
Academic Editors: Mattia Antonini,

Fabrizio Ruffini and Michela

Fazzolari

Received: 31 August 2025

Revised: 12 October 2025

Accepted: 13 October 2025

Published: 15 October 2025

Citation: Park, Y.; Mun, J.; Lee, Y.;

Um, J.; Choi, J.; Choi, J. Data-Driven

Optimization of Healthcare

Recommender System Retraining

Pipelines in MLOps with Wearable

IoT Data. Sensors 2025, 25, 6369.

https://doi.org/10.3390/s25206369

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Data-Driven Optimization of Healthcare Recommender System
Retraining Pipelines in MLOps with Wearable IoT Data
Yohan Park, Jonghyeok Mun, Yejung Lee, Jihwan Um, Jongsun Choi * and Jaeyoung Choi

School of Computer Science and Engineering, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu,
Seoul 06978, Republic of Korea; imjin3027@soongsil.ac.kr (Y.P.); jonghyeokmun@soongsil.ac.kr (J.M.);
yejung@soongsil.ac.kr (Y.L.); umjh@soongsil.ac.kr (J.U.); choi@ssu.ac.kr (J.C.)
* Correspondence: jongsun.choi@ssu.ac.kr

Abstract

Personalized healthcare recommender systems are increasingly being deployed in edge
AI environments through wearable devices. In such environments, cloud servers leverage
high-performance GPUs to train base models, which are then optimized for data reduction
deployment on edge devices, enabling the delivery of personalized services. However,
the base model may experience a gradual decline in accuracy over time, a phenomenon
known as model drift. Recommender systems that do not keep up with changes in user
preferences risk generating predictions based on outdated behavior, which can negatively
impact the user experience. Therefore, it is essential to adopt retraining approaches that in-
corporate both past training data and new data from wearable devices. To address the drift
problem, we propose a dynamic data management strategy, integrated into an automated
training pipeline based on machine learning operations (MLOps). This approach enables
adaptive model updates in response to continuously evolving IoT data. To preserve base
model performance, our strategy leverages data reduction and feature selection algorithms.
By dynamically managing data with these techniques, we effectively mitigate data drift
and enhance resource efficiency during model retraining. We validated our approach
through experiments on personalized fitness recommendations using FitRec wearable data
from 1104 users, achieving improved computational efficiency during retraining while
preserving model accuracy. Consequently, our dynamic data management method ensures
faster training and the sustained performance of data reduction base models essential
for edge AI applications. Moreover, this approach presents a compelling solution for
continuously refining personalized recommendation services in alignment with evolving
user preferences.

Keywords: dynamic data management; data reduction; feature selection; MLOps; model
retraining; recommender system

1. Introduction
Machine learning (ML) has become a foundational technology that underpins advance-

ments across diverse industries and academic disciplines. Among its many applications,
recommender systems have received significant attention, with a large body of research
aiming to enhance user experience through improved personalization and service effi-
ciency [1]. Recent research has focused on understanding the interactions between users,
items, and contextual features to better predict user preferences and enhance recommen-
dation accuracy [2]. These personalized recommender systems are increasingly being

Sensors 2025, 25, 6369 https://doi.org/10.3390/s25206369

https://doi.org/10.3390/s25206369
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9648-0667
https://orcid.org/0000-0002-7321-9682
https://doi.org/10.3390/s25206369
https://www.mdpi.com/article/10.3390/s25206369?type=check_update&version=2

Sensors 2025, 25, 6369 2 of 23

applied in high-stakes domains such as healthcare, where reliability is critical. Current
research explores their use in personalized health management and broader clinical appli-
cations [3]. In particular, the healthcare domain demands not only real-time responsiveness
but also stringent protection of personal data. To address these requirements, researchers
are increasingly turning to edge environments—such as wearable devices and mobile
platforms—where data can be processed locally. This shift away from exclusive reliance
on cloud infrastructure enables edge AI to deliver personalized services with enhanced
speed, reliability, and security. Within these edge environments, developing effective
model update strategies has become essential for maintaining long-term performance
and personalization.

Despite these advantages, ensuring the consistent performance of recommender sys-
tem models deployed on edge devices remains a considerable challenge. One of the most
pressing concerns is model drift, a phenomenon in which model accuracy progressively
declines over time [4]. This decline primarily results from discrepancies between the data
used for initial training and the continuously evolving data collected from wearable devices
during real-world operation. Model drift is typically regarded as the result of two key
forms of change: data drift and concept drift. Data drift refers to temporal shifts in the
statistical distribution of input features, whereas concept drift captures changes in the
underlying relationships between inputs and outputs. Without effective retraining mecha-
nisms to address these drifts, recommender systems risk degraded performance, leading
to outdated predictions, reduced user trust, and potentially serious errors in healthcare
decision support.

For healthcare recommender systems to be effective, both data drift and concept drift
must be systematically addressed [5]. As new information accumulates and users’ health
conditions and preferences evolve over time, model drift inevitably becomes a recurring
challenge. Because healthcare applications directly influence patient outcomes, models
must remain highly responsive to drift and adaptable to ongoing changes in health status
and behavioral patterns [6].

Addressing these challenges has become the focus of active research on the continuous
maintenance of machine learning models. This body of research emphasizes the design of
frameworks that automate the development, deployment, monitoring, and maintenance of
ML models, thereby ensuring that models sustain optimal performance over time [7,8]. Tra-
ditional ML systems, which depend on static datasets and one-time training, are inherently
limited in capturing evolving data distributions and shifting user preferences. In contrast,
MLOps environments continuously detect changes in data and models, automatically trig-
gering retraining at appropriate intervals to ensure that models flexibly adapt to dynamic
healthcare environments [9].

This study aims to develop an efficient strategy for managing ML models in cloud
environments. We focus on personalized healthcare recommender systems and propose
an MLOps-based strategy designed to mitigate both data drift and concept drift effec-
tively. Our approach, termed Dynamic Data Management (DDM), represents a data-driven
optimization method that leverages data versioning to systematically capture shifts in
data distributions and their interdependencies. Ultimately, our goal is to preserve model
performance while ensuring the reliable delivery of personalized healthcare services.

2. Related Work
This section lays the groundwork for our proposed approach by first reviewing the

fundamentals of MLOps and recommender systems. We then examine prior research
addressing the critical challenges of data drift and retraining efficiency. This review con-
textualizes our study, which builds upon our earlier work on data reduction and feature

Sensors 2025, 25, 6369 3 of 23

selection by integrating these methods into a unified Dynamic Data Management (DDM)
strategy within the MLOps framework.

2.1. Preliminary
2.1.1. Recommender Systems

Recommender systems, which deliver personalized content by analyzing user behav-
ior, contend with the significant challenge of adapting to dynamic environments. The core
issue is model drift, where performance degrades over time due to shifting user preferences
and data distributions. To mitigate this, prior research has explored various adaptive
strategies. For instance, Sritrakool et al. [10] proposed a system that leverages historical
data during preference shifts to infer users updated interests. Sun et al. [11] developed an
algorithm that prioritizes the most recently consumed items, operating on the insight that
recent activities are stronger indicators of current user interests. Furthermore, other studies
have examined approaches that exploit temporal information to track evolving user item
relationships, particularly in environments characterized by the continual influx of new
users and items [12].

However, while these methods effectively incorporate temporal dynamics, their nar-
row focus on specific user item interactions often overlooks the broader, systemic challenges
of managing the entire retraining pipeline. Consequently, critical issues such as compu-
tational inefficiency and data redundancy remain largely unaddressed. Our proposed
DDM strategy addresses this gap by offering a holistic framework that not only captures
temporal variations but also systematically optimizes for data scale and quality, creating a
more robust and efficient solution for continuous model maintenance.

