sensitivity to noise is reduced. Therefore, 0.5 is selected as the value of µ1 after
many tests. The choice of this value can be adjusted accordingly. Other classifications are
based on the fixed value region. Therefore, the region in (20) can be set:
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dk



0 < max(dk) < 0.5

0.5 ≤ max(dk) < 1

1 ≤ max(dk) < 10

10 ≤ max(dk) < 20

20 ≤ max(dk) < 30

30 ≤ max(dk) < 40

40 ≤ max(dk) < 50

...

(22)

After obtaining the residual range, the expectation of the squared residuals is de-
fined as:

Dk = E[dkdT
k ]

= TGP̂y
k−1GTTT + TQy

k TT + Ry
k ,

(23)

where G is a transition matrix of states defined as:

G =

[
IM TsIM

0M IM

]
, (24)

According to the characteristic of expectations, when the random variable X is in a
uniform distribution, the expectation of the squared variable is:

E(X2) =
∫ b

a

X2

b − a
dX

=
b2 + ab + b2

3
.

(25)

where a and b are the lower and upper bound of X, respectively.
Therefore, when the residual dk is in a uniform distribution, the expectation of the

squared residual Dk = diag([ b2+ab+a2

3 ]). In (20), the range of dk has been already classified,
and thus, the corresponding Dk is calculated by (25). Then, according to (23), the following
equation is obtained:

TQy
k TT + Ry

k = Dk − TGP̂y
k−1GTTT , (26)

where TGP̂y
k−1GTTT can be calculated through the last-time estimation. Qy

k is generally
not adjusted greatly, and the adjustment range is 0 ∼ 1. The parameter λ is defined as the
adjustment factor of Qy

k , which is defined as:

λk,j =
N − j

N
. (27)

where N is the number of range groups and j is the group to which it belongs.
When the residual dk is large, which means that the observed value contains a large

noise component, the final estimate is biased toward the predicted value, so Qy
k needs to be

reduced. Similarly, when the residual dk is small, the final estimate is biased towards the
observed value, and Qy

k needs to be increased. The adjustment for Qy
k is shown below:

Qy
k = λk,j · Qy

0(λk,j =
N − j

N
). (28)
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After the adjustment of Qy
k in (28), Ry

k can be adjusted according to (26). Thus, residual
classification and covariance adjustment are accomplished. One of the advantages of RCCA
is that it does not require the detection and discrimination of LOS/NLOS measurements.
The other advantage is that NLOS measurements can be retained, which is an indicator
of the presence of NLOS interference for a long time. The flowchart of RCCA is shown in
Figure 2.
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Figure 2. RCCA computational flowchart.

4. Double Extended Kalman Filter Based on RCCA
In this section, residual classification and covariance adjustment (RCCA) is applied to

the double extended Kalman filter, which is constructed by concatenating a KF and an EKF.
The main principle of RCCA is that the predicted value is obtained via a conventional

filtering process through KF, and then, the residual between the predicted value and value
(from the anchors) is obtained. The interval is classified according to the size of the residual,
and the corresponding covariance matrix and observation noise covariance matrix are
adjusted. Then, the results filtered by the KF are used as the input to the second EKF, which
is used as the observation value and observation noise matrix of the EKF. The first-stage
KF adjusts the covariance matrix through residual classification, to obtain more accurate
observations for the second-stage EKF for further processing. The architecture of the overall
system is shown in Figure 3.

Figure 3. DEKF system framework diagram.



Sensors 2025, 25, 740 8 of 18

First, for the pre-stage KF, the iteration calculation process of the KF is shown below:
1. Prediction:

Ŷk|k−1 = GŶk−1, (29)

dk = |Zk − TŶk|k−1|, (30)

dkclassification, (31)

Qy
k = λk,j · Qy

0(λk,j =
N − j

N
), (32)

Py
k = GPy

k−1GT + Qy
k , (33)

2. RCCA:

Ry
k = Dk − TGP̂y

k−1GTTT − TQy
k TT , (34)

3. Estimation:

Ky
k = P̂y

k|k−1TT(TP̂y
k|k−1TT + Ry

k)
−1, (35)

Ŷk = Ŷk|k−1 + Ky
k dk, (36)

P̂y
k = (I − Ky

k T)P̂y
k|k−1. (37)

Then, for the latter EKF, the iteration process of the EKF is shown below:
1. Prediction

X̂k|k−1 = AX̂k−1, (38)

P̂x
k|k−1 = AP̂x

k−1AT + Qx
k , (39)

2. Estimation

Rx
k = TP̂y

k TT , (40)

