Acoustic Emission Precursors in Pile-Reinforced Loess Landslides: A New Early-Warning Signals Identification Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Loading System and Protocol
2.3. Instrumentation and Measurements
2.3.1. AE Monitoring System
2.3.2. Earth Pressure Measurement
2.3.3. Strain Measurement
2.3.4. Slide Displacement Monitoring
3. Experimental Results
3.1. Slide Behavior Analysis
3.1.1. Displacement Characteristics
3.1.2. Correlation Characteristics Between AE Signal and Slide Displacement
3.2. Anti-Slide Pile Performance
3.2.1. Mechanical Response Analysis
3.2.2. AE-Damage Evolution Characteristics
3.2.3. Localization Characteristics of AE Signals in Anti-Slide Piles
4. Discussion
4.1. Damage Evolution Characteristics Within Anti-Slide Piles
4.2. Kaiser and Felicity Effects in Stabilizing Piles Under Cyclic Loading
4.3. Felicity Ratio of Stabilizing Piles Under Cyclic Loading
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, J.B.; Xu, N.X.; Zhang, Y.S.; Xia, K.W.; Xue, Y.G.; Zhang, B.; Yang, G.-X.; Chen, J.; Wang, F.; Zang, M.D.; et al. The framework system for geosafety research. J. Eng. Geol. 2022, 30, 1798–1810. (In Chinese) [Google Scholar] [CrossRef]
- Du, C.; Zhuang, J.; Peng, J.; Kong, J.; Hu, W. Numerical investigation of the fast shear behaviour of granular materials and its significance for rapid landslides. Eng. Geol. 2024, 342, 107733. [Google Scholar] [CrossRef]
- Zeng, H.; Gonzalez-Blanco, L.; Romero, E.; Fraccica, A. The importance of the microstructure on hydro-mechanical behaviour of compacted granular bentonite. Appl. Clay Sci. 2023, 246, 107177. [Google Scholar] [CrossRef]
- Peng, J.B.; Shen, Y.J.; Jin, Z.; Liu, T.; Li, Z.; Zhuang, J.; Wang, Z.; Yu, C.; Chen, Y.; Ma, P.; et al. Key thoughts on the study of eco-geological environment system in Qinling Mountains. Acta Ecol. Sin. 2023, 43, 4344–4358. [Google Scholar] [CrossRef]
- Bozzano, F.; Cipriani, I.; Mazzanti, P.; Prestininzi, A. A field experiment for calibrating landslide time-of-failure prediction functions. Int. J. Rock Mech. Min. Sci. 2014, 67, 69–77. [Google Scholar] [CrossRef]
- Glendinning, S.; Hughes, P.; Helm, P.; Chambers, J.; Mendes, J.; Gunn, D.; Wilkinson, P.; Uhlemann, S. Construction, management and maintenance of embankments used for road and rail infrastructure: Implications of weather induced pore water pressures. Acta Geotech. 2014, 9, 799–816. [Google Scholar] [CrossRef]
- Chen, Y.; Irfan, M.; Uchimura, T.; Cheng, G.; Nie, W. Elastic wave velocity monitoring as an emerging technique for rainfall-induced landslide prediction. Landslides 2018, 15, 1155–1172. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Liu, J.; Subramanian, S.S.; He, C.; Zhu, X.; Zhou, L. Successful early warning and emergency response of a disastrous rockslide in Guizhou province, China. Landslides 2019, 16, 2445–2457. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, D.M.; Wang, L.G.; Xia, J. Literature Review on the Risk Assessment of Geological Hazards at Home and Abroad. Available online: https://link.cnki.net/doi/10.13693/j.cnki.cn21-1573.2024.01.012 (accessed on 1 April 2024).