2.1.2. Edge MLOps

Edge MLOps automates the machine learning pipeline—from data ingestion to
deployment—while clearly delineating the distinct functional roles of cloud servers and
edge devices. As illustrated in Figure 1, a representative workflow involves training models
in the cloud and subsequently deploying them to edge devices where inference services are
delivered to users [13]. This paradigm is designed to support continuous model improve-
ment. For instance, Bayram et al. [14] proposed a strategy that leverages a feedback loop
to continuously monitor model performance and trigger updates whenever degradation
is detected.

Figure 1. Overall lifecycle of Edge MLOps.

Sensors 2025, 25, 6369 4 of 23

Operationalizing these updates effectively hinges on two critical decisions, as high-
lighted in prior research [15]: determining when to retrain and selecting how the model
should be updated. The former is often governed by predefined thresholds based on
performance degradation or data distribution shifts, while the latter involves choosing
between strategies like continuous learning and periodic retraining to mitigate model drift.
Our study contributes to this line of research by focusing on the “how”, proposing an
efficient data management strategy to optimize the data pipelines that underpin effective
model updates.

2.2. Model Retraining and Continuous Learning

Machine learning models are typically updated using one of two primary approaches:
continuous learning or periodic retraining. While continuous learning is suited for real-
time applications, periodic retraining is often a more cost-efficient strategy in MLOps
environments. Mahadevan et al. [16] underscored this point, arguing that overly frequent
retraining imposes unnecessary computational costs and advocating for cost-aware strate-
gies. However, this approach introduces its own challenges, namely the accumulation of
redundant data and catastrophic forgetting, where new information overwrites previously
learned patterns [17].

Prior work has sought to remedy these issues through various methods. Data-driven
approaches include strategies that dynamically regulate the volume of past data to reduce
inefficiencies [18] or, as Kirkpatrick et al. [19] introduced, methods that adjust the weight of
past data to prioritize new information while retaining earlier patterns. In parallel, model-
driven techniques have been proposed, such as selectively updating specific neural network
layers to minimize the erosion of prior knowledge [20]. Although effective in isolation,
these strategies typically fail to synthesize a solution that addresses both data volume
and data quality concurrently. This study bridges this critical gap by proposing a DDM
framework that unifies data reduction and feature selection. By systematically filtering
redundant records while retaining high-importance features, our approach simultaneously
enhances computational efficiency and mitigates catastrophic forgetting, offering a more
robust solution for maintaining model performance in dynamic healthcare settings.

2.3. Data Management in ML

As machine learning becomes increasingly integrated into real-world services, robust
data management across the entire data lifecycle has become pivotal. The management
of preprocessing tasks like data exploration, cleansing, and labeling directly influences
model performance and stability [21,22]. MLOps frameworks address this by leveraging
automated pipelines to manage evolving data, as illustrated in Figure 2. These pipelines
are designed to handle incoming data efficiently by reducing inter-dataset dependencies
and discarding redundant information [23], which has been empirically shown to mitigate
data drift and stabilize model performance [24].

Figure 2. Simplified production machine learning pipeline (rectangles represent data artifacts, while
ellipses denote processes).

Prior work in dynamic data management has explored various specific methods. For
instance, Baumann et al. [25] demonstrated a technique that dynamically adjusts the balance

Sensors 2025, 25, 6369 5 of 23

between historical and new data, thereby preserving historical patterns while adapting
to new information. Other studies have emphasized the importance of data quality over
quantity, particularly for complex healthcare datasets where time-series and imbalanced
characteristics demand a focus on the completeness of data rather than sheer volume [26].
However, these efforts have treated data volume and quality as disparate problems, often
addressing one in isolation without a unified framework that optimizes both.

This study bridges this gap by proposing a novel strategy that unifies data reduction
and feature selection into a single, cohesive framework. Our approach produces optimized
data versions by simultaneously reducing redundant historical data to manage scale and
selecting salient features to enhance quality and interpretability. This dual-action method
not only sustains model performance in dynamic environments but also significantly
reduces the computational overhead of retraining. Consequently, our framework presents
a more comprehensive and practical solution for continuous model maintenance, a critical
requirement for efficient Edge AI applications.

2.4. Data Reduction

The continuous accumulation of data in machine learning systems presents the dual
challenges of increased overfitting risk and amplified computational costs. Prior work has
established that strategically removing redundant data can yield clearer outcomes [27]
without significantly compromising model performance [28]. Consequently, various data
reduction methods have been explored. For example, Zhang et al. [29] employed a matrix
factorization-based strategy to minimize computational costs, whereas Niu et al. [30] and
Ahmadian et al. [31] proposed temporal data reduction approaches to improve accuracy.
Our data reduction module evolved from techniques validated in our previous research [32],
which confirmed that combining matrix factorization with similarity-based methods can
mitigate overfitting while substantially lowering the computational load.

However, a critical limitation of these conventional approaches is their singular focus
on maximizing data volume reduction, often neglecting the potential loss of vital infor-
mation. This narrow focus imposes a detrimental trade-off, where gains in computational
efficiency are achieved at the expense of model accuracy, as the reduced dataset may
no longer represent the underlying data distribution. Our proposed framework directly
counteracts this limitation. By integrating a feature selection mechanism alongside data
reduction, our strategy not only manages data volume but also actively preserves data qual-
ity. This synergistic approach forges a more robust and effective solution for maintaining
stable model performance in dynamic MLOps environments.

2.5. Feature Selection

Feature selection is a critical discipline within machine learning and data mining
that enhances model performance and computational efficiency by identifying the most
salient variables in a dataset [33]. By eliminating irrelevant features, this process is particu-
larly effective for improving training outcomes in high-dimensional data and mitigating
overfitting [34]. Conventional techniques are typically categorized as Filter, Wrapper, or
Embedded methods, which have demonstrated superiority over the indiscriminate use
of all available features [35]. However, these approaches often suffer from a fundamental
limitation: they operate independently of the final recommendation model. This creates a
suboptimal alignment between the selected features and the model’s predictive objectives,
a gap that recent AutoML-based methods have sought to address [36].

Our framework circumvents this limitation by extending a model-aware controller
validated in our prior work [37]. That study proposed a controller that integrates the
recommender’s outputs with data analysis results to dynamically derive user-specific

Sensors 2025, 25, 6369 6 of 23

feature weights, thereby improving both predictive performance and interpretability. The
central contribution of this study is to unify this adaptive feature selection module with
our data reduction module [32], making them the cornerstone of our DDM strategy. These
two components work synergistically; the data reduction module manages computational
load and overfitting [32], while the feature selection module ensures that only the most
informative, user-specific features are retained [37]. This integrated approach allows
our system to proactively combat data and concept drift while efficiently maintaining
performance and interpretability during retraining.

3. Data-Driven Optimization with DDM
We propose a Data-Driven Optimization approach, termed DDM, for healthcare

recommender systems in Edge MLOps environments. This approach streamlines model
retraining while adapting to both data drift and concept drift. Built on validated techniques
of data reduction and feature selection, DDM generates dynamic data versions that are
seamlessly integrated into the MLOps pipeline.

This integration not only preserves model performance but also improves computa-
tional efficiency in practice. As illustrated in Figure 3, the framework operates in iterative
cycles: data are ingested, processed, and analyzed to produce new versions, which subse-
quently drive model training, evaluation, and deployment. Each cycle generates refined
data versions that ensure retraining remains responsive to evolving data patterns and that
system performance is consistently sustained.

