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Abstract

The prediction of Remaining Useful Life (RUL) constitutes a vital aspect of Prognostics
and Health Management (PHM), providing capabilities for the assessment of mechanical
component health status and prediction of failure instances. Recent studies on feature
extraction, time-series modeling, and multi-task learning have shown remarkable advance-
ments. However, most deep learning (DL) techniques predominantly focus on unimodal
data or static feature extraction techniques, resulting in a lack of RUL prediction methods
that can effectively capture the individual differences among heterogeneous sensors and
failure modes under complex operational conditions. To overcome these limitations, an
adaptive RUL prediction framework named ADAPT-RULNet is proposed for mechanical
components, integrating the feature extraction capabilities of attention-enhanced deep
learning (DL) and the decision-making abilities of deep reinforcement learning (DRL) to
achieve end-to-end optimization from raw data to accurate RUL prediction. Initially, Func-
tional Alignment Resampling (FAR) is employed to generate high-quality functional signals;
then, attention-enhanced Dynamic Time Warping (DTW) is leveraged to obtain individual
degradation stages. Subsequently, an attention-enhanced of hybrid multi-scale RUL pre-
diction network is constructed to extract both local and global features from multi-format
data. Furthermore, the network achieves optimal feature representation by adaptively
fusing multi-source features through Bayesian methods. Finally, we innovatively introduce
a Deep Deterministic Policy Gradient (DDPG) strategy from DRL to adaptively optimize
key parameters in the construction of individual degradation stages and achieve a global
balance between model complexity and prediction accuracy. The proposed model was
evaluated on aircraft engines and railway freight car wheels. The results indicate that it
achieves a lower average Root Mean Square Error (RMSE) and higher accuracy in compari-
son with current approaches. Moreover, the method shows strong potential for improving
prediction accuracy and robustness in varied industrial applications.

Keywords: remaining useful life (RUL) prediction; attention mechanism; Deep Deterministic
Policy Gradient (DDPG); Functional Alignment Resampling (FAR)
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1. Introduction
With the rapid digital and intelligent transformation of manufacturing, key equipment

components are increasingly evolving toward greater scale and integration [1]. When me-
chanical equipment components operate under complex conditions, degradation rates and
degradation patterns exhibit significant individual variability. Based on daily inspection
and regular maintenance, planned preventive maintenance in traditional maintenance
strategies results in serious delays in fault monitoring and weak preventive abilities [2].
The development and application of Prognostics and Health Management (PHM) technol-
ogy, which relies on the real-time health status of equipment, are dedicated to avoiding
excessive maintenance, reducing false-alarm rates, and ensuring safe equipment operation
by dynamically scheduling maintenance. As an essential aspect of PHM, Remaining Use-
ful Life (RUL) prediction focuses on continuously monitoring equipment conditions and
predicting failure times to extend the operational duration of the equipment and improve
economic efficiency. Typical RUL prediction approaches are generally categorized into
physics-based approaches and data-driven approaches [3].

Physics-based approaches represent the degradation process by establishing phys-
ical models of a complex system. For instance, Zhang et al. [4] developed a capacity-
cycling degradation model to estimate the RUL of online lithium-ion batteries. In their
study, they estimated the core temperature, state of charge, and battery capacity by
leveraging thermal and Coulomb SOC models. Similarly, Shutin et al. [5] proposed a
degradation model integrating tribological theory with the physical wear mechanisms
of rolling bearings to predict the RUL of hydrodynamic bearings. In another study,
Protopapadakis et al. [6] implemented an understandable AI-assisted RUL estimation
method for turbine engines by leveraging a degradation model derived from aerothermo-
dynamics and analyzing measurement data. Although physics-based methods are easily
interpretable, their reliance on in-depth information about the principle of equipment
failure mechanisms and domain-specific knowledge limits their generalization capability
for unknown complex systems.

The widespread adoption of intelligent sensors and advances in big data tech-
nology are rapidly increasing the volume of monitoring data available to industries.
Extracting value from these multi-source, heterogeneous datasets enhances Remaining
Useful Life (RUL) prediction. Thus, data-driven RUL prediction is becoming popular
across industrial and academic domains. Currently, data-driven remaining useful life
prediction mainly utilizes three prevalent approaches: statistical methods, machine
learning (ML), and deep learning (DL). Statistical methods such as Hidden Markov
Models (HMMs), Kalman filters, and Wiener processes analyze statistical distributions,
trends, and patterns in historical data to model equipment degradation and predict the
RUL. Zhang et al. [7] successfully addressed challenges related to nonlinearity, state
transitions, and stochasticity in predicting the remaining useful life of lithium-ion bat-
teries. Their approach combines a nonlinear drift-driven Wiener process, a Markov
chain-switching model, and a fuzzy system. Furthermore, they significantly improved
the model’s reliability in terms of predictive precision by introducing adaptive filter-
ing techniques in dynamic environments. Although statistical models are computa-
tionally efficient, they have limited ability in modeling nonlinear relationships. As a
result, they are frequently combined with ML approaches, including Support Vector
Machines (SVMs), Random Forests (RFs), and decision trees, to derive valuable infor-
mation from the Probability Density Functions (PDFs) of datasets [8]. For instance,
Alfarizi et al. [9] constructed a two-stage model to forecast the remaining useful life
of experimental bearings. In the first stage, the input signals were decomposed into
different frequency bands using empirical mode decomposition, eliminating irrelevant
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frequencies and highlighting fault characteristics. In the second stage, they combined
a random forest model with Bayesian hyperparameter tuning to enhance the accuracy
of RUL prediction. Although ML methods show strong nonlinear modeling capabili-
ties, the abovementioned component-level RUL prediction approaches grounded in ML
methodologies demand an index that reflects degradation levels and heavily rely on fea-
ture engineering, rendering them unsuitable for RUL prediction using multidimensional
time-series data (MTSD).

As a subfield of ML, DL provides substantial technological advantages for compo-
nent RUL prediction, owing to its strengths in modeling intricate nonlinear relationships,
processing high-dimensional data, and automating feature engineering. Recurrent Neu-
ral Network (RNNs), which are capable of capturing temporal degradation patterns,
are extensively used for estimating RUL [10]. Nevertheless, for extended time-series
data, they are prone to issues such as gradient explosion and reduced computational
efficiency, limiting their practical deployment in industrial settings [11]. As enhanced
successors of RNNs, the use of Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRUs) strengthens the ability to model long-term dependencies and mitigate
gradient vanishing and explosion via gating mechanisms and gradient optimization
strategies, establishing them as dominant approaches in remaining useful life estimation.
Chui et al. [12] presented a Non-dominated Sorting Genetic Algorithm II (NSGA-II)-
based RUL prediction model that combines the short-term prediction strengths of RNNs
with the long-term prediction capabilities of LSTM, ultimately efficiently addressing
challenges related to machine downtime and redundant maintenance during the running
to failure and preventive maintenance of turbofan engines. Beyond long-term temporal
dependencies, it is essential to consider the local features of MTSD. To combine global
temporal patterns and local and global information for the RUL prediction of equipment,
Cao et al. [13] proposed a parallel RUL prediction architecture combining a multi-scale
CNN (MSCNN) and multi-scale LSTM (MSLSTM) to extract multi-dimensional health
indicators, effectively reducing the local fluctuation caused by the CNN. Then, they
used a dynamic time warping (DTW)-based similarity-matching algorithm to identify
historical training samples with degradation trends similar to the test sequence. Finally,
they achieved accurate prediction for railway freight car wheels. Duan et al. [14] treated
mechanical monitoring data as “natural language sequences of machines” and input
them into a Transformer. This methods begins by utilizing its attention layers to high-
light core time-step information and compute the output in parallel, followed by the
integration of two attention mechanisms in the Transformer structure with LSTM in the
encoder to extract both local and long-term temporal dependency information of the
degradation process. Finally, it employs a nonlinear Wiener process (NWP) to calculate
the PDF of the RUL. Song et al. [15] addressed the impact of prediction outcomes of the
complex interactions among high-dimensional variables in MTSD by constructing multi-
dimensional feature-correlated spatiotemporal (MFCST) graphs to implement feature
extraction for data in different formats while employing a stacked long short-term mem-
ory (ST-LSTM) network to comprehensively explore local and global temporal pattern
of MTSD. Then, they strategically weighted spatial and temporal patterns to enhance
the model’s generalization ability and spatial perception of high-dimensional variable
feature structures. Currently, DL-based methods for RUL prediction frequently adopt
averaging or predefined weights to address issues such as high-frequency noise, local
fluctuations, and missing values in high-frequency sensor data. Additionally, models
trained using randomly sampled training data cannot adequately leverage the intrinsic
correlations among sensors and their different levels of contributionsto the degradation
process, which limits the model’s predictive capability on real-time data. To resolve
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these difficulties, regularization techniques are typically used, but they require manual
parameter tuning, increasing the cost of human intervention.