- Zhang, Y.F.; Fan, J.W.; Yuan, K. Disaster-induced mechanisms and prevention and control new technologies of major landslides. Chin. J. Rock Mech. Eng. 2023, 42, 1910–1927. (In Chinese) [Google Scholar]
- Guo, Z.; Huang, Q.; Yu, D.; Liu, Y.; Xu, M.; Xie, Q. Hydrological and failure process of loess-bedrock fill slopes under continuous heavy rainfall. J. Rock Mech. Geotech. Eng. 2025, 17, 7208–7220. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, M.G.; Xu, K.X.; Huang, X. Research on space-time evolution laws and early warning-prediction of landslides. Chin. J. Rock Mech. Eng. 2008, 27, 1104–1112. (In Chinese) [Google Scholar]
- Wang, G.X. Key technique in landslide control and its handling measures. Yanshilixue Yu Gongcheng Xuebao Chin. J. Rock Mech. Eng. 2005, 24, 3818–3827. (In Chinese) [Google Scholar]
- Deng, L.Z.; Yuan, H.Y.; Chen, J.G. Research progress on landslide deformation monitoring and early warning technology. J. Tsinghua Univ. (Sci. Technol.) 2023, 63, 849–864. (In Chinese) [Google Scholar]
- Smethurst, J.A.; Smith, A.; Uhlemann, S.; Wooff, C.; Chambers, J.; Hughes, P.; Lenart, S.; Saroglou, H.; Springman, S.M.; Löfroth, H.; et al. Current and future role of instrumentation and monitoring in the performance of transport infrastructure slopes. Q. J. Eng. Geol. Hydrogeol. 2017, 50, 271–286. [Google Scholar] [CrossRef]
- Chen, F.H.; Xia, H.; Gao, Y.; Zhang, D.; Yang, X.; Dong, G. The Processes of Prehistoric Human Activities in the Tibetan Plateau: Occupation, Adaptation and Permanent Settlement. Geogr. Sci. 2022, 42, 1–14. (In Chinese) [Google Scholar]
- Yu, G.R.; Zhang Li He, H.L.; Yang, M. A process-based model and simulation system of dynamic change and spatial variation in large-scale terrestrial ecosystems. Chin. J. Appl. Ecol. 2021, 32, 2653–2665. (In Chinese) [Google Scholar]
- Codeglia, D.; Dixon, N.; Fowmes, G.J.; Marcato, G. Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms. Eng. Geol. 2017, 219, 21–31. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, H.; Chen, J.; Zhang, M.; Su, G.; Zhou, Y.; Chen, Y. Experimental investigation and field application of acoustic emission array for landslide monitoring. Landslides 2024, 21, 71–81. [Google Scholar] [CrossRef]
- Dixon, N.; Spriggs, M.P.; Smith, A.; Meldrum, P.; Haslam, E. Quantification of reactivated landslide behaviour using acoustic emission monitoring. Landslides 2015, 12, 549–560. [Google Scholar] [CrossRef]
- Dixon, N.; Smith, A.; Flint, J.A.; Khanna, R.; Clark, B.; Andjelkovic, M. An acoustic emission landslide early warning system for communities in low-income and middle-income countries. Landslides 2018, 15, 1631–1644. [Google Scholar] [CrossRef]
- Liu, W. Experimental Study on the Stress Characteristics of Double-Row Anti-Slide Pile Without Coupling Beam. Master’s Thesis, Chang’an University, Xi’an, China, 2018. [Google Scholar]
- Chen, Y.; Deng, L.Z.; Huang, L.D.; Chen, T. Landslide early warning model based on acoustic emission monitoring. J. Tsinghua Univ. (Sci. Technol.) 2022, 62, 1052–1058. (In Chinese) [Google Scholar]
- Shao, B.R. A Dissertation Submitted to China University of Geosciences for Master of Professional Degree. Master’s Thesis, China University of Geosciences, Beijing, China, 2021. [Google Scholar]
- Ashour, M.; Pilling, P.; Norris, G. Lateral behavior of pile groups in layered soils. J. Geotech. Geoenvironmental Eng. 2004, 130, 580–592. [Google Scholar] [CrossRef]
- Feenstra, P.H.; de Borst, R. Constitutive Mode for Reinforced Concrete. J. Eng. Mech. 1995, 5, 58–64. [Google Scholar]