Kx
k = P̂x

k|k−1HT
k (HkP̂x

k|k−1HT
k + Rx

k )
−1, (41)

Z−
k = TŶk, (42)

X̂k = X̂k|k−1 + Kx
k (Z

−
k − h(X̂k|k−1)), (43)

P̂x
k = (I − Kx

k Hk)P̂
x
k|k−1. (44)

where the measurements Z−
k and the measured covariance matrix Rx

k in the EKF system
are based on the KF, and are calculated in (42) and (40). Z−

k is not the measurement from
the anchors; instead, it is the estimation from the KF. The estimation error variance of
the KF is selected as the corresponding EKF measurement covariance matrix Rx

k . The
design uses more accurate distance values as the observations of the EKF, and the estimated
state error variance decreases with iterations, which is in line with the trend of decreasing
measurement error covariance. The double extended Kalman filter based on RCCA is
summarized in Algorithm 1, and the flowchart is shown in Figure 4.
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Algorithm 1 Double-layer extended-Kalman filter algorithm.

Input:
KF: The initial state (distance, rate of change for distance) of target Y0 and the corre-
sponding estimation error variance matrix Py

0, the initial covariance Qy
0 for Kalman filter

process noise ensured by experiments, the measurements Zk of all distances between M
stationary anchors and target.
EKF: The initial state (position, velocity, acceleration) of the target X0 and the correspond-
ing estimation error variance matrix Px

0 , the initial covariance Qx
0 for Extended Kalman

filter process noise.
The pre-set threshold µ1 for the first group classification in (20a).
For k = 1 : times
First Kalman filter with RCCA:
- Calculate the prediction state Ŷk|k−1
- Calculate the residual of prediction and measurements dk using (18)
- Judge the range of dk using (22)
- Adjust the Qy

k using (28)
- Calculate the prediction variance P̂y

k|k−1 using (33)

- Calculate the Ry
k using (26)

- Bring the adjusted Qy
k and Ry

k into (35) to obtain Kalman gain Ky
k of first KF

- Output the distance state TŶk and the estimation error variance TP̂y
k TT .

Second Extended Kalman filter:
- Calculate the prediction state and covariance X̂k|k−1 and P̂x

k|k−1

- Obtain the first KF’s output distance state as observation of second EKF Z−
k = TŶk, and

the estimation error variance as measurement covariance Rx
k = TP̂y

k TT

- Calculate the Kalman gain Kx
k of second EKF

- Update the state X̂k and output
- Update the estimation error variance P̂x

k and output.
End For
Output: X̂k, P̂x

k

Determine the NLOS 

error range based on the 

residuals between the 

prediction and 

observation

Adjust the 

covariance 

matrix Q and R

KF
(state: distance 

and change rate 

of distance)

EKF
(state: position, 

velocity, 

acceleration of 

tracking target)

Output:

 real-time 

position state

Initialization

Initialization

Determine the NLOS 

error range based on the 

residuals between the 

prediction and 

observation

Adjust the 

covariance 

matrix Q and R

KF
(state: distance 

and change rate 

of distance)

EKF
(state: position, 

velocity, 

acceleration of 

tracking target)

Output:

 real-time 

position state

Initialization

Initialization

state distance 

vector

Figure 4. DEKF algorithm computational flowchart.

5. Simulation Results and Experimental Verification
5.1. Simulation Environments and Settings

The simulation was carried out with MATLAB R2021b on a PC. The EKF, IMED-KF [19],
M-REKF [30], and proposed DEKF algorithms were tested and compared under the CV and
CA models. There are five stationary UWB anchors located at [xU

1 , yU
1 , zU

1 ] = [2 m, 7 m, 1 m],
[xU

2 , yU
2 , zU

2 ] = [12 m, 7 m, 2 m], [xU
3 , yU

3 , zU
3 ] = [7 m, 12 m, 3 m], [xU

4 , yU
4 , zU

4 ] = [7 m, 2 m, 5 m],
and [xU

5 , yU
5 , zU

5 ] = [7 m, 7 m, 7 m]. The simulation was performed with 100 Monte
Carlo experiments with a time step of 0.01 s. The duration of each experiment
was 10 s. The measurement noise was set to have a Gaussian distribution with
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(µm, σm) = (0 m, 0.1 m), and the threshold of the first interval was defined as
µ1,i = 0.5, i = 1, . . . , M, where M = 5 is the number of anchors. The NLOS noise
was modeled with a uniform distribution. The initial state of the second EKF was
X0 = [2 m, 2 m, 2 m, 0.4 m/s, 0.4 m/s, 0.4 m/s, 0.02 m/s, 0.02 m/s, 0.02 m/s]T , and the initial
state error variance Px