Figure 3. Overall architecture of the proposed Data-Driven Optimization framework based on DDM.

3.1. Overview of DDM

DDM is designed to sustain robust model performance in MLOps environments
by ensuring stability under continuously evolving datasets. As illustrated in Figure 4,
the architecture adopts a data-driven approach that integrates feature selection and data
reduction modules to construct optimized data versions. These versions balance the
preservation of historical user behavior patterns with adaptation to data drift. In doing
so, the framework seamlessly incorporates shifting data while sustaining a consistent user
experience. The generation of dynamic data versions is organized into four stages: raw
data ingestion, preprocessing, data analysis, and data packaging.

The raw dataset consists of both previously trained data and newly collected serving
data, the latter generated directly from service interactions. During preprocessing, essential
refinement steps—such as removing missing values and duplicates—are performed to
ensure data integrity and reliability. The analysis phase incorporates two complemen-
tary modules:

Sensors 2025, 25, 6369 7 of 23

• Feature selection module: identifies and retains the most critical user-relevant features,
preserving informative attributes essential for effective model training.

• Data reduction module: implemented using matrix factorization, eliminates redun-
dant portions of the training data, thereby compressing the dataset and improving
computational efficiency.

Figure 4. Workflow of dynamic data versioning for recommender systems using feature selection
and data reduction.

The data packaging stage consolidates the outcomes of feature selection and data
reduction to produce a dynamic data version. In this stage, redundant historical records
are removed while essential behavioral patterns are preserved, and user-specific salient
features are incorporated to improve data quality. The resulting packaged dataset is stored
as a new version and supplied to the MLOps pipeline, where it supports efficient retraining
and evaluation.

By integrating these modules, the framework generates well-balanced data versions
that retain historical behavioral patterns while incorporating newly emerging data. This
enables proactive adaptation to both data drift and concept drift, preventing performance
degradation and ensuring model stability.

3.2. Raw Data

In constructing dynamic data versions, raw data are categorized into two types:

• Old Data: datasets previously used for training recommender models, which preserve
historical patterns of user behavior.

• New Data: data collected during service operation, which capture the most recent
user behavior.

Healthcare wearable data—such as heart rate, exercise intensity, and recovery rate—
are highly variable over time. Therefore, integrating Old and New Data is essential for
mitigating model drift.

3.3. Preprocessing

During preprocessing, dataset reliability is ensured by removing missing values,
eliminating duplicates, and aligning user and item identifiers. Beyond these standard
procedures, the system extracts domain-specific features from wearable sensor logs. For
instance, exercise duration is derived from start and end timestamps, and total distance is
calculated using speed and GPS coordinates. Physiological metrics such as peak heart rate
and recovery speed, which reflect post-exercise stabilization, are also incorporated.

Sensors 2025, 25, 6369 8 of 23

3.4. Data Analysis

The procedure of DDM is summarized in Algorithm 1. Data are analyzed through the
data reduction and feature selection modules, which subsequently generate data versions
serving as inputs for machine learning training.

Algorithm 1: Dynamic Data Management (DDM) Workflow

1 Input: New_data (csv), Old_data (csv)
2 Output: Data_version_N (csv)

3 NewData, OldData← read_csv(New_data), read_csv(Old_data)
4 function dynamic_data_management(OldData, NewData):
5 NewData_preprocessed← preprocess(NewData)
6 UserPatternData, FeatureImportances← analyze_data(OldData, NewData_preprocessed)
7 DataVersion_N← package_data(UserPatternData, NewData_preprocessed, FeatureImportances)
8 return DataVersion_N
9 end function

10 function analyze_data(OldData, NewData_preprocessed):
11 UserPatternData← data_reduction_module(OldData)
12 FeatureImportances← feature_selection_module(UserPatternData, NewData_preprocessed)
13 return UserPatternData, FeatureImportances
14 end function

15 function package_data(UserPatternData, NewData_preprocessed, FeatureImportances):
16 DataVersion_N← combine(UserPatternData, NewData_preprocessed)
17 DataVersion_N← apply_weights_and_filter (DataVersion_N, FeatureImportances)
18 return DataVersion_N
19 end function

20 function data_reduction_module(data)
21 SummarizedData← summarize_time_series_features(data)
22 perSportData← filter_by_sports_type(SummarizedData)
23 ReducedData← apply_pca(perSportData)
24 UserPatternData← analyze_similarity(ReducedData)
25 return UserPatternData
26 end function

27 function feature_selection_module(UserPatternData, NewData_preprocessed)
28 EmbeddedFeatures← combine_features(attributeFeatures, contextualFeatures, sequentialFeatures, healthMetricFeatures)
29 FeatureWeights← calculate_feature_weights(EmbeddedFeatures)
30 FeatureImportance← select_important_features(FeatureWeights)
31 return FeatureImportance
32 end function

As outlined in Algorithm 1, the DDM workflow is engineered to optimize the retrain-
ing pipeline by systematically managing data volume and quality. The process commences
with the ingestion of historical (OldData) and newly collected (NewData) datasets. The
main dynamic_data_management function orchestrates the entire pipeline, beginning
with the preprocessing of NewData. It then invokes the analyze_data function, which
executes a dual analysis: the data_reduction_module first distills OldData into UserPat-
ternData, a compressed representation of essential user behaviors. Subsequently, the
feature_selection_module evaluates features from both this historical summary and the
new data to compute their predictive importance (FeatureImportances). In the final stage,
the package_data function synthesizes the new data version by merging UserPatternData
with the preprocessed new data and then refining the combined dataset using the calcu-
lated FeatureImportances. This systematic process ensures that the final output is both
resource-efficient and information-rich, enabling the system to proactively address data
drift while sustaining model performance.

3.4.1. Data Reduction Module

The data reduction module extracts latent temporal features and computes cosine
similarity across users to construct a similarity matrix. When user pairs exceed a predefined

Sensors 2025, 25, 6369 9 of 23

threshold, redundant sessions with fewer items are removed, thereby lowering dataset
complexity without discarding essential information.

As illustrated in Figure 5, the module operates in five sequential stages, with time-
series exercise log data serving as both input and output:

• Time-Series Feature Summarization: Each session is condensed into a fixed-length
vector using statistical measures such as mean, standard deviation, minimum, and
maximum. This reduces the computational burden of analyzing raw sequences.

• Filtering by Sports Type: The distribution of activities is analyzed, and sports cate-
gories with sufficient data volume are selectively retained. This reduces heterogene-
ity across exercise patterns (e.g., varying heart rate profiles) and enhances analyti-
cal reliability.

• Dimensionality Reduction: Principal Component Analysis (PCA) is applied to the
selected activity-specific data to reduce the feature space while preserving key infor-
mation and improving the efficiency of similarity assessment.

• Similarity Analysis: Reduced vectors are indexed using Annoy, and cosine similarity
is applied to enable efficient large-scale comparisons of session-level exercise patterns.

• Reducing User-Level Sessions: For each user’s dataset, highly similar sessions are con-
solidated by retaining a single representative instance, thereby reducing redundancy
while preserving the integrity of user-specific distributions.

Figure 5. The Data Reduction Module Workflow. The five-stage pipeline transforms raw time-series
exercise data into a condensed, optimized dataset. The process involves (1) feature summarization,
(2) filtering by sports type, (3) dimensionality reduction, (4) similarity analysis, and (5) user-level
session reduction. This approach is designed to enhance computational efficiency while preserving
essential user behavior patterns.