- Liu, M.; Lu, J.; Ming, P.; Song, J. AE-based damage identification of concrete structures under monotonic and fatigue loading. Constr. Build. Mater. 2023, 377, 131112. [Google Scholar] [CrossRef]
- Shahidan, S.; Bunnori, N.M.; Mohd, S.; Nor, N.M.; Johari, M.A.M. Analysis of the AE signals parameter at the critical area on the concrete beam. In Proceedings of the IEEE Symposium on Industrial Electronics and Applications, Bandung, Indonesia, 23–26 September 2012; pp. 386–391. [Google Scholar] [CrossRef]
- Suzuki, T.; Ogata, H.; Takada, R.; Aoki, M.; Ohtsu, M. Use of acoustic emission and X-ray computed tomography for damage evaluation of freeze-thawed concrete. Constr. Build. Mater. 2010, 24, 2347–2352. [Google Scholar] [CrossRef]
- Wang, J.; Wei, Y.Q.; Ding, Y.; He, W.; He, C.; Xu, G.; Liu, S. Study on acoustic emission characteristics of carbonated concrete under uniaxial loading. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2020, 47, 498–505. (In Chinese) [Google Scholar]
- Flaga, A. Basic principles and theorems of dimensional analysis and the theory of model similarity of physical phenomena. Czas. Tech. 2015, 2-B, 241–272. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Wu, R.A.; Guo, C.B.; Wang, L.; Yao, X.; Yang, Z. Research Progress and Prospect on Reactivation of Ancient Landslides. Adv. Earth Sci. 2018, 33, 728–740. [Google Scholar] [CrossRef]
- Wu, W.J.; Wang, N.Q. Basic types and active features of loess landslide. Chin. J. Geol. Hazard Control. 2002, 13, 38–42. (In Chinese) [Google Scholar]
- Chandler, R.J. Recent European Experience of Landslides in Over-Consolidated Clays and Soft Rocks. In Proceedings of the 4th International Symposium on Landslides, Toronto, ON, Canada, 16–21 September 1984. [Google Scholar]
- Zhang, J.; Tang, H.; Li, C.; Gong, W.; Zhou, B.; Zhang, Y. Deformation stage division and early warning of landslides based on the statistical characteristics of landslide kinematic features. Landslides 2024, 21, 717–735. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, F.; Yang, X.; Yang, Y.; Lu, P. Comprehensive analyses of the initiation and landslide-generated wave processes of the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir, China. Landslides 2016, 13, 589–601. [Google Scholar] [CrossRef]
- Li, T.; Liang, J.; Bo, L. Dynamic response characteristics of tunnel linings at varied burial depths in landslide systems under seismic loading. Sci. Rep. 2025, 15, 7528. [Google Scholar] [CrossRef]
- Keqiang, H.; Zhiliang, W.; Xiaoyun, M.; Zengtao, L. Research on the displacement response ratio of groundwater dynamic augment and its application in evaluation of the slope stability. Environ. Earth Sci. 2015, 74, 5773–5791. [Google Scholar] [CrossRef]
- Smith, A.; Dixon, N.; Fowmes, G. Monitoring buried pipe deformation using acoustic emission: Quantification of attenuation. Int. J. Geotech. Eng. 2017, 11, 418–430. [Google Scholar] [CrossRef]
- Deng, L.; Smith, A.; Dixon, N.; Yuan, H. Automatic classification of landslide kinematics using acoustic emission measurements and machine learning. Landslides 2021, 18, 2959–2974. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Xu, R.; Li, C.; Wang, Y.; Liu, Y. Experimental investigation on time-frequency evolution characteristics of electromagnetic radiation below ULF reflecting the damage performance of coal or rock materials. Struct. Control. Health Monit. 2022, 29, e2874. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, F.; Lin, X.; Chen, B.; Zhang, X. Experimental Investigation of Crack Propagation Mechanism and Load-bearing Characteristics for Anti-slide Pile. KSCE J. Civ. Eng. 2023, 27, 2486–2496. [Google Scholar] [CrossRef]