In contrast, deep reinforcement learning (DRL) stands out as an ML technique,
providing significant support for the capture of temporal dependencies in equipment
RUL prediction due to its remarkable ability to learn optimal strategies through in-
teraction with the environment, achieving stronger exploration and generalization
capabilities [16]. In particular, DRL is divided into two approaches: the value-based Deep
Q-Network (DQN) algorithm and the Deterministic Policy Gradient (DPG) algorithm.
DQN uses deep neural networks to approximate the Q-value function and improves
stability through experience replay and target networks. On this basis, Yao et al. [17] pro-
posed a Deep Transfer Reinforcement Learning (DTRL) network based on LSTM, which
utilizes novel Q-function updates and transfer strategies to estimate the RUL of machin-
ery operating under similar tool and cutting conditions. DQN demonstrates exceptional
performance in discrete action spaces; however, it exhibits significant limitations when
applied to continuous action spaces. In contrast, DPG directly optimizes policy param-
eters through gradient ascent to maximize expected rewards. Despite its theoretical
elegance, DPG lacks scalability in deep learning frameworks [18]. To address this, Actor–
Critic algorithm was developed as an enhancement of DPG, combining value-function
approximation with policy gradient methods. By leveraging the advantage function, it
effectively reduces variance in gradient estimation [19]. Nevertheless, the Actor–Critic
model’s training remains unstable due to high variance. Building upon this, the Deep
Deterministic Policy Gradient (DDPG) algorithm extends the Actor–Critic strategy and
is specifically designed for continuous action spaces. DDPG incorporates deterministic
policies and target networks, successfully scaling DPG to high-dimensional, continuous
action spaces and improving training stability. Zheng et al. [20] designed a DRL model
trained based on the Twin Delayed DDPG (TD3) algorithm. The model leverages the
powerful feature representation of DL while maintaining temporal dependencies across
samples through RL, enabling accurate RUL estimation for rolling bearings. Hu et al. [21]
integrated DRL with a Markov Decision Process (MDP) framework to learn to derive an
optimal strategy for RUL prediction. Although current deep fusion techniques mitigate
the shortcomings of conventional DL in RUL prediction and improve model robust-
ness and adaptability, the use of DRL to dynamically adjust time-scale parameters and
prioritize critical degradation phases remains an unresolved challenge.

To overcome the above limitations, this study presents ADAPT-RULNet, an adaptive
RUL prediction framework that integrates attention mechanisms with DRL based on
a hybrid network. The proposed framework enhances the quality of input signals by
utilizing Functional Alignment Resampling (FAR) for MTSD preprocessing and using DTW
to construct personalized datasets with similar degradation stages. The framework extracts
both local and long-term degraded information from MTSD through an attention-enhanced
multi-scale CNN and LSTM. These features are then integrated through an adaptive
Bayesian fusion layer, thereby achieving better prediction performance. Furthermore,
the framework introduces the DDPG to adaptively adjust critical time-scale parameters
to obtain an optimal global balance between prediction accuracy and model complexity.
To validate the effectiveness of ADAPT-RULNet, extensive experiments were carried out on
two datasets in comparison with the advanced method. The experimental results suggest
that ADAPT-RULNet outperforms all other approaches, on average.

The main contributions of this work are outlined below:

1. We propose a robust and precise data preprocessing framework for mechanical equip-
ment RUL prediction. By employing the novel FAR method for data signal opti-
mization, we effectively address the issues of noise, heterogeneity, and inconsistent
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time-series lengths in raw sensor data, thereby providing high-quality input sig-
nals for subsequent feature extraction. Furthermore, leveraging the attention-based
DTW-enhanced model leads to the selection of degradation stages with highly similar
processes across devices to construct a personalized dataset with high-quality and
consistent degradation.

2. We construct an attention-enhanced multi-scale parallel feature extraction model. The
proposed method leverages a multi-scale CNN with spatial–temporal attention mech-
anisms to extract temporal features and local degradation patterns from multi-modal
sensor data. Simultaneously, multi-scale LSTM with multi-head attention mechanisms
is employed to capture multi-modal temporal features and global degradation pat-
terns. The multi-dimensional features are adaptively fused using Bayesian probability
to enhance the accuracy of RUL prediction.

3. We introduce a complexity–efficiency balancing strategy based on DDPG. This ap-
proach reformulates the parameter optimization process in RUL prediction as an MDP.
This strategy leverage the experience replay mechanism and target-network soft up-
date technique within the DDPG framework to adaptively optimize the time-window
size and the number of similar samples of key parameters during the construction
of the feature extraction dataset. This ensures a global balance between prediction
performance and model complexity.

4. With respect to practical application prospects, the approach was validated on public
and industrial datasets, confirming its effectiveness. The prediction results surpass
those of existing CNN-LSTM models, demonstrating strong potential for intelligent
maintenance in real industrial applications.

The structure of this study is outlined as follows: Section 2 reviews the related research
and technical methodologies. Section 3 describes the proposed adaptive RUL prediction
framework. Section 4 analyzes the experimental results, while Section 5 discusses the
conclusions and outlines future research directions.

2. Theoretical Basis
2.1. Multi-Head Self-Attention Mechanism

The attention mechanism is inspired by the human visual cognitive process. Its
fundamental principle is to rapidly scan the global image, identify and focus on the
target regions that require special attention, and allocate more attentional resources to
these regions, thereby obtaining richer detailed information and suppressing irrelevant
interference. The self-attention mechanism is a specialized form of the attention mechanism
primarily used to capture dependencies within the same sequence. However, a single
attention head often fails to fully capture the diverse features in the input data. To improve
the expressive power of their model, Vaswani et al. [22] proposed the Multi-Head Self-
Attention (MHSA) mechanism, as represented in Figure 1.

The MHSA mechanism combines multiple scaled dot-product attention modules
in parallel, allowing different “heads” to attend to distinct portions of the input data.
Specifically, each self-attention module independently computes its output, and these
outputs are integrated through a weighted summation to produce the final result of the
MHSA mechanism. This design not only enables the capture of more diverse features and
patterns but also significantly reduces computational costs due to its parallel computation
characteristics. Compared to a single self-attention mechanism, the MHSA mechanism can
more stably capture complex dependencies and structural information while demonstrating
stronger robustness.
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Figure 1. The architecture of the multi-head self-attention mechanism.

In the MHSA mechanism, the input data is first transformed to generate the query
(Q), key (K), and value (V ) vectors through distinct linear projections. Subsequently, each
attention head independently computes its corresponding attention weights and produces
the output of that head via a weighted summation process. Finally, the outputs from
all attention heads are concatenated and passed through a final linear transformation.
The combined result is expressed in Equation (1).

MultiHead(Q, K, V) = Concat(h1, . . . , hH)WO (1)

where hi denotes the output of a single head, as shown in Equation (2):

hi = Attention(Qi, Ki, Vi) = softmax

(
QiKT

i√
dk

)
Vi, i = 1, 2, . . . , H

Qi = XW i
q, Ki = XW i

k, Vi = XW i
v (2)

where W i
q, W i

k, W i
v, and WO denote learnable weight matrices; Concat(·) represents the

concatenation operation; and H signifies the number of self-attention heads. The attention
distribution coefficient matrix is computed based on the query matrix (Q) and the key
matrix (K) and is subsequently normalized using the softmax function applied to the scaled
dot-product results.

2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were first proposed by LeCun et al. in
1989 [23], representing a specialized class of feedforward neural networks inspired by
the biological visual system. By emulating three structural properties of visual cortex
cells—local receptive fields, shared weights, and subsampling—CNNs preserve invariance
to translation, scaling, and distortion, thereby enabling the extraction of topological features
from raw input data. Additionally, a CNN can directly process 2D array inputs, avoiding the
complex feature extraction and data reconstruction steps typically required by traditional
recognition algorithms.
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The convolutional layer consists of convolution and activation operations, performing
convolution on the local receptive field using a filter (also referred to as a weight) window.
Because of the weight-sharing property inherent in the convolutional layers of a CNN,
the model complexity is significantly reduced, while the risk of overfitting caused by an
excessive number of network parameters is effectively mitigated [24]. Given a 2D input (X)
to the convolutional layer of a CNN, the output is computed as shown in Equation (3):

Cn = σ

(
K

∑
k=1

Wn,k ⊗ Xk + bn

)
(3)

where K represents the input-channel count and n denotes the number of convolutional
kernels. Cn signifies the n-th hidden feature. Wn,k corresponds to the weight parameters
between the n-th convolutional kernel and the k-th input channel, while bn represents the
bias term associated with the n-th convolutional kernel. The σ(·) function denotes the
function of activation, and ⊗ symbolizes the convolution operation.