Sensors 2025, 25, 6369 10 of 23

Through this process, the dataset size is substantially reduced while essential behav-
ioral patterns are retained. As a result, the generated training data strike a balance between
computational efficiency and informational richness.

3.4.2. Feature Selection Module

The feature selection module employs a model-aware controller to dynamically assign
importance weights to input features. As shown in Figure 6, the module first categorizes
embedded user, item, and historical log data into four distinct groups:

• Attribute Features: user-related attributes.
• Contextual Features: exercise-related context such as intensity, type, and recov-

ery status.
• Health and Metric Features: physiological measures including heart rate and

blood pressure.
• Sequential Features: temporally ordered activity patterns.

Figure 6. The feature selection module workflow. The module operates in two stages: (1) Feature
Embedding, where user and item data are transformed into categorized features, and (2) Adaptive
Feature Selection, where a model-aware MLP controller, whose hidden layer neurons are depicted as
green circles, dynamically computes feature weights (am

n) based on a latent vector z. This process
identifies the most critical features to enhance both predictive performance and model interpretability.

At its core, a multi-layer perceptron (MLP) controller governs the weighting process,
assigning a weight am

n to each feature based on a latent vector z to prioritize the most
impactful signals for recommendation. The controller’s design is informed by state-of-
the-art AutoML frameworks [38] and consists of a two-layer MLP with ReLU activation, a
bi-level optimization strategy that uses validation loss as a supervision signal, and dropout
regularization (rate = 0.2). The effectiveness of this approach has been previously validated
in our prior work, where it was proven competitive against strong baselines like AdaFS
and AutoField [38].

Sensors 2025, 25, 6369 11 of 23

3.4.3. Data Package

The DDM workflow culminates in the Data Package stage, where the outputs from
the preceding modules are synthesized into a final, optimized data version. This process
begins by merging the compressed historical data (UserPatternData) with the preprocessed
new data (NewData_preprocessed). This aggregated dataset is then refined by applying
the FeatureImportances to selectively filter or weight the most critical features. The result
is a strategically balanced dataset that reduces computational load while preserving high
informational value, ensuring the system can effectively adapt to data drift and maintain
stable performance during retraining.

3.5. Implementation of the MLOps Environment

All experiments were conducted on a server equipped with an Intel Core i9-10920X
CPU (Intel, Santa Clara, CA, USA), 64 GB of RAM, and two NVIDIA GeForce RTX 4080
(16 GB) GPUs (NVIDIA, Santa Clara, CA, USA).

Our MLOps pipeline, orchestrated by Apache Airflow, integrates with a Kubernetes
cluster. This integration is enabled by the apache-airflow-providers-cncf-kubernetes pack-
age, which facilitates the use of the KubernetesExecutor. This executor dynamically
launches each DAG (Directed Acyclic Graph) task as an independent Kubernetes pod,
an architecture that prevents resource contention and supports dynamic scaling.

We implemented each pipeline stage—including data reduction and model retraining—
as a distinct task using the KubernetesPodOperator. This operator allows for the creation
of a dedicated pod for each task, enabling us to define task-specific Docker images and en-
vironmental configurations. This modular approach enhances the flexibility and reliability
of the entire MLOps pipeline.

The MLOps pipeline was orchestrated by Apache Airflow atop a Kubernetes cluster.
This architecture leverages the apache-airflow-providers-cncf-kubernetes package, which
enables the Kubernetes Executor to dynamically instantiate each DAG task as an indepen-
dent Kubernetes pod. This design prevents resource contention and supports dynamic
scaling. Each stage of our workflow, from data reduction to model retraining, was imple-
mented as a distinct task using the KubernetesPodOperator. This approach encapsulates
each task within a dedicated pod with its own Docker image and environment, enhancing
the pipeline’s modularity and reliability. Table 1 provides a comprehensive list of the
software packages and versions used in our experiments.

Table 1. Packages and versions used in the experiments.

Package Version of Package

Apache Airflow 2.7.2
Python 3.9

TensorFlow 2.18
Scikit-learn 1.2.2

Docker 27.3.1
Kubernetes 1.32.0

The proposed DDM system synergistically integrates data reduction and feature selec-
tion to achieve a dual objective: it eliminates data redundancy to enhance computational
efficiency while preserving high-importance features to maintain model accuracy. This
design is particularly crucial in domains like healthcare, where clinically vital but highly
variable signals—such as heart rate and recovery speed—must be retained to ensure reli-
able performance. By uniting these principles within an automated MLOps pipeline, our
framework yields a system that is both resource-efficient and robust, capable of delivering
continuous, stable performance in real-world service environments.

Sensors 2025, 25, 6369 12 of 23

4. Experiments and Results
This study evaluates the proposed DDM system with a focus on its effectiveness in

reducing computational overhead and sustaining stable recommender model performance
during retraining within an MLOps environment. The experimental framework follows a
structured process consisting of data preparation, environment configuration, algorithm
implementation, comparative evaluation, performance metric specification, and result
analysis. For this purpose, we employ the FitRec dataset, which contains wearable exercise
records from 1104 users across multiple activities, including running, cycling, and walking.
Using this dataset, we examine whether the DDM strategy improves retraining efficiency
compared to conventional static data management approaches.

4.1. Experimental Environment

The retraining pipeline, illustrated in Figure 7, is implemented within the MLOps
environment and orchestrated by Apache Airflow. It automates and manages the entire
workflow, from data collection to model updates. To ensure environmental consistency,
Docker is used to containerize each stage of the pipeline, with data preprocessing, dynamic
data generation, model training, and evaluation executed seamlessly within individual
containers. Data management is supported by MariaDB, where dynamic data versions—
produced through data reduction and feature selection algorithms—are stored and subse-
quently used as inputs for training and evaluation. For model implementation, we employ
an LSTM-based Deep Belief Network (DBN) model alongside a deep learning based Neural
Collaborative Filtering (NCF) model, both retrained periodically under the orchestration
of Airflow.

Figure 7. The Automated Retraining Pipeline as an Apache Airflow DAG. This diagram visualizes
the retraining workflow, a core, operational component of the broader MLOps lifecycle illustrated in
Figure 1. Each node in the Directed Acyclic Graph (DAG) encapsulates a specific, containerized task—
such as data reduction or model evaluation—that is executed sequentially. This automated structure
is instrumental in delivering stable and timely model updates in a real-world service environment.

4.2. Experimental Data

The experiments are conducted using the FitRec dataset, which contains 253,020 ex-
ercise sessions from 1104 users. This dataset encompasses 49 different exercise types—
including running, cycling, and walking—and includes wearable measurements such as
speed, altitude, and GPS coordinates [39]. For analysis, the data are divided into two cat-
egories: Old Data, used in prior model training to preserve historical patterns, and New
Data, collected during service operation to capture recent behavior.

To simulate a continuous retraining scenario, the dataset is divided chronologically
into four stages:

Sensors 2025, 25, 6369 13 of 23

• Stage 1 (Initial Training): 55% of the earliest sessions, used to train the initial model.
• Stage 2 (First Retraining): the Stage 1 model is retrained on 55% old data + 15%

new data, where old data preserves historical patterns and new data reflects recent
user behavior.

• Stage 3 (Second Retraining): the model is updated with 70% old data + 15% new data.
• Stage 4 (Third Retraining): the model is updated with 85% old data + 15% new data.