- Michlmayr, G.; Cohen, D.; Or, D. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media—A review. Earth-Sci. Rev. 2012, 112, 97–114. [Google Scholar] [CrossRef]
- Liu, Y.; Lai, J.; Liu, Y. Research on the dynamic characteristics and disaster mechanism of anti-slide short pile-supported slopes. Sci. Rep. 2025, 15, 13041. [Google Scholar] [CrossRef]
- Sagar, R.V.; Prasad, B.K.R. A review of recent developments in parametric based acoustic emission techniques applied to concrete structures. Nondestruct. Test. Eval. 2012, 27, 47–68. [Google Scholar] [CrossRef]
- Kaiser, J. An Investigation into the Occurrence of Noises in Tensile Tests, or a Study of Acoustic Phenomena in Tensile Tests. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 1950. [Google Scholar]
- Meng, Q.; Chen, Y.; Zhang, M.; Han, L.; Pu, H.; Liu, J. On the Kaiser effect of rock under cyclic loading and unloading conditions: Insights from acoustic emission monitoring. Energies 2019, 12, 3255. [Google Scholar] [CrossRef]
- Lavrov, A. The Kaiser effect in rocks: Principles and stress estimation techniques. Int. J. Rock Mech. Min. Sci. 2003, 40, 151–171. [Google Scholar] [CrossRef]
- Hamstad, M. A discussion of the basic understanding of the Felicity effect in fiber composites. J. Acoust. Emiss. 1986, 5, 95–102. [Google Scholar]
- Zhang, Y.; Chen, Y.; Yu, R.; Hu, L.; Irfan, M. Effect of loading rate on the felicity effect of three rock types. Rock Mech. Rock Eng. 2017, 50, 1673–1681. [Google Scholar] [CrossRef]
- Gautam, P.K.; Dwivedi, R.; Garg, P.; Majumder, D.; Agarwal, S.; McSaveney, M.; Singh, T. Evolution of the damage precursor based on the felicity effect in shale. Int. J. Damage Mech. 2025, 34, 116–139. [Google Scholar] [CrossRef]
- Zhang, M.; Meng, Q.; Liu, S.; Qian, D.; Zhang, N. Impacts of cyclic loading and unloading rates on acoustic emission evolution and felicity effect of instable rock mass. Adv. Mater. Sci. Eng. 2018, 2018, 8365396. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y. Influence of loading rate on the Kaiser effect for different lithological rocks. J. China Coal Soc. 2018, 43, 959–966. (In Chinese) [Google Scholar] [CrossRef]


















| Types | Physical Parameter | Dimensionality | General Model | Practical Model | Proposed Model |
|---|---|---|---|---|---|
| Material properties | 1 | 20 | |||
| - | 1 | 1 | 1 | ||
| 1 | 20 | ||||
| 1 | 20 | ||||
| 1 | 20 | ||||
| 1 | 20 | ||||
| Geometric characteristics | 20 | ||||
| 20 | |||||
| - | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Yang, W.; Zhao, T.; Li, X.; Lu, Z. Acoustic Emission Precursors in Pile-Reinforced Loess Landslides: A New Early-Warning Signals Identification Approach. Sensors 2025, 25, 7472. https://doi.org/10.3390/s25247472
Zheng S, Yang W, Zhao T, Li X, Lu Z. Acoustic Emission Precursors in Pile-Reinforced Loess Landslides: A New Early-Warning Signals Identification Approach. Sensors. 2025; 25(24):7472. https://doi.org/10.3390/s25247472
Chicago/Turabian StyleZheng, Suya, Wei Yang, Tong Zhao, Xunchang Li, and Zheng Lu. 2025. "Acoustic Emission Precursors in Pile-Reinforced Loess Landslides: A New Early-Warning Signals Identification Approach" Sensors 25, no. 24: 7472. https://doi.org/10.3390/s25247472
APA StyleZheng, S., Yang, W., Zhao, T., Li, X., & Lu, Z. (2025). Acoustic Emission Precursors in Pile-Reinforced Loess Landslides: A New Early-Warning Signals Identification Approach. Sensors, 25(24), 7472. https://doi.org/10.3390/s25247472