The pooling layer, also known as the downsampling layer, primarily serves to intro-
duce translation invariance, reduce the dimensionality of the feature maps output by the
convolutional layer, mitigate the risk of overfitting, and decrease computational complexity.
Using degradation data of critical mechanical equipment as an example, determining
whether a component has reached its end-of-life failure is more critical than identify-
ing which specific part of the data represents the degradation phase. Common pooling
operations include max pooling and average pooling. In this study, max pooling is em-
ployed, which extracts the maximum value within a rectangular neighborhood, as shown
in Equation (4):

P(i, j) = max
(x,y)∈R

C(x, y) (4)

where (x, y) denotes the size of the pooling window, P(i, j) represents the output feature
value after pooling, and max C(·) indicates the maximum value within the pooling region.

2.3. Attention-Enhanced Depthwise Separable Convolution

Depthwise Separable Convolution (DSC) [25] enhances model efficiency by decompos-
ing standard convolution into depthwise convolution and pointwise convolution, which
collectively generate the final feature map. Depthwise convolution operates independently
on each input channel, and its expression is shown in Equation (5):

Depthwise Conv: Yi,j,k = ∑
m,n

Km,n,k · Xi+m, j+n, k (5)

On the other hand, pointwise convolution integrates channel information through a
1× 1 convolutional kernel, as shown in Equation (6):

Pointwise Conv: Zi,j,l = ∑
k

Wk,l · Yi,j,k (6)

where X represents the input feature map, K denotes the depthwise convolution kernel,
W is the pointwise convolution kernel, Y corresponds to the output of the depthwise
convolution, and Z signifies the output of the pointwise convolution.

To augment the model’s capability in identifying crucial features, a Channel Attention
Module (CAM) and Spatial Attention Module (SAM) are integrated. Specifically, the CAM
dynamically assigns weights to each channel through a combination of Global Average
Pooling (GAP) and fully connected layers, thereby emphasizing the channel features that
contribute most significantly to the task, as shown in Equation (7):
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Mc = σ
(
W1
(
W0(GAP(X))

)
+ b1

)
(7)

where GAP(X) denotes the global average pooling operation, W0 and W1 denote the
weights of the fully connected layers, b1 represents the bias, and σ signifies the Sigmoid
activation function.

The SAM dynamically allocates weights to each spatial location by concatenating
max pooling and average pooling results, followed by a convolutional operation, thereby
emphasizing the spatial regions that contribute most significantly to the task, as shown
in Equation (8):

Ms = σ(Convc×c([MaxPool(X); AvgPool(X)])) (8)

where Convc×c denotes the c× c convolutional operation and [MaxPool(X); AvgPool(X)]

represents the concatenation of the results from max pooling and average pooling.
The weighting expression for channel attention is shown in (9):

Xatt = Mc •Ms • X (9)

where Xatt represents the feature map after attention weighting.

2.4. LSTM Network

The LSTM network [26] is a specialized variant of the Recurrent Neural Network
(RNN). By incorporating a gating mechanism, the LSTM network dynamically adjusts
the memory state. This mechanism facilitates the effective transfer of information from
previous time steps to subsequent units, resolving the issue of long-term dependencies
in sequential data. Furthermore, LSTM effectively mitigates the common problems of
vanishing and exploding gradients in RNNs, providing robust support for the modeling of
long sequential data. As shown in Figure 2, the framework of LSTM primarily consists of
three gating units: the forget gate ( ft), the input gate (it), and the output gate (ot).

Figure 2. Structure of the LSTM network.
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2.5. Deep Reinforcement Learning

DRL is a theoretical framework grounded in the MDP. Combining the representational
power of DL and the decision-making mechanisms of RL, DRL greatly improves the
learning and decision-making abilities of agents in high-dimensional state spaces.

The underlying mechanism of DRL involves persistent interaction cycles between
agents and environments. Based on observed environmental states, agents choose and
implement actions, obtaining subsequent environmental responses in reward or penalty
form. Through continuous optimization of its policy, the agent gradually learns to make
optimal decisions in a given environment, aiming to maximize the cumulative reward [27].
The action–value function of DRL is expressed in Equation (10):

Qπ(s, a) = Eπ

[
∞

∑
t=0

γtrt+k

∣∣∣∣∣ sk = s, ak = a

]
, s ∈ S, a ∈ A, r ∈ (0, 1) (10)

where S denotes a finite set of states and A represents a finite set of actions. Qπ(s, a) is
the action–value function, which represents the expected discounted cumulative reward
obtained by selecting action a in state s and subsequently following policy π. Here, Eπ [·]
denotes the trajectories generated by policy π, γt is the discount factor applied to the
reward received t steps in the future, and rt+k represents the immediate reward received at
time step k + t.

The Deep Deterministic Policy Gradient (DDPG) method adopted in this study is an
extension of the Actor–Critic framework specifically designed for continuous action spaces.
The network architecture of DDPG primarily consists of three modules: the actor network
(policy network), the critic network (value network), and the target network (employed to
stabilize training). The detailed architecture and interaction logic of DDPG are illustrated
in Figure 3.

Figure 3. The network architecture of the DDPG algorithm.

The actor network is tasked with learning a deterministic policy, directly generating
actions, while the critic network evaluates the value (Q-value) of the actions produced by
the actor. At each time step (t), the agent selects a deterministic action (at) based on the
current state (st) through its actor network. Upon execution of this action, the environment
computes the corresponding reward (rt) based on performance metrics and provides
the subsequent state (st+1). The agent then stores the transition ((st, at, rt, st+1)) in the
experience replay buffer. Once the buffer accumulates a sufficient amount of experience,
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the agent randomly samples a batch of data to update the parameters of both the actor and
critic networks.

The critic network is updated by minimizing the mean squared error between the
target Q-value and the current Q-value. The target value is defined in Equation (11):

yi = ri + γ Q′(si+1, µ′(si+1;φ′); θ′) (11)

where θ denotes the parameters of the critic network, which are optimized to learn the
Q-value function (Q(s, a; θ)). Simultaneously, θ′ represents the parameters of the target
critic network used to compute the target Q-value. The critic network minimizes the loss
(L(θ)) through Equation (12):

L(θ) =
1
N

N

∑
i=1

(yi −Q(si, ai; θ))2 (12)

Meanwhile, the actor network updates its parameters (φ) via the policy gradient,
as shown in Equation (13):

∇φJ(φ) ≈ 1
N

N

∑
i=1

(
∇aQ(si, a; θ)

∣∣
a=µ(si ;φ)

· ∇φµ(si;φ)
)

(13)

To prevent training instability caused by abrupt changes in the target network param-
eters, a “soft update” strategy is implemented, as formalized in Equation (14):

φ′ ← τφ+ (1− τ)φ′ (update target Actor)

θ′ ← τθ+ (1− τ)θ′ (update target Critic) (14)

where τ represents the soft update coefficient, which governs the synchronization rate of
the target network parameters towards the primary network.

3. Proposed Method
To efficiently integrate heterogeneous sensor data, mine the degradation patterns of

mechanical equipment components under complex operating conditions, and accurately
predict the RUL, this paper proposes an adaptive RUL prediction framework—ADAPT-
RULNet, which integrates attention mechanisms and deep reinforcement learning, as illus-
trated in Figure 4.

The proposed framework consists of four tightly coupled modules:

1. Data preprocessing employs Functional Alignment Resampling (FAR) to opti-
mize raw sensor signals by addressing noise, heterogeneity, and inconsistent
time-series lengths.

2. Personalized dataset construction utilizes attention-enhanced Dynamic Time Warping
(DTW) to build similarity-based degradation stages, ensuring that samples with highly
similar degradation trajectories are grouped together.

3. Hybrid network-based RUL prediction constructs a hybrid architecture combining
multi-scale CNN (MSCNN) and multi-scale LSTM (MSLSTM) with attention mecha-
nisms and applies Bayesian fusion for adaptive feature integration.

4. Reinforcement learning-based adaptive parameter tuning introduces a Deep De-
terministic Policy Gradient (DDPG) to adaptively adjust critical parameters such as
time-window size and the number of selected similar samples, balancing prediction
accuracy with model complexity.
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These modules work synergistically to remarkably enhance the model’s robustness
and generalization capability under complex operating conditions.