Recent studies suggest that immediate retraining upon the arrival of new data is not
always optimal. Zanotti et al. [40] demonstrated that periodic retraining using accumulated
data, rather than continuous updates, sustains predictive performance while substantially
reducing computational costs. Similarly, Bertsimas et al. [41] showed that aggregating data
for scheduled retraining, instead of incorporating every instance in real time, mitigates
model instability and enhances interpretability.

Building on these findings, this study adopts a strategy of retraining once a sufficient
volume of new data has accumulated. This is considered a balanced approach in terms of
accuracy, efficiency, and reliability. Moreover, this setting reflects the practical characteristics
of healthcare environments, where patient data are periodically collected and integrated.

4.3. Evaluation Metrics

To comprehensively evaluate the effectiveness of the proposed DDM strategy, we
consider three dimensions: prediction accuracy, recommendation accuracy, and resource
efficiency. This framework reflects the fact that retraining in healthcare environments must
deliver not only accurate predictions but also efficient and timely operations.

4.3.1. Metrics for Time-Series Prediction

Time-series prediction performance is assessed using MAE (Mean Absolute Error) and
RMSE (Root Mean Squared Error). MAE quantifies the average absolute deviation between
observed and predicted values, with lower scores indicating superior performance. RMSE,
by amplifying the effect of larger errors through squared deviations, is particularly well
suited for capturing instability caused by model drift.

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2. (2)

4.3.2. Metrics for Recommendation Accuracy

Recommendation accuracy is evaluated using Recall@K, Precision@K, F1 score@K, and
Normalized Discounted Cumulative Gain (NDCG@K). Recall@K measures the proportion
of relevant items retrieved within the top-K recommendations. Precision@K quantifies the
accuracy of the recommendations by measuring the fraction of items within the top-K list
that are actually relevant to the user. The F1 score@K is the harmonic mean of Precision
and Recall, providing a single, balanced metric that reflects the overall effectiveness by
considering both the accuracy and completeness of the recommendation set. Finally,
NDCG@K incorporates ranking positions by assigning higher scores when relevant items
appear closer to the top of the list. In this study, the cutoff value K is consistently fixed at
10 (i.e., K = 10) for all ranking metrics.

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

, F1 score = 2× Precision × Recall
Precision + Recall

(3)

Sensors 2025, 25, 6369 14 of 23

DCG =
n

∑
i=1

2reli − 1
log2(i + 1)

, (4)

NDCG =
DCG
IDCG

. (5)

4.3.3. Metrics for Resource Efficiency

Resource efficiency is measured in terms of retraining time under consistent conditions.
In MLOps environments, both retraining frequency and processing time directly affect the
speed of service delivery. These factors therefore serve as critical indicators for assessing
the system’s operational efficiency.

4.4. Experimental Results

In this section, we present the experimental findings of the proposed DDM approach
in comparison with baseline strategies, including full retraining and simple data merging.
The comparison focuses on three dimensions: time-series prediction, recommendation
accuracy, and resource efficiency. We also track performance trends across Stages 1 to 4 and
interpret the implications of the observed changes in each metric.

Our presentation of the results is structured to first validate the effectiveness of the
core DDM components, followed by an end-to-end evaluation of the entire framework. We
begin by presenting the outcomes of the data reduction (Section 4.4.1) and feature selection
(Section 4.4.2) modules. We then assess the system’s performance on its primary tasks: time-
series prediction (Section 4.4.3) and recommendation accuracy (Section 4.4.4). Finally, we
analyze the framework’s resource efficiency (Section 4.4.5) and present a detailed ablation
study (Section 4.4.6) to verify the contribution of each individual module.

4.4.1. Results of Data Reduction

Across Stages 1 to 4, dataset versions were managed dynamically, resulting in a pro-
gressive reduction of Old Data, as summarized in Table 2. The reduction process employed
PCA for dimensionality compression and cosine similarity to identify and eliminate redun-
dant records. With the similarity threshold set at 0.99, the recommender model maintained
stable performance. Importantly, the threshold can be tuned to balance two objectives:
preventing the loss of essential information during reduction and facilitating the smooth in-
tegration of new data. The resulting decrease in dataset size not only accelerates retraining
by lowering the volume of data to be processed but also minimizes performance loss, since
only highly similar sessions are removed.

Table 2. Results of data reduction.

FitRec Data

Data Version Old Data Reduced Old Data New Data Total Data

version 1 - - 139,161 139,161
version 2 139,161 118,285 (15%) 37,953 156,238
version 3 177,114 144,233 (17%) 37,953 182,186
version 4 215,067 176,339 (18%) 37,953 214,292

4.4.2. Results of Feature Selection

The feature selection module refines each data version by extracting the features most
critical to model performance and using them as inputs to the recommender system. Within
wearable data, heart rate consistently emerges as a key signal—reflecting physiological
status, indicating potential health risks, and guiding both exercise type and intensity.
Building on this insight, our study centers exercise recommendations around heart rate,

Sensors 2025, 25, 6369 15 of 23

leveraging wearable data to improve prediction accuracy. The adaptive algorithm assigns
greater weight to features with the strongest predictive impact, revealing that while feature
importance shifts slightly across data versions, average heart rate, exercise intensity, and
recovery speed consistently stand out as dominant indicators.

4.4.3. Results of Time-Series Prediction

The time-series prediction model (DBN) was evaluated using MAE (Mean Absolute
Error) and RMSE (Root Mean Squared Error). MAE measures the average prediction
error, while RMSE, being more sensitive to large deviations, is particularly useful for
assessing stability. As shown in Figures 8 and 9, the results of full training and stage-wise
retraining remain broadly consistent, indicating that the DDM strategy preserves prediction
performance while reducing computational costs.

(a) Stage 1

(b) Stage 2

Figure 8. Cont.

Sensors 2025, 25, 6369 16 of 23

(c) Stage 3

(d) Stage 4

Figure 8. Heart Rate Prediction Across Retraining Stages. This figure compares the true heart rate
(red line) with the model’s predicted heart rate (gray line) for each of the four retraining stages (a–d).
The L1 error (MAE) is displayed on each subplot to quantify the predictive accuracy at that stage.

Figure 9. Baseline Heart Rate Prediction on the Full Dataset. This plot illustrates the performance of
a model trained on the entire dataset, without the proposed DDM strategy. It serves as the baseline
for evaluating the predictive accuracy of the stage-wise DDM approach presented in Figure 9.

Sensors 2025, 25, 6369 17 of 23

Table 3 details the stage-by-stage performance of the time-series prediction model. The
initial training at Stage 1 established a baseline MAE of 5.2. Following the first retraining
cycle at Stage 2, the MAE temporarily rose to 6.7, reflecting the model’s initial adaptation
to new data patterns. However, performance significantly improved by Stage 3, with the
MAE decreasing to 4.5 and RMSE to 10.1. The model achieved its most stable and accurate
outcomes at Stage 4, delivering a final MAE of 3.9 and an RMSE of 8.7, both of which
surpassed the initial baseline performance.

Table 3. Result of MAE and RMSE.