0 for the EKF was diag([0.1, 0.1, 0.1, 0.01, 0.01, 0.01, 0.005, 0.005, 0.005]).
The distances in the initial state of the first KF were calculated by the initial target position

and the anchor positions with hi(Xk) =
√
(xk − xU

i )
2 + (yk − yU

i )
2 + (zk − zU

i )
2, and the

variation rate of the distances vd,0 was set to be 0.1 m/s. The initial state error variance for
the KF was defined as Py

0 = diag([0.1, · · · , 0.1, 0.01, · · · , 0.01]).
As mentioned in Section 2.2, uniformly distributed noise was chosen as the NLOS noise

model. The NLOS noise model is described in Figure 5, where the black blocks represent
the occupied time of the NLOS noise with U(0, 10 m) uniformly distributed noise, and the
white blocks represent the occupied time in the LOS environment. Both the NLOS and
LOS environments also have Gaussian measurement noise with (µm, σm) = (0 m, 0.1 m).
The LOS/NLOS noise distribution for the five anchors in 1000 iteration times is shown in
Figure 5.
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Figure 5. NLOS model distribution.

5.2. Performance Metrics

The root mean squared error (RMSE) [39] is used to evaluate the accuracy of position-
ing, and it is defined as:

RMSEk =

√√√√ 1
L

L

∑
l=1

(Xl,k − X̂l,k)T(Xl,k − X̂l,k). (45)

where L is the number of Monte Carlo trials.
In addition, the Cramer–Rao lower bound (CRLB) [40–42] is also used as a metric for

algorithm performance. Here, the Posterior CRLB (PCRLB) is used as the metric for Xk

estimation; it is defined as:

E[(Xk − X̂k)(Xk − X̂k)
T ] ≥ J−1

k = PCRLBk, (46)

where Jk is the Fisher information matrix:

Jk = [AJ−1
k−1AT + Qk−1]

−1 + HT
k R−1

k Hk. (47)

The cumulative distribution function (CDF), which is defined in (21), is also taken into
account in the evaluation of target tracking accuracy.
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5.3. Simulation Results

For generality, the CA model was used in the simulations, as shown in Figure 6, in
which the RMSE and CDF of different filtering results are presented in the environment
where the noise of all five anchors contains LOS only. In the LOS environment, EKF and
the proposed DEKF can have a steady-ranging accuracy within 10 cm, while IMED-KF
and M-REKF diverge during iteration. Using the two-state Markov chain described in
Section 2.2 as the NLOS/LOS environment simulation model, four different scenarios,
S1–S4, were set, and the NLOS noise distribution of the five anchors in different scenarios
is as follows:

S1: ε = [0.1, 0, 0, 0, 0],
S2: ε = [0, 0.25, 0, 0.25, 0],
S3: ε = [0, 0.25, 0.1, 0.75, 0],
S4: ε = [0.25, 0.25, 0.25, 0.25, 0.25].
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Figure 6. CA model: (a) RMSE comparison in LOS environment; (b) CDF comparison in
LOS environment.
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In scenario S4, the results in the CA model present different outcomes, as shown in
Figure 7. In the CA model, the RMSE of IMED-KF grows fast during iteration, and M-REKF
also tends to increase with a smaller slope. On the contrary, the proposed DEKF is stable
within 5 cm, and EKF is stable with a meter-level RMSE. The simulation results illustrate
that IMED-KF and M-REKF in the CA motion model diverge much more easily, leading to
an inaccurate result. However, the proposed DEKF is stable and highly accurate in the CA
model. The tracking RMSE results in the LOS and S1–S4 environments for the CA model
are illustrated in Table 2. It can be seen that DEKF can remain stable and have a much more
accurate range when the environment changes, while EKF, IMED-KF, and M-REKF are far
from accurate.
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Figure 7. CA model: (a) RMSE comparison in LOS/NLOS environment S4; (b) CDF comparison in
LOS/NLOS environment S4.
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Table 2. CA model: positioning result comparison in LOS and S1–S4.

Noise Situation
Tracking Results: Average RMSE/m

DEKF EKF IMED-KF M-REKF

LOS 0.022 0.017 0.181 2.227
S1 0.023 0.228 0.232 2.245
S2 0.027 0.926 3.385 2.327
S3 0.052 1.453 8.647 2.408
S4 0.054 1.868 11.934 2.467

5.4. Experimental Verification of the Algorithm

In order to test the performance of the proposed algorithm in a complex indoor
environment, an experimental environment was built in our office using a UWB module,
including four anchors and one target. The office area is about 46 m2 (4.76 × 9.63 m), and
there were many people and some equipment in the office when these experiments were
carried out, as shown in Figure 8.