Figure 4. Framework of the proposed ADAPT-RULNet.

3.1. Data Preprocessing

In real-world industrial scenarios, the operational conditions of mechanical equip-
ment exhibit high complexity, and their degradation processes demonstrate significant
individual variability. Data collected from multi-source sensors often suffer from missing
values, nonlinear characteristics, high levels of noise interference, unequal-length time
series, and multi-source heterogeneity. Traditional data preprocessing methods encounter
difficulty in capturing intricate degradation patterns. To tackle these issues, this paper in-
troduces the Functional Adaptive Regression (FAR) approach, which reconstructs temporal
continuity to better capture local or global degradation trends. By transforming time-series
signals into functional signals, it facilitates the subsequent RUL prediction process.

Locally Weighted Scatterplot Smoothing (LOWESS) [28] and Cubic Natural Spline
(CNS) smoothing serve as the core methodologies of FAR, enabling the transformation
of raw time-series signals into functional signals. LOWESS employs localized smoothing
techniques to effectively capture high-frequency noise and local fluctuations of the MTSD
to adapt the local variations in the time series. Let X = x(i, u)t, where t = {t1, t2, . . . , tn}
represents the duration of the time series, x = {x1, x2, . . . , xm} represents the number
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of devices, and u = {u1, u2, . . . , ud} signifies the number of sensors. The term ¯x(i, u)
represents the average value of all x(i, u)t within a local window (h), as illustrated
in Equation (15):

¯x(i, u) =
1
N ∑

j∈h
x(i, u)j (15)

The smoothed value (x̂(i, u)t) of LOWESS is computed through locally weighted
regression, as shown in Equation (16):

x̂(i, u)t = β0 + β1
(
x(i, u)t − ¯x(i, u)

)
(16)

where β0 and β1 are the regression coefficients obtained through weighted least squares
and the weights (ωij) are defined as shown in Equation (17):

ωij =

(
1−

∣∣∣∣ x(i, u)j − x(i, u)t

h

∣∣∣∣3
)3

,
∣∣x(i, u)j − x(i, u)t

∣∣≪ h

min
β0,β1

∑
j

ωij

(
x(i,u)j −

(
β0 + β1(x(i,u)j − x(i,u)t )

))2
(17)

where x(i, u)j is the observed value of time-series signal xI at time step j.
The CNS interpolation method is applied to the multi-channel functional signals

(x̂(i, u)t) to perform global fitting, generating continuous and smooth functional signal
data. The fitting function (gm(X)) is given by Equation (18):

gm(X) = am + bm(X − Xm) + cm(X − Xm)
2 + dm(X − Xm)

3 (18)

where coefficients am, bm, cm, and dm are obtained by minimizing the following
objective function:

min
βm

n

∑
i=1

(x̂(i, u)t − gm(X))2 + λ
∫ (

g′′m(X)
)2 dX (19)

where λ is the smoothing parameter, controlling the smoothness of the fitted curve, and
g′′m(X) is the second derivative of the spline function, used to measure the curvature of the
curve. Finally, by performing global fitting on the smoothed data, a continuous functional
signal (Xi(t)) is generated, as shown in Equation (20):

X(t) =
M

∑
m=1

βm hm(X) (20)

3.2. Construction ofPersonalized Datasets with Similarity Degradation Stages

To completely capture the local suddenness and long-term trends of degradation be-
havior in mechanical equipment throughout the entire life cycle, this paper integrates
a multi-head attention mechanism with DTW for personalized dataset construction
(Attention-DTW). This approach overcomes the limitation of traditional DTW in terms of
ignoring the differences among various sensors during the degradation process due to fixed
weights. At the same time, it addresses the limitation of traditional Euclidean distance
in effectively measuring the waveform similarity between two time series. By selecting
the most relevant historical degradation samples for the test sequence, this method better
captures the time-varying characteristics in dynamic uncertain environments and identifies
similarities among operational signals, thereby providing reliable dataset support for the
accuracy and robustness of RUL prediction.
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Specifically, let the input MTSD be X = {x1, x2, . . . , xU}, where xu ∈ RT represents
the time-series data of the u-th sensor. For the test sequence (Xv) and the historical se-
quence (Xi), the attention scores of each sensor channel are first calculated, as shown
in Equation (21):

αu =
exp

(
MLP(xu

v) ·MLP(xu
i )
)

∑U
k=1 exp

(
MLP(xk

v) ·MLP(xk
i )
) , (21)

where MLP(·) is a multi-layer perceptron that maps a single-channel sequence into a
feature vector, while αu reflects the importance weight of the u-th sensor in the similarity
measurement. By incorporating the weight (αu) into the calculation of the multi-channel
DTW distance, we obtain Equation (22):

dM(Xv, Xi) =
U

∑
u=1

αu ·min
π

∑
(t,t′)∈π

∣∣∣xu
v,t − xu

i,t′

∣∣∣, (22)

where this distance metric adaptively focuses on sensors sensitive to degradation while
effectively mitigating noise interference.

During the system degradation process, the tail data typically best reflects the current
state and the latest trends of the system. In the implementation, a fixed window of length
L is used to extract the last L time points from each unlabeled sample (Xv), resulting in
Xτt. Subsequently, a sliding window of length L is applied to the historical data (Xh) to
extract all candidate segments ({Xτt,j}). Based on the Attention-DTW similarity calculation,
the distance (dM(Xv, Xi)) is computed according to Equation (22), and the M most similar
segments are selected as shown in Equation (23):

X im
τ,v = arg min

Y
d(i, j), v, m = 1, 2, . . . , M (23)

The predicted label (yim ) is derived based on Equation (24):

yim = Tim − eim + L, m = 1, 2, . . . , M (24)

and the final dataset is formulated as Equation (25):

Dv =
{(

X im
τ,v, yim

)}M

m=1
(25)

This process builds the complete training dataset ({Dv, Yv|Xv}), which will be used in
the subsequent CNN feature extraction network.

3.3. Attention-Enhanced Multi-Scale Hybrid Network for Remaining Useful Life Prediction

The extraction of features from local and long-term degradation trends in the ADAPT-
RULNet structure is mainly achieved through an attention-enhanced multi-scale hybrid
RUL prediction network based on Bayesian fusion, as illustrated in Figure 5.

The proposed method primarily consists of three components:
(a) Attention-Enhanced Multi-Scale Depthwise Separable Convolution (DSC).

This module is designed to accurately identify short-term dependencies across multi-
ple scales while reducing computational complexity. Four convolutional kernels with
distinct dimensions—(3, 1), (5, 1), (7, 1), and (9, 1)—are employed to capture multi-scale
features from the input data. Residual connections are introduced to preserve and enhance
low-level feature information, mitigating the risk of gradient vanishing in deep networks.
To further optimize feature representation, a Combined Spatial and Channel Attention
Module (CSAM) is integrated, which fuses the Channel Attention Module (CAM) and the
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Spatial Attention Module (SAM) to dynamically weight key features and achieve efficient
fusion of multi-level features.

Figure 5. Hybrid RUL prediction network.

(b) Attention-Enhanced Multi-Scale LSTM Network. This network is proposed to
enhance the extraction of long-term degradation trends. It employs three hidden layers
with dimensions of 64, 128, and 256 to capture multi-scale temporal patterns while avoid-
ing overfitting. To improve the identification of degradation characteristics, a Multi-Head
Self-Attention (MHSA) mechanism is introduced, which dynamically allocates weights to
focus on the most critical time-scale features for RUL prediction. Specifically, the atten-
tion mechanism computes weights for each time-scale feature, performs weighted fusion,
and integrates the feature maps extracted by the LSTM network across the three scales to
generate a comprehensive global feature representation.

(c) Bayesian Feature Fusion. A Bayesian probability-based feature fusion approach is
designed to optimally combine local and global features while mitigating the uncertainty
inherent in feature extraction from different networks. The mathematical formulation is
given in Equation (26):

P
(

y
∣∣∣ hglobal , hlocal

)
=

P
(

hglobal

∣∣∣ y
)
· P(hlocal | y) · P(y)

P
(

hglobal , hlocal

) (26)

where P(y | hglobal , hlocal) represents the fused feature distribution; P(hglobal |y) and
P(hlocal |y) denote the conditional probability distributions of the global and local features,
respectively; and P(y) is the prior distribution.
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The fused feature representation is then obtained as follows:

h f used = arg max
y

P
(

y
∣∣∣ hglobal , hlocal

)
(27)

Finally, the features obtained through adaptive probabilistic fusion are fed into a multi-
layer fully connected network to achieve precise prediction of the equipment’s RUL. The
training procedure of the Attention-Enhanced Multi-Scale Hybrid Network is presented
in Algorithm 1.