FitRec Data

Data Version MAE RMSE

version 1 5.2 12.5
version 2 6.7 15.1
version 3 4.5 10.1
version 4 3.9 8.7

The transient increase in MAE at Stage 2 is characteristic of an initial adaptation phase,
where the model adjusts to discrepancies between historical and new data. Subsequently,
the model’s performance not only stabilized but significantly improved, with both MAE
and RMSE at Stage 4 falling below their initial baselines. This trend validates that our
DDM strategy, which combines data reduction and feature selection, effectively enhances
predictive accuracy over time. The greater variability observed in RMSE compared to
MAE further underscores the metric’s sensitivity to outliers and abrupt shifts in heart
rate. Ultimately, these results confirm our approach’s adeptness at navigating volatile
real-world data, preserving overall stability while minimizing performance loss during
sharp fluctuations

4.4.4. Results of Recommender Model

Our recommendation model, based on Neural Collaborative Filtering (NCF), leverages
three key inputs to generate personalized suggestions: user IDs, exercise IDs, and the heart
rate values predicted by the DBN model. The predicted heart rate serves as a rich contextual
feature to help forecast future exercises a user is likely to perform. During training, we
employed a random sampling strategy for negative instances to enhance data augmentation,
and all evaluations were conducted on top-10 recommendations (K = 10).

To ensure a robust evaluation and prevent data leakage, we adhered to a strict chrono-
logical data splitting protocol. The dataset was sorted by timestamp, with the oldest 80%
of interactions used for training, the next 10% for validation, and the most recent 10%
for testing. For model training, each positive user-exercise interaction was paired with
four negative instances, which were uniformly sampled from the entire item catalog. The
ground-truth for evaluation was defined as the set of exercise IDs a user actually consumed
in the test set. Finally, we clarify that the heart rate predictions from the DBN model
function exclusively as contextual input features for the NCF model; its predictive task is
to recommend future exercises, not to predict heart rate values.

The results in Table 4 show a consistent improvement in all recommendation metrics
as the retraining stages progress. While this improvement is partly attributable to the
natural increase in cumulative training data, the more critical finding lies in the comparison
between Stage 4 and the “Full training” baseline.

Sensors 2025, 25, 6369 18 of 23

Table 4. Comparison of recommender model accuracy (K = 10).

Training Phases Recall Precision F1 Score NDCG

Stage 1 0.25 0.11 0.15 0.0821
Stage 2 0.34 0.14 0.19 0.1134
Stage 3 0.51 0.20 0.28 0.1416
Stage 4 0.52 0.22 0.30 0.1480

Full training 0.54 0.24 0.33 0.1572

The performance at Stage 4—achieved using an intelligently reduced dataset—closely
mirrors that of the model trained on the entire dataset. For instance, the NDCG score at
Stage 4 (0.1480) is nearly identical to the baseline (0.1572). This demonstrates that our
DDM strategy successfully achieves its primary goal: it goes beyond merely accumulating
data and effectively harmonizes the core patterns of existing users with the latest trends
from new data. This result, combined with the significant efficiency gains shown in
Table 5, validates that our framework maintains near-optimal recommendation quality
while substantially reducing the computational cost of retraining.

Table 5. Comparison of Retraining Time by Method (unit: minutes).

FitRec Data

Data Version Retraining from
Scratch

Simple Data
Merging Ours

version 1 15 15 15
version 2 21 18 17
version 3 25 20 19
version 4 31 24 21

4.4.5. Resource Efficiency

Resource efficiency was evaluated by comparing retraining times across methods, as
summarized in Table 5. The comparison involves three approaches:

• Retraining from scratch: all old and new data are used at every retraining step.
• Simple data merging: old and new data are blended in predetermined ratios for

retraining.
• Proposed DDM: old data are reduced, and adaptively selected key features are re-

tained to generate dynamic data versions for retraining.

The Simple data merging method serves as a crucial benchmark. It is designed to
demonstrate that our DDM’s performance gains stem from qualitative data optimization,
not just volume reduction. For this baseline, we retrain the model using a dataset where
the amount of old data is identical to that of our DDM’s reduced dataset. However, this
data is selected via uniform random sampling from the original old data, in contrast to
our DDM’s intelligent, pattern-based selection. This ensures a fair comparison of the data
selection methodologies.

At Stage 4, the proposed approach reduced retraining time by approximately 32%.
By decreasing both dataset size and feature dimensionality, the method directly lowered
computational demand, resulting in faster retraining and more efficient resource utilization.
Over extended MLOps deployments, these improvements can translate into reduced
operational costs and enhanced scalability.

4.4.6. Ablation Study

To justify our hyperparameter selections for the data reduction module, we conducted
a comprehensive sensitivity analysis.

Sensors 2025, 25, 6369 19 of 23

This version restructures the paragraph to introduce the analysis, define the baseline,
and then discuss the results in a single, logical flow.

We conducted a sensitivity analysis to determine the optimal hyperparameters for our
data reduction module. First, we evaluated the impact of the cosine similarity threshold,
with the results presented in Table 6. In this table, the “Original” row serves as the baseline
for the analysis, representing the performance on the full, unfiltered Stage 4 dataset where
no data reduction is applied (Reduction Rate = 0%). This scenario is equivalent to the
“Retraining from scratch” baseline in Table 5, which has a retraining time of 31 min.

Table 6. Ablation study on data reduction (without Feature selection).

Similarity
Threshold Reduction Rate (%) NDCG Retraining

Time

100% 0% 0.0912 31
99.5% 7% 0.0937 27
99% 14% 0.0924 21

97.5% 30% 0.0908 17
95% 48% 0.0895 14
90% 65% 0.0762 11

The analysis demonstrates a clear trade-off between recommendation accuracy
(NDCG) and computational efficiency (Reduction Rate, Retraining Time). While a thresh-
old of 99.5% achieves the highest NDCG, we selected 99% as our final value. This choice
provides a superior balance, securing a 14% data reduction and a significant decrease in
retraining time with only a negligible impact on performance.

Second, for dimensionality reduction, we experimented with the number of PCA
components (n = 3, 4, 5, 6), which yielded cumulative explained variance values of 85%,
95%, 98%, and 99%, respectively. We chose n = 5, as it preserves 98% of the variance,
ensuring robust feature representation while avoiding the minimal gains and additional
computational cost of using n = 6.

Finally, we optimized the Annoy index parameters (n_trees, search_k). A configuration
of (10, 100) achieved 99% recall compared to a brute-force search baseline. While increasing
the parameters to (100, 1000) improved recall to 99.9%, it also quadrupled the computational
cost. We therefore selected (10, 100) as the most efficient configuration.

To isolate and quantify the contribution of each core component, we conducted an
ablation study with the results summarized in Table 7. The findings revealed that both the
Data Reduction and Feature Selection modules are integral to the framework’s success. Re-
moving the Data Reduction module led to a notable performance decline (RMSE increased
to 9.8; NDCG fell to 0.1394). However, removing the Feature Selection module resulted in a
more substantial degradation (RMSE surged to 11.4; NDCG dropped to 0.1312), underscor-
ing that data quality is an even more critical determinant of predictive accuracy. This study
ultimately confirms that the synergistic interplay between managing data volume (Data
Reduction) and curating data quality (Feature Selection) is indispensable for achieving
optimal performance and efficiency.

Table 7. Ablation study on module contribution.

Model RMSE NDCG Retraining
Time

DDM 8.7 0.1480 21
Without Data Reduction 9.8 0.1394 24
Without Feature Selection 11.4 0.1312 25

Sensors 2025, 25, 6369 20 of 23

5. Discussion
While this study demonstrates the effectiveness of our DDM framework, it is important

to acknowledge the boundaries of our investigation, which in turn delineate promising
avenues for future research. The primary limitations are the reliance on a single dataset
(FitRec) and the use of only two specific model architectures (DBN and NCF). Therefore,
future work should focus on enhancing the framework’s generalizability and expanding its
applicability by integrating more advanced strategies.