Figure 8. The environment of the test office.

The DEKF, EKF, and IMED-KF algorithms are used for performance comparison. As
shown in Figure 9a, red lines and red dots represent the position and trajectory of the target,
and green dots represent stationary points. Blue points represent the anchors, and their co-
ordinates are BS1(0.20, 1.68) m, BS2(4.45, 1.68) m, BS3(0.20, 7.15) m, and BS4(4.45, 6.18) m.
The anchor height was set to 1.7 m to aid us in building the experimental environment in
the lab, such as adding metal sheets to block the anchors for NLOS occurrence in tracking
experiments. Figure 9b shows the test track in the indoor office environment.

The dashed line in Figure 9a shows the motion of the target. The target performs a 3 m
reciprocating motion. Its x-axis remains the same, while the y-axis is displaced up to 6 m.

Figure 10 illustrates the RMSE values of several algorithms mentioned in the previous
section for the LOS environment and the four NLOS cases. The RMSEs of these algorithms
in the LOS environment are very close, under 10 cm, which means that the three algorithms
are all accurate enough to achieve real-time tracking. In the four NLOS environment
cases, the RMSEs of the three algorithms are relatively small, and the RMSE of DEKF is
the smallest.
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Figure 9. (a) Trajectory in indoor office environment. (b) Test track in indoor office environment.
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Figure 10. CV model: (a) RMSE in the LOS situation; (b) RMSE in four NLOS situations.
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Figure 11 shows the RMSEs of each algorithm when changing the number of anchors
subject to NLOS interference from one to two. When the target returns from the other side
of the track, an NLOS anchor is added for a duration of about half the experiment time.
The RMSE of EKF and IMD-KF increases rapidly at half time, while DEKF remains stable
when the number of NLOS anchors increases.
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Figure 11. CV model: RMSE after change from 1 to NLOS to 2-NLOS.

For the CA model, the results in the LOS and NLOS situations are shown in Table 3.
Among the three algorithms, IMED-KF cannot obtain a stable and accurate result in this
motion model, whereas the proposed DEKF and EKF can track the target in a relatively
accurate way. In the LOS environment, DEKF and EKF can reach high accuracy with values
close to each other. When the number of NLOS anchors increases, EKF tracks the target
more and more inaccurately, especially in the 4-NLOS situation. However, the RMSE of
DEKF can remain stable when the environment become severe, with an average RMSE
from 17 cm to 26 cm.

Table 3. Positioning test result comparison in CA model.

NLOS Number
Tracking Results/m

DEKF EKF

LOS
tracking tracking

RMSEmax = 0.33 RMSEmax = 0.53
RMSEavg = 0.17 RMSEavg = 0.18

1-NLOS
tracking tracking

RMSEmax = 0.37 RMSEmax = 0.69
RMSEavg = 0.18 RMSEavg = 0.27

2-NLOS
tracking tracking

RMSEmax = 0.39 RMSEmax = 0.71
RMSEavg = 0.18 RMSEavg = 0.34

3-NLOS
tracking tracking

RMSEmax = 0.54 RMSEmax = 0.89
RMSEavg = 0.24 RMSEavg = 0.41

4-NLOS
tracking tracking

RMSEmax = 0.61 RMSEmax = 255.48
RMSEavg = 0.26 RMSEavg = 53.56
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6. Conclusions
This article proposes a double extended Kalman filter algorithm in order to fix the

weakening effect on tracking accuracy when the measurements have NLOS and measuring
noises. The preceding Kalman filter with a residual classification and covariance adjustment
(RCCA) module was designed to smooth the distance input and can adjust the Kalman gain
in time as the observations change. Then, the states of the preceding KF into the next EKF as
the distance observations change. The experimental results demonstrate that the algorithm
presented in this paper exhibits high accuracy under both CV and CA models. It can
achieve centimeter-level accuracy in LOS/NLOS environments, specifically, an accuracy
within 4 cm in LOS and within 10 cm in NLOS, and it converges at a faster speed than
its counterparts according to the results of numerous simulations. Using the proposed
algorithm, target tracking will be performed quite accurately when the LOS measurements
are diminished near to zero. In addition, the accuracy will not decrease significantly
when severe NLOS errors lasting a long time occur, as verified by the simulation and
experimental results.
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