Algorithm 1 Attention-Enhanced Multi-Scale Hybrid Network Training

Require:
1: train_data: Preprocessed training data
2: train_labels: Corresponding RUL labels
3: val_data: Validation data
4: val_labels: Corresponding RUL labels
5: device: Computational device (‘cpu’ or ‘cuda’)
6: fusion_dim: Dimension for feature fusion
7: learning_rate: Initial learning rate
8: epochs: Number of training epochs
9: batch_size: Batch size for training

Ensure:
10: trained_model: Trained neural network model
11: procedure TRAINNEURALNETWORK(train_data, train_labels, val_data, val_labels,

device, f usion_dim, learning_rate, epochs, batch_size)
12: Initialize CNN-LSTM model with attention mechanisms
13: Define loss function (e.g., MSE) and optimizer (e.g., AdamW)
14: for epoch = 1 to epochs do
15: for batch = 1 to len(train_data)/batch_size do
16: Load batch data and labels
17: Forward pass: compute model output
18: Calculate loss
19: Backward pass: compute gradients
20: Update model parameters
21: end for
22: Validate model on validation set
23: Compute validation loss and metrics
24: Update learning rate scheduler if needed
25: end forreturn trained_model
26: end procedure

3.4. Strategy for Balancing Model Complexity and Efficiency

To achieve global balancing of model complexity and predictive performance and to
overcome the lack of flexibility of traditional fixed-window approaches in capturing both
long-term and short-term dependencies, this study innovatively introduces the DDPG
algorithm into RUL prediction. By abstracting the adaptive parameter adjustment problem
of the RUL prediction model into a DRL environment, we define the state space, action
space, and reward function, thereby constructing a dynamic optimization framework.

State Space S: The state vector of the DDPG agent is composed of the performance
metrics of the current RUL prediction model and the parameters of the personalized dataset.
Specifically, the state vector includes the Mean Squared Error (MSE), Akaike Information
Criterion (AIC), and DTW similarity, as well as the current time-window length (L) and
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dataset size (M). These metrics comprehensively reflect the model’s prediction accuracy,
complexity, and dataset quality. The AIC value is defined as follows:

AIC = 2ϕ− 2 ln(L̂) = 2ϕ + U × L×M [ln(2π ·MSE) + 1] (28)

where ϕ denotes the total number of model parameters, U represents the number of sensor
channels, L is the sliding-window size, M is the number of similar segments, and L̂ is the
likelihood-function value of the maximum likelihood estimation.

Action Space A: The agent adjusts two continuous parameters—∆L and ∆M, which
represent the adjustment magnitudes of L and M, respectively. These values are normalized
within [−1, 1] and mapped to the valid ranges of L and M via linear scaling, ensuring
rational and feasible parameter updates.

Reward Function R: The reward drives the optimization process of the DDPG agent.
A composite reward is designed to dynamically adjust L and M, enabling better adaptability
across different degradation stages and achieving global balancing between complexity
and accuracy.

(i) Base Reward: Negatively correlated with MSE and AIC and positively correlated
with DTW similarity:

Rbase = −α1 ·MSE− α2 ·AIC + α3 ·DTWsim (29)

where α1, α2, and α3 are weighting coefficients.
(ii) Improvement Reward: Measures improvement compared to the previous step:

Rimprove = β1(MSEprev −MSEcurr) + β2(AICprev −AICcurr) + β3(DTWsim,curr −DTWsim,prev) (30)

where β1, β2, and β3 are weighting coefficients.
(iii) Stability Reward: Penalizes unstable fluctuations in recent performance:

Rstability = −γ1 · Std(MSErecent) (31)

where γ1 is a weighting coefficient.
(iv) Total Reward: The overall reward is defined as follows:

Rtotal = Rbase + Rimprove + Rstability (32)

During DDPG training, the agent iteratively interacts with the RUL prediction environ-
ment. At each time step, the actor network selects an action, and the environment updates
L and M and recalculates the MSE, AIC, and DTW similarity. The corresponding reward
and new state are returned, which are stored in the replay buffer. The agent periodically
samples from the buffer to update actor and critic parameters, while target networks are
updated via a soft-update strategy. Through iterative training, the agent progressively
learns an optimal policy that adaptively adjusts L and M to balance model complexity
and predictive performance. The process of DDPG for hyperparameter optimization is
presented in Algorithm 2.
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Algorithm 2 DDPG for Hyperparameter Optimization

Require:
1: env: Environment for RUL prediction
2: state_dim: Dimension of state space
3: action_dim: Dimension of action space
4: action_range: Range of actions
5: memory_capacity: Capacity of replay memory
6: batch_size: Batch size for training DDPG
7: gamma: Discount factor
8: tau: Soft update coefficient
9: actor_lr: Learning rate for actor network

10: critic_lr: Learning rate for critic network
Ensure:
11: ddpg_agent: Trained DDPG agent
12: procedure DDPG(env, state_dim, action_dim, action_range, memory_capacity,

batch_size, gamma, tau, actor_lr, critic_lr)
13: Initialize actor network µ and critic network Q
14: Initialize target networks µ′ and Q′

15: Initialize replay memory
16: Initialize actor and critic optimizers
17: for each training step do
18: Obtain current state from environment
19: Select action using actor network
20: Execute action in environment, obtain reward and next state
21: Store transition in replay memory
22: Sample random batch from replay memory
23: Update critic network using sampled batch
24: Update actor network using sampled batch
25: Soft update target networks
26: end forreturn ddpg_agent
27: end procedure

4. Experiments
4.1. Evaluation Metrics

The model was evaluated with the Root Mean Square Error (RMSE), accuracy,
and Score function (Score). Experiments were conducted on datasets from engines and
railway freight car wheels to assess the algorithm’s adaptability. Lower values of RMSE
and Score indicate higher accuracy and quality of the algorithm.

(1) As a widely adopted regression metric, RMSE provides an intuitive measure of the
model’s performance in predicting target values. Its definition is given by Equation (33):

di = R̂ULi − RULi, RMSE =

√
1
n

n

∑
i=1

d2
i (33)

Here, R̂UL and RUL are the predicted and actual RUL values. di is the prediction error.
(2) Accuracy is used to evaluate the percentage of predictions within the correct range in

the model’s output. If the prediction error is ej ∈ [−13, 10] and Cor(ej) = 1, the prediction is
considered reasonable; otherwise, Cor(ej) = 0. The mathematical formulation is provided
in Equation (34):

Accuracy =
100
N

N

∑
j=1

Cor(ej) (34)

(3) Score is a well-known RUL statistical metric and indicates better RUL estimation
performance when its value is smaller. Score penalizes late RUL predictions, whereas
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RMSE assigns equal weights to premature and delayed predictions. Given that early
fault detection holds greater significance for maintenance planning, its expression is given
by Equation (35):

Score =

∑M
i=1

(
e−

dn
13 − 1

)
, if dn < 0

∑M
i=1

(
e

dn
10 − 1

)
, if dn > 0

(35)

where dn is the difference between R̂ULi and RULi and M denotes the total size of
the dataset.

4.2. Engine Dataset Prediction

The dataset for a turbofan engine was generated by the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) platform [29]. The dataset includes four subsets,
as shown in Table 1. The progression of complexity from FD001 to FD004 stems from diverse
operational scenarios and failure types. Each subset is divided into training and testing
components. Training components feature comprehensive run-to-failure time series from
multiple engine units, while testing components present incomplete operational records
preceding engine failure events. Each operational record includes 26 variables: variable 1 is
the engine ID, variable 2 is the operational cycle, variables 3 to 5 are operational setting
parameters that notably influence engine performance, and the remaining 21 variables are
noisy sensor readings.

Table 1. Overview of the C-MAPSS datasets.

Dataset FD001 FD002 FD003 FD004

Training Units 100 260 100 249
Testing Units 100 259 100 248

Operating Conditions (OCs) 1 6 1 6
Fault Modes (FMs) 1 1 2 2

4.2.1. Data Preprocessing

Following the methodology proposed by Ragab et al. [30], the data was preprocessed,
and fourteen sensors exhibiting degradation trends were selected, with the engine’s RUL
label serving as the final input for the ADAPT-RULNet model. Taking SENSOR2, SENSOR4,
SENSOR7, and SENSOR11 as representative cases, Figure 6 presents a comparative analysis
between the raw sensor data and the data processed using the FAR method. The FAR tech-
nique demonstrates its efficacy by effectively eliminating high-frequency noise, mitigating
localized fluctuations, and addressing inconsistencies in time-series length.