5.1. Latency and Memory Efficiency

Our current approach focuses on an asynchronous retraining cycle triggered by a
fixed schedule or the accumulation of new data. We acknowledge the critical need for
real-time data processing, particularly in high-stakes healthcare scenarios. Therefore,
future research will aim to extend the framework to support real-time scalability. This
will involve developing drift-aware conditional updates and integrating incremental and
continual learning methods. These enhancements will enable the model to adapt to new
data instances as they arrive, thereby minimizing prediction latency and ensuring sustained
responsiveness to rapid changes in patient data.

Furthermore, while our study has demonstrated that data reduction and feature
selection improve computational efficiency by decreasing the size and dimensionality
of the dataset, a more comprehensive future study will investigate memory efficiency
from both a data and a model perspective. This research will explore optimizing model
architecture to minimize its memory footprint and developing more sophisticated data
management techniques that go beyond simple data size reduction. The ultimate goal is to
build an end-to-end, memory-efficient pipeline suitable for both resource-constrained edge
devices and large-scale cloud environments.

5.2. Extending Scalability and Generalizability

The container-based design of our MLOps pipeline renders the proposed methodology
inherently scalable. By leveraging Docker and Airflow, the framework facilitates horizontal
scaling, ensuring that the retraining pipeline can be seamlessly integrated into large-scale
production environments.

A primary limitation regarding generalizability, however, was the dataset itself. While
rich in interaction data, the FitRec dataset lacks granular item-side attributes such as
target muscle groups, difficulty levels, or potential injury risks. This absence precluded a
meaningful evaluation of recommendation diversity and coverage, as the model could not
generate recommendations tailored to nuanced fitness goals. Future work should focus on
augmenting the dataset with this richer information. Such an enhancement would not only
unlock the framework’s potential to generate more diverse and safer workout plans but
would also enable a more robust evaluation using these key metrics. To further broaden the
framework’s applicability beyond healthcare, subsequent research could also incorporate
heterogeneous sensor data to improve its adaptability across other domains.

6. Conclusions
This study introduced a Dynamic Data Management (DDM) strategy designed to

ensure the long-term performance and efficiency of personalized healthcare recommender
systems within an MLOps environment. Our primary contribution lies in the synergistic
unification of data reduction and feature selection within a single, automated pipeline.
Unlike prior works that address data volume and quality in isolation, our approach simulta-
neously manages computational load by eliminating redundancy and preserves predictive

Sensors 2025, 25, 6369 21 of 23

accuracy by curating the most informative features, enabling proactive adaptation to data
and concept drift.

Our empirical evaluation, conducted on the FitRec wearable dataset, validated the
effectiveness of this approach. The DDM strategy achieved a 32% reduction in retraining
time compared to a full retraining baseline, while maintaining comparable accuracy in
both heart rate prediction and recommendation quality. Furthermore, our ablation study
confirmed that both modules are critical, and underscored the pivotal role of data quality
curated by the feature selection module. These results confirm that DDM is a practical and
scalable solution for reducing operational costs without sacrificing performance, offering
significant benefits for Edge AI driven healthcare services that demand frequent and
efficient model updates.

While the findings are promising, we acknowledge the study’s current scope. Future
work will aim to broaden the framework’s generalizability and efficiency. Key directions
include (i) extending generalizability by applying the framework to diverse datasets and
a wider range of model families and (ii) enhancing efficiency and responsiveness by
integrating continual learning to minimize latency and conducting a deeper analysis of
memory efficiency for resource-constrained environments. These efforts will advance
DDM toward a more flexible and robust solution for the next generation of adaptive
recommender systems.

Author Contributions: Conceptualization, J.C. (Jongsun Choi) and Y.P.; Writing—original draft, Y.P.;
Writing—review & editing, J.M., Y.L., J.U. and J.C. (Jongsun Choi); Supervision, J.C. (Jongsun Choi)
and J.C. (Jaeyoung Choi); Project administration, J.C. (Jaeyoung Choi). All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2022-0-00218).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. The data supporting
this work were obtained from the FitRec dataset, originally created by Jiamo Ni and collaborators.
Access to the dataset can be requested from the authors through https://github.com/nijianmo/fit-rec
(accessed on 12 October 2025). The code used for the model implementation and analysis is available
from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Estrada-Solano, F.; Caicedo, O.M. A comprehensive survey on

machine learning for networking: Evolution, applications and research opportunities. J. Internet Serv. Appl. 2018, 9, 16. [CrossRef]
2. Ko, H.; Lee, S.; Park, Y.; Choi, A. A survey of recommendation systems: Recommendation models, techniques, and application

fields. Electronics 2022, 11, 141. [CrossRef]
3. Yue, W.; Wang, Z.; Zhang, J.; Liu, X. An overview of recommendation techniques and their applications in healthcare. IEEE/CAA

J. Autom. Sin. 2021, 8, 701–717. [CrossRef]
4. Bayram, F.; Ahmed, B.S.; Kassler, A. From concept drift to model degradation: An overview on performance-aware drift detectors.

Knowl. Based Syst. 2022, 245, 108632. [CrossRef]
5. Ma, X.; Li, M.; Liu, X. Advancements in recommender systems: A comprehensive analysis based on data, algorithms, and

evaluation. arXiv 2024, arXiv:18937. [CrossRef]
6. Tran, T.N.T.; Felfernig, A.; Trattner, C.; Holzinger, A. Recommender systems in the healthcare domain: State-of-the-art and

research issues. J. Intell. Inf. Syst. 2021, 57, 171–201. [CrossRef]
7. Zarour, M.; Alzabut, H.; Al-Sarayreh, K.T. MLOps best practices, challenges and maturity models: A systematic literature review.

Inf. Softw. Technol. 2025, 183, 107733. [CrossRef]

https://github.com/nijianmo/fit-rec
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.3390/electronics11010141
https://doi.org/10.1109/JAS.2021.1003919
https://doi.org/10.1016/j.knosys.2022.108632
https://doi.org/10.12928/ijio.v6i1.11107
https://doi.org/10.1007/s10844-020-00633-6
https://doi.org/10.1016/j.infsof.2025.107733

Sensors 2025, 25, 6369 22 of 23

8. Fujii, T.Y.; Hayashi, V.T.; Arakaki, R.; Ruggiero, W.V.; Bulla Jr, R.; Hayashi, F.H.; Khalil, K.A. A digital twin architecture model
applied with MLOps techniques to improve short-term energy consumption prediction. Machines 2021, 10, 23. [CrossRef]

9. Miñón, R.; Diaz-de-Arcaya, J.; Torre-Bastida, A.I.; Hartlieb, P. Pangea: An MLOps tool for automatically generating infrastructure
and deploying analytic pipelines in edge, fog and cloud layers. Sensors 2022, 22, 4425. [CrossRef]

10. Sritrakool, N.; Maneeroj, S. Personalized preference drift aware sequential recommender system. IEEE Access 2021, 9,
155491–155506. [CrossRef]

11. Sun, B.; Dong, L. Dynamic model adaptive to user interest drift based on cluster and nearest neighbors. IEEE Access 2017, 5,
1682–1691. [CrossRef]

12. Rabiu, I.; Salim, N.; Da’u, A.; Osman, A. Recommender system based on temporal models: A systematic review. Appl. Sci. 2020,
10, 2204. [CrossRef]

13. Raj, E.; Buffoni, D.; Westerlund, M.; Ahola, K. Edge mlops: An automation framework for aiot applications. In Proceedings of the
2021 IEEE International Conference on Cloud Engineering (IC2E), San Francisco, CA, USA, 4–8 October 2021.