Finally, Z-score normalization was applied to all data that had undergone smoothing
and interpolation processes. This step was essential to eliminate the discrepancies in scale
and numerical range across different sensors, thereby accelerating the convergence of
model training and avoiding dominance by high-magnitude features.

4.2.2. Construction of Personalized Datasets

To achieve efficient and precise similarity measurement and sample selection, this
paper proposes a strategy for personalized dataset construction with similarity degradation
stages by Attention-DTW. This strategy dynamically learns the weight distribution of each
sensor channel, enabling the DTW alignment process to adaptively focus on key modal
information that is more indicative of degradation trends.
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Figure 6. Comparative diagrams for preprocessing of sensor data.

As illustrated in Figure 7, the construction process of the personalized dataset includes
the following steps: Step 1—raw sequences are extracted from the general training set
and mapped to a two-dimensional feature space for visualization; Step 2—a test sequence
of length M is input as the query object; Step 3—the candidate windows most similar to
the test sequence are screened from the training set through Attention-DTW similarity
calculation; Step —the top M samples are selected based on similarity ranking to form the
personalized dataset, thereby providing a more reliable data foundation for degradation
trend analysis.

Figure 7. The construction process of the personalized datasets.

4.2.3. Parameter Selection

The parameter configuration of the proposed ADAPT-RULNet model is listed
in Table 2.
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Table 2. The parameters of the ADAPT-RULNet model.

Parameter Value

input_dim 14
cnn_filters [64, 128, 256, 512]

cnn_kernels [3, 5, 7, 9]
lstm_hidden 256
lstm_layers 3
fusion_dim 512

Learning rate 0.001
Training epochs 200
Window length 50
Loss function NSE Loss

Batch size 64
Optimizer AdamW

For model optimization, the AdamW optimizer is employed to update the parame-
ters, initialized with a learning rate of 0.001. To further enhance the training performance,
the learning rate is dynamically adjusted using the Cosine Annealing Warm Restarts
scheduler, where the initial cycle (T0) is set to 10, the cycle multiplier (Tmult) is set
to 2, and the minimum learning rate is 1× 10−6. Additionally, early stopping prevents
overfitting by terminating training when validation loss plateaus for 20 epochs.

During hyperparameter selection, comparative experiments were conducted on the
learning rate, the number of LSTM layers, the kernel sizes of the CNN, and the number of
filters. Multiple experiments were performed to evaluate their impact on RUL prediction
accuracy, and the most suitable hyperparameters were identified accordingly. The com-
parative results are shown in Figure 8, where the violin-shaped regions represent kernel
density estimates, the black lines indicate the upper and lower bounds after removing
outliers, the horizontal lines denote the medians, and the white dots represent outliers.
As illustrated in the figure, the highest prediction accuracy is achieved when the learning
rate is 0.001, the number of LSTM layers is 3, the CNN kernel sizes are [3, 5, 7, 9], and the
CNN filter counts are [64, 128, 256, 512].

4.2.4. Reinforcement Learning-Driven Adaptive Parameter Tuning

The parameter adjustment problem is formulated as a sequential decision-making
task within the DDPG framework, which adaptively optimizes the key parameters in
personalized dataset construction through interaction with the prediction environment to
learn the most effective policy. Specifically, the state space of the agent is designed as a
five-dimensional vector comprising the performance metrics of the current RUL estimation
model and the parameters of the personalized datasets, including the window length (L),
the dataset size (M), MSE, AIC value, and DTW similarity.

The RUL prediction environment is responsible for updating the L and M parameters
based on the actions of the DDPG agent and providing corresponding performance feed-
back. Figure 9 illustrates the evolution trends of the L and M parameters during DDPG
training. The horizontal axis denotes the training episodes, the left vertical axis represents
L, and the right vertical axis represents M. The light-blue and dark-blue curves represent
the raw values and the 10-episode moving average of L, respectively, while the light-red
and dark-red curves represent the raw values and the 10-episode moving average of M,
respectively. Moving average processing provides a clearer depiction of the overall trend
of parameter changes.



Sensors 2025, 25, 6354 21 of 30

Figure 8. Comparison of accuracy of different parameters.

Figure 9. The evolution and convergence analysis of the L and M parameters during DDPG training.
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The convergence analysis in the upper-left corner indicates that L ultimately converges
to 75.3 and M converges to 150.1, with the optimization state marked as “Converged”.
During initial training, the raw values of L and M exhibit significant fluctuations, reflecting
the active exploration of parameter adjustments. As training progresses, the moving-
average curves gradually smooth out and stabilize in the mid-to-late stages, validating the
effective optimization and convergence process of the DDPG algorithm.

Figure 10 illustrates the evolution of the total reward of the RUL prediction model
based on the DDPG algorithm over 100 training episodes. As shown in the figure,
the agent’s learning process undergoes four distinct stages: an initial exploration phase
characterized by low and highly fluctuating rewards; a subsequent learning and optimiza-
tion phase with gradually increasing rewards; and, finally, a convergence phase where
stable, high-performance rewards are achieved. This evolutionary trend confirms that the
DDPG algorithm can effectively learn the optimal strategy for adaptively adjusting the
time-window length (L) and the dataset size (M), thereby achieving a dynamic balance
between model complexity and prediction accuracy.

Figure 10. Evolution of total reward.

Figure 11 presents a contour analysis of model performance distribution based on the
combinations of L and M, including four subplots for RMSE, R2 Score, MAE, and com-
prehensive performance. In each subplot, the values of L are plotted along the horizontal
axis, whereas the values of M are plotted along the vertical axis. The color gradient and
contour lines visualize the performance under different parameter combinations, where
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cool tones (e.g., blue) indicate better performance and warm tones (e.g., red) indicate
poorer performance.

Figure 11. Contour analysis of model performance distribution with respect to the L and M parame-
ters. Subplots show results for (a) RMSE, (b) R2 Score, (c) MAE, and (d) comprehensive performance.
The white star denotes the optimal parameter point (L = 75, M = 150).

Each subplot marks the optimal parameter point as “Optimal L = 75 and M = 150”
(denoted by a white star), demonstrating that this combination achieves optimal perfor-
mance in terms of RMSE (measuring the magnitude of prediction error, where lower values
are better), R2 Score (reflecting the model’s ability to explain data variation, where values
closer to 1 are better), MAE (calculating the mean absolute error between predictions and
true values, where lower values are better), and comprehensive performance. Such visual-
izations intuitively illustrate the impact of parameter interactions on model performance,
identify universally optimal parameters, and provide critical insights for parameter tuning
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and model performance validation, thereby aiding in understanding parameter sensitivity
regions and optimization stability.

4.2.5. Experimental Results

This section presents the experimental results of the proposed adaptive RUL pre-
diction framework on the C-MAPSS dataset and compares it with current mainstream
approaches both quantitatively and qualitatively, in order to validate the effectiveness of
the proposed method.

The prediction results of ADAPT-RULNet on the C-MAPSS dataset are shown in
Figure 12. The ADAPT-RULNet model demonstrates a better alignment between predicted
and observed RUL curves across different subsets of the dataset. Notably, as the actual RUL
diminishes—indicating the engine’s approach to failure—the prediction error is markedly
reduced, with the majority of the predicted values falling within a reasonable error margin.
This indicates the model’s proficiency in accurately identifying significant degradation
features during the latter stages of equipment deterioration, particularly within the pivotal
prediction window, thereby facilitating precise RUL forecasting.

Figure 12. Prediction results of ADAPT-RULNet on the C-MAPSS dataset.
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For the purpose of evaluating the performance of the proposed framework, we further
compared ADAPT-RULNet with recent prediction methods. The comparative results are
summarized in Table 3.

From a horizontal perspective, the evaluation metrics (RMSE, Score, and Accuracy)
show a gradual decline across the FD001 to FD004 datasets, reflecting the increased
complexity of the dataset under the diversity of operating conditions and fault modes,
which brings greater challenges to the prediction task. In a vertical comparative analysis,
the ADAPT-RULNet model proposed in this study demonstrates notable competitiveness
across all evaluation metrics. Its average RMSE and average Accuracy achieve the best
optimal values among existing methods, clearly indicating that the proposed framework
surpasses previous solutions with regard to overall prediction accuracy. Furthermore,
we investigated the computational performance of the models. As shown in Figure 13,
by comparing the computational efficiency of advanced models listed in Table 3, includ-
ing ADAPT-RULNet, Transformer-ED, BiLSTM-ED, BiGRU-AS, and LSTM-AON, we
observed that the proposed method achieves an upper–middle level of efficiency. In ad-
dition, further analysis of the neural network component and the reinforcement learning
training cost revealed that the efficiency bottleneck of the proposed method primarily
lies in the reinforcement learning module. In future work, lightweight architectures
and meta-learning strategies will be explored to further enhance the efficiency of the
reinforcement learning component. Although further performance improvements might
be attainable through a more extensive hyperparameter search and more efficient and
accurate data preprocessing, the proposed and validated RUL prediction framework,
which integrates attention mechanisms and DRL, leverages its adaptive advantages
to effectively address the inherent limitations of traditional deep learning methods in
handling heterogeneous sensor data and complex operating condition failure patterns.
This not only provides an effective approach to reducing prediction inaccuracies but also
offers practical references for researchers in hyperparameter optimization.

Figure 13. Comparison of computational performance of algorithms.
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Table 3. Comparison of evaluation metrics.

Method Metric FD001 FD002 FD003 FD004 Average

LSTM-AON [31] Score 284 2454 428 4708 1968.5
Accuracy 64 62 57 34 54.25

RMSE 13.68 20.81 15.53 27.31 19.332

BiLSTM-ED [32] Score 273 3099 574 3202 1787
Accuracy 57 49 42 40 47

RMSE 14.74 22.07 17.48 23.49 19.445

KGHM [33] Score 250.99 1131.03 333.44 3356.10 1267.89
Accuracy 67 46 59 45 54.25

RMSE 13.18 13.25 13.54 19.86 14.958

CNN-LSTM [34] Score 256 – – – –
Accuracy 58 – – – –

RMSE 13.34 – – – –

Attention CNN-RUL [35] Score 217.02 789.32 216.79 1107.96 582.77
Accuracy 59 – – – –

RMSE 10.43 11.02 10.03 16.23 11.93

Transformer-ED [36] Score 286 2799 574 4655 2078.5
Accuracy 64 61 57 44 56.50

RMSE 13.87 20.76 17.42 24.41 19.115

ADAPT-RULNet Score 275 2324 460 3155 1553.5
Accuracy 68 65 60 47 60.0

RMSE 12.48 19.45 14.92 22.97 17.45

4.3. Prediction of Railway Freight Car Wheels Dataset

To additionally confirm the generalization capability of the ADAPT-RULNet frame-
work in engineering practice, we migrated it to the non-public TWDS railway freight car
wheel dimension monitoring dataset under real-world railway operation conditions for
experimental verification.

(1) Freight Car Wheel Dataset

The wheel dataset comprises 400 sets of wheel inspection data, each with an opera-
tional cycle exceeding two years, as detailed in [13]. The dataset is structured with 17 fields,
among which fields C1 to C6 contain wheel positioning information utilized for the precise
identification and tracking of each wheel’s location. The actual deterioration information
is documented in fields C7 to C16, which meticulously reflect the wear and performance
evolution of the wheels under actual operating conditions.

(2) Data preprocessing

Because of the effects of wheel vibration and sensor data acquisition errors, the raw
data exhibit significant fluctuations. Additionally, during wireless transmission, network
latency and external environmental interference can cause data loss, noise, and anomalies.

Therefore, it is necessary to perform Functional Adaptive Regression (FAR) initializa-
tion on the raw data. Subsequently, six sensors that reflect the wear evolution patterns
were identified, including left wheel thickness (lyhd), left wheel tread-wear depth (lycz),
rim wear (tmyz), wheel-axle diameter parameter (lwhd), mileage data (lj), and inner mea-
surement value (ncj). These parameters comprehensively characterize the wear evolution
of wheel-axle components under actual operating conditions. The preprocessing results of
the wheel dataset are illustrated in Figure 14, which shows that FAR effectively eliminates
high-frequency noise, mitigates localized fluctuations, and enhances the consistency of
time-series signals.
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Figure 14. Data trend after preprocessing.

The pre-trained weights of the ADAPT-RULNet model were used on the railway
freight car wheel dataset for RUL prediction. Experimental results presented in Figure 15
demonstrate that the proposed model achieves stable predictive performance in the quanti-
tative analysis on the TWDS dataset in comparison with the baseline LSTM and CNN-LSTM
models. As a result of heterogeneous data sources and operational contexts, its absolute
performance metrics exhibit some differences relative to its performance on the C-MAPSS
dataset. However, the model demonstrates better transfer learning capabilities, effec-
tively capturing degradation trends in non-public data. Specifically, on the TWDS dataset,
ADAPT-RULNet maintains an average RMSE within an acceptable range, and its prediction
curves exhibit high consistency with the actual RUL trends. These findings further validate
the practical value of our proposed framework in handling unknown or complex real-world
data, laying the foundation for future industrial deployment.

Figure 15. The RUL prediction results of ADAPT-RULNet on the TWDS dataset.
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5. Conclusions
Accurate prediction of RUL is of paramount importance in optimizing main-

tenance strategies, reducing operational expenses, and ensuring the operational safety
of equipment. This study introduces an adaptive framework for RUL prediction that
integrates attention mechanisms and RL. The primary objective is to address challenges
related to the adaptability of the prediction process, the accuracy of prediction results,
and the generalization ability of the prediction model. Additionally, the method employs
the FAR approach for data preprocessing and utilizes attention mechanism-based DTW
to construct personalized datasets, ensuring high-quality signal input while improving
the efficiency of feature extraction. The proposed attention-enhanced CNN-LSTM hybrid
network architecture achieves the fusion of local temporal and global dependency fea-
tures, enhancing the accuracy of RUL prediction, particularly providing high-precision
predictions during the later stages of equipment degradation. Finally, to balance model
complexity and prediction performance, parameter tuning is transformed into an MDP
model, and techniques including experience replay and target-network soft updates of
the DDPG algorithm are adopted to adaptively adjust key parameters in personalized
dataset construction. The method’s efficacy was validated on datasets covering two
distinct components. Comparative experiments with various current DL methods were
conducted. The findings indicate that the new approach achieves the highest accuracy
and average metrics.

However, our proposed method also has limitations, especially in terms of
model performance and interpretability. In upcoming research, we plan to continuously
optimize hyperparameters and the reinforcement learning reward function, as well as
further improve the computational efficiency of the algorithm. In addition, we will
explore physics-informed deep learning by integrating physical models with neural
networks to gain deeper insights into the degradation mechanisms of mechanical com-
ponents, thereby enhancing both interpretability and predictive accuracy. We also aim
to incorporate Bayesian neural networks for uncertainty estimation, providing more
reliable confidence intervals for RUL predictions and enabling decision-makers to assess
risks more scientifically. Furthermore, the integration of the RUL prediction model with
digital twin technology will be pursued to achieve real-time monitoring and online up-
dating of equipment status, significantly improving prediction accuracy and timeliness.
Through these forward-looking studies, we expect to advance the field of RUL prediction
and provide stronger technical support for equipment maintenance and operational
management. In future work, we plan to continuously optimize hyperparameters and
the reinforcement learning reward function, as well as further improve the computa-
tional efficiency of the algorithm. In addition, we will explore physics-informed deep
learning by integrating physical models with neural networks to gain deeper insights
into the degradation mechanisms of mechanical components, thereby enhancing both
interpretability and predictive accuracy. We also aim to incorporate Bayesian neural
networks for uncertainty estimation, providing more reliable confidence intervals for
RUL predictions and enabling decision-makers to assess risks more scientifically. Fur-
thermore, the integration of the RUL prediction model with digital-twin technology will
be pursued to achieve real-time monitoring and online updating of equipment status,
significantly improving prediction accuracy and timeliness. Through these forward-
looking studies, we expect to advance the field of RUL prediction and provide stronger
technical support for equipment maintenance and operational management.



Sensors 2025, 25, 6354 29 of 30

Author Contributions: The specific contributions of each author to this study are outlined as follows:
Y.B. was responsible for the experimental design and execution, participated in data analysis and
interpretation of the results, and wrote the entire paper. J.D. provided research ideas and theoretical
guidance and made modifications and improvements to the overall structure and content of the paper.
H.L. collected and organized experimental data, played a crucial role in experimental design and
data analysis, provided professional statistical analysis support, and participated in the interpretation
of conclusions and experimental results in the paper. X.B. participated in the research of the basic
methods of the paper and revised and polished the language and details of the paper. L.L. and C.Z.
participated in the design of research ideas and data interpretation for this paper and contributed to
the interpretation of the conclusions and experimental results. J.Y., R.W., and Y.X. contributed to the
review of the usability of the paper’s design methods. Each author’s contribution to the research was
indispensable, jointly promoting the progress and achievement of the research. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Scientific and Technological Development Program Project
of China State Railway Group Co., Ltd. (Grant No. P2023T002), and the Scientific and Technological
Innovation Project of China National Energy Co., Ltd. (Grant No. SHGF-17-56).