14. Bayram, F.; Ahmed, B.S. Towards trustworthy machine learning in production: An overview of the robustness in mlops approach.
ACM Comput. Surv. 2025, 57, 121. [CrossRef]

15. Amazon Science. On Challenges in Machine Learning Model Management. 2012. Available online: https://www.amazon.
science/publications/on-challenges-in-machine-learning-model-management (accessed on 21 August 2025).

16. Mahadevan, A.; Mathioudakis, M. Cost-aware retraining for machine learning. Knowl. Based Syst. 2024, 293, 111610. [CrossRef]
17. Aleixo, E.L.; Colonna, J.G.; Cristo, M.; Fernandes, E. Catastrophic forgetting in deep learning: A comprehensive taxonomy. arXiv

2023, arXiv:10549. [CrossRef]
18. Klabjan, D.; Zhu, X. Neural network retraining for model serving. arXiv 2020, arXiv:14203.
19. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-

Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef]

20. Lopez-Paz, D.; Ranzato, M.A. Gradient episodic memory for continual learning. In Proceedings of the Advances in Neural
Information Processing Systems 30, Long Beach, CA, USA, 4–9 December 2017.

21. Roh, Y.; Heo, G.; Whang, S.E. A survey on data collection for machine learning: A big data-ai integration perspective. IEEE Trans.
Knowl. Data Eng. 2019, 33, 1328–1347. [CrossRef]

22. Polyzotis, N.; Roy, S.; Whang, S.E.; Zinkevich, M. Data lifecycle challenges in production machine learning: A survey. ACM
Sigmod Rec. 2018, 47, 17–28. [CrossRef]

23. Polyzotis, N.; Roy, S.; Whang, S.E.; Zinkevich, M. Data management challenges in production machine learning. In Proceedings
of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–19 May 2017.

24. Naveed, H.; Arora, C.; Khalajzadeh, H.; Grundy, J.; Haggag, O. Model driven engineering for machine learning components:
A systematic literature review. Inf. Softw. Technol. 2024, 169, 107423. [CrossRef]

25. Baumann, N.; Kusmenko, E.; Ritz, J.; Rumpe, B.; Weber, M.B. Dynamic data management for continuous retraining. In Proceedings
of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, Montreal,
QC, Canada, 23–28 October 2022.

26. Heinrich, B.; Hopf, M.; Lohninger, D.; Schiller, A.; Szubartowicz, M. Data quality in recommender systems: The impact of
completeness of item content data on prediction accuracy of recommender systems. Electron. Mark. 2021, 31, 389–409. [CrossRef]

27. Basaran, D.; Ntoutsi, E.; Zimek, A. Redundancies in data and their effect on the evaluation of recommendation systems: A case
study on the amazon reviews datasets. In Proceedings of the 2017 SIAM International Conference on Data Mining, Houston, TX,
USA, 27–29 April 2017.

28. Biega, A.J.; Potash, P.; Daumé, H.; Diaz, F.; Finck, M. Operationalizing the legal principle of data minimization for personalization.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an
China, 25–30 July 2020.

29. Zhang, H.; Luo, F.; Wu, J.; He, X.; Li, Y. LightFR: Lightweight federated recommendation with privacy-preserving matrix
factorization. ACM Trans. Inf. Syst. 2023, 41, 90. [CrossRef]

30. Niu, X.; Rahman, R.; Wu, X.; Fu, Z.; Xu, D.; Qiu, R. Leveraging uncertainty quantification for reducing data for recommender
systems. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023.

31. Ahmadian Yazdi, H.; Seyyed Mahdavi Chabok, S.J.; KheirAbadi, M. Effective data reduction for time-aware recommender
systems. Control Optim. Appl. Math. 2023, 8, 33–53.

32. Lee, Y.; Park, Y.; Kayange, H.; Um, J.; Choi, J.; Choi, J. Lightweight Similarity-Based Approach for Reducing User Interaction Data
with Matrix Factorization in a Recommendation System. In Proceedings of the 2025 International Conference on Information
Networking (ICOIN), Chiang Mai, Thailand, 15–17 January 2025.

33. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv.
(CSUR) 2017, 50, 94. [CrossRef]

https://doi.org/10.3390/machines10010023
https://doi.org/10.3390/s22124425
https://doi.org/10.1109/ACCESS.2021.3128769
https://doi.org/10.1109/ACCESS.2017.2669243
https://doi.org/10.3390/app10072204
https://doi.org/10.1145/3708497
https://www.amazon.science/publications/on-challenges-in-machine-learning-model-management
https://www.amazon.science/publications/on-challenges-in-machine-learning-model-management
https://doi.org/10.1016/j.knosys.2024.111610
https://doi.org/10.5753/jbcs.2024.3966
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1109/TKDE.2019.2946162
https://doi.org/10.1145/3299887.3299891
https://doi.org/10.1016/j.infsof.2024.107423
https://doi.org/10.1007/s12525-019-00366-7
https://doi.org/10.1145/3578361
https://doi.org/10.1145/3136625

Sensors 2025, 25, 6369 23 of 23

34. Lin, W.; Zhao, X.; Wang, Y.; Xu, T.; Wu, X. AdaFS: Adaptive feature selection in deep recommender system. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022.

35. Lyu, F.; Tang, X.; Liu, D.; Chen, L.; He, X.; Liu, X. Optimizing feature set for click-through rate prediction. In Proceedings of the
ACM Web Conference 2023, Austin, TX, USA, 30 April–4 May 2023.

36. Wang, Y.; Zhao, X.; Xu, T.; Wu, X. Autofield: Automating feature selection in deep recommender systems. In Proceedings of the
ACM Web Conference 2022, Lyon, France, 25–29 April 2022.

37. Kayange, H.; Mun, J.; Park, Y.; Choi, J.; Choi, J. A Hybrid Approach to Modeling Heart Rate Response for Personalized Fitness
Recommendations Using Wearable Data. Electronics 2024, 13, 3888. [CrossRef]

38. Kayange, H.; Mun, J.; Park, Y.; Choi, J.; Choi, J. ProAdaFS: Probabilistic and Adaptive Feature Selection in Deep Recommendation
Systems. In Proceedings of the 2024 International Conference on Information Networking (ICOIN), Bangkok, Thailand, 17–19
January 2024.

39. Jiamo, N.; Muhlstein, L.; McAuley, J. Modeling heart rate and activity data for personalized fitness recommendation. In
Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019.

40. Zanotti, M. On the retraining frequency of global forecasting models. arXiv 2025, arXiv:00356.
41. Bertsimas, D.; Digalakis Jr, V.; Ma, Y.; Paschalidis, P. Towards Stable Machine Learning Model Retraining via Slowly Varying

Sequences. arXiv 2024, arXiv:19871.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics13193888

	Introduction
	Related Work
	Preliminary
	Recommender Systems
	Edge MLOps

	Model Retraining and Continuous Learning
	Data Management in ML
	Data Reduction
	Feature Selection

	Data-Driven Optimization with DDM
	Overview of DDM
	Raw Data
	Preprocessing
	Data Analysis
	Data Reduction Module
	Feature Selection Module
	Data Package

	Implementation of the MLOps Environment

	Experiments and Results
	Experimental Environment
	Experimental Data
	Evaluation Metrics
	Metrics for Time-Series Prediction
	Metrics for Recommendation Accuracy
	Metrics for Resource Efficiency

	Experimental Results
	Results of Data Reduction
	Results of Feature Selection
	Results of Time-Series Prediction
	Results of Recommender Model
	Resource Efficiency
	Ablation Study

	Discussion
	Latency and Memory Efficiency
	Extending Scalability and Generalizability

	Conclusions
	References