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: Author Linjun Li was employed by the company China National Energy Co.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. Lin, T.; Wang, H.; Guo, X.; Wang, P.; Song, L. A novel prediction network for remaining useful life of rotating machinery. Int. J.

Adv. Manuf. Technol. 2023, 124, 4009–4018. [CrossRef]
2. Li, H.; Wang, H.; Xie, Z.; He, M. Fault diagnosis of railway freight car wheelset based on deep belief network and cuckoo search

algorithm. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 2022, 236, 501–510. [CrossRef]
3. Rezamand, M.; Kordestani, M.; Carriveau, R.; Ting, D.S.K.; Orchard, M.E.; Saif, M. Critical wind turbine components prognostics:

A comprehensive review. IEEE Trans. Instrum. Meas. 2020, 69, 9306–9328. [CrossRef]
4. Zhang, D.; Dey, S.; Perez, H.E.; Moura, S.J. Remaining useful life estimation of lithium-ion batteries based on thermal dynamics.

In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 4042–4047.

5. Shutin, D.; Bondarenko, M.; Polyakov, R.; Stebakov, I.; Savin, L. Prediction of remaining useful life of passive and adjustable
fluid film bearings using physics-based models. In Proceedings of the 11th IFToMM International Conference on Rotordy-
namics, Beijing, China, 18–21 September 2023; International Conference on Rotor Dynamics. Springer: Cham, Switzerland,
2023; pp. 211–223.

6. Protopapadakis, G.; Apostolidis, A.; Kalfas, A.I. Explainable and interpretable AI-assisted remaining useful life estimation for
aeroengines. In Turbo Expo: Power for Land, Sea, and Air; ASME: Rotterdam, The Netherlands, 2022; Paper V002T05A002.

7. Zhang, Y.; Feng, F.; Wang, S.; Meng, J.; Xie, J.; Ling, R.; Yi, H.; Zhang, K.; Chai, Y. Joint nonlinear-drift-driven Wiener process-
Markov chain degradation switching model for adaptive online predicting lithium-ion battery remaining useful life. Appl. Energy
2023, 341, 121043. [CrossRef]

8. Zhang, Y.; Feng, K.; Ji, J.C.; Yu, K.; Ren, Z.; Liu, Z. Dynamic model-assisted bearing remaining useful life prediction using the
cross-domain transformer network. IEEE/ASME Trans. Mechatron. 2022, 28, 1070–1080. [CrossRef]

9. Alfarizi, M.G.; Tajiani, B.; Vatn, J.; Yin, S. Optimized random forest model for remaining useful life prediction of experimental
bearings. IEEE Trans. Ind. Inf. 2022, 19, 7771–7779. [CrossRef]

10. Guo, L.; Li, N.; Jia, F.; Lin, J. A recurrent neural network based health indicator for remaining useful life prediction of bearings.
Neurocomputing 2017, 240, 98–109. [CrossRef]

11. Schmidt, R.M. Recurrent neural networks (RNNs): A gentle introduction and overview. arXiv 2019, arXiv:1912.05911. [CrossRef]
12. Chui, K.T.; Gupta, B.B.; Vasant, P. A genetic algorithm optimized RNN-LSTM model for remaining useful life prediction of

turbofan engine. Electronics 2021, 10, 285. [CrossRef]
13. Cao, D.; Li, H.; Zhang, N.; Zhang, C. A health indicator construction method based on unsupervised parallel multiscale neural

networks. In Proceedings of the 2022 Global Reliability and PHM (PHM-Yantai), Yantai, China, 13–16 October 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 1–7.

http://doi.org/10.1007/s00170-021-08351-1
http://dx.doi.org/10.1177/09544097211029155
http://dx.doi.org/10.1109/TIM.2020.3030165
http://dx.doi.org/10.1016/j.apenergy.2023.121043
http://dx.doi.org/10.1109/TMECH.2022.3218771
http://dx.doi.org/10.1109/TII.2022.3206339
http://dx.doi.org/10.1016/j.neucom.2017.02.045
http://dx.doi.org/10.48550/arXiv.1912.05911
http://dx.doi.org/10.3390/electronics10030285


Sensors 2025, 25, 6354 30 of 30

14. Duan, Y.; Liu, Z.; Li, H.; Zhang, C.; Zhang, N. A hybrid-driven remaining useful life prediction method combining asymmetric
dual-channel autoencoder and nonlinear Wiener process. Appl. Intell. 2023, 53, 25490–25510. [CrossRef]

15. Song, L.; Jin, Y.; Lin, T.; Zhao, S.; Wei, Z.; Wang, H. Remaining useful life prediction method based on the spatiotemporal graph
and GCN nested parallel route model. IEEE Trans. Instrum. Meas. 2024, 73, 3511912. [CrossRef]

16. Namdari, A.; Samani, M.A.; Durrani, T.S. Lithium-ion battery prognostics through reinforcement learning based on entropy
measures. Algorithms 2022, 15, 393. [CrossRef]

17. Yao, J.; Lu, B.; Zhang, J. Tool remaining useful life prediction using deep transfer reinforcement learning based on long short-term
memory networks. Int. J. Adv. Manuf. Technol. 2022, 118, 1077–1086. [CrossRef]

18. Demkowicz, L.; Gopalakrishnan, J. Discontinuous Petrov–Galerkin (DPG) method. In Encyclopedia of Computational Mechanics,
2nd ed.; Wiley: Hoboken, NJ, USA, 2017; pp. 777–792.

19. Hao, S.; Zheng, J.; Yang, J.; Sun, H.; Zhang, Q.; Zhang, L.; Jiang, N.; Li, Y. Deep reinforcement learning for joint optimization of
condition-based maintenance and spare ordering. Inf. Sci. 2023, 634, 85–100. [CrossRef]

20. Zheng, G.; Li, Y.; Zhou, Z.; Yan, R. A remaining useful life prediction method of rolling bearings based on deep reinforcement
learning. IEEE Internet Things J. 2024, 11, 22938–22949. [CrossRef]

21. Hu, Q.; Zhao, Y.; Wang, Y.; et al. Remaining useful life estimation in prognostics using deep reinforcement learning. IEEE Access
2023, 11, 32919–32934. [CrossRef]

22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
In Advances in Neural Information Processing Systems (NeurIPS); MIT Press: Long Beach, CA, USA, 2017; Volume 30.

23. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten
zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

24. Borst, N.; Verhagen, W.J.C. Introducing CNN-LSTM network adaptations to improve remaining useful life prediction of complex
systems. Aeronaut. J. 2023, 127, 2143–2153. [CrossRef]

25. Deng, F.; Chen, Z.; Hao, R. Research on bearing remaining useful life prediction based on an MsTCN-Transformer model. J. Vib.
Shock 2024, 43, 279–287.

26. Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Ahmed, R.; Emadi, A. Long short-term memory networks for accurate state-of-charge
estimation of Li-ion batteries. IEEE Trans. Ind. Electron. 2017, 65, 6730–6739. [CrossRef]

27. Francois-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep reinforcement learning.
Found. Trends Mach. Learn. 2018, 11, 219–354. [CrossRef]

28. Ma, T.; Xu, J.; Li, R.; Yao, N.; Yang, Y. Online short-term remaining useful life prediction of fuel cell vehicles based on cloud
system. Energies 2021, 14, 2806. [CrossRef]

29. Zha, W.; Ye, Y. An aero-engine remaining useful life prediction model based on feature selection and the improved TCN.
Frankl. Open 2024, 6, 100083. [CrossRef]

30. Ragab, M.; Chen, Z.; Wu, M.; Foo, C.S.; Kwoh, C.K.; Yan, R.; Li, X. Contrastive adversarial domain adaptation for machine
remaining useful life prediction. IEEE Trans. Ind. Inform. 2020, 17, 5239–5249. [CrossRef]

31. Li, S.; Zhang, C.; Liu, L.; Zhang, X. Gated transient fluctuation dual attention unit network for long-term remaining useful life
prediction of rotating machinery using IIoT. IEEE Internet Things J. 2024, 11, 18593–18604. [CrossRef]

32. Yu, W.; Kim, I.I.Y.; Mechefske, C. Remaining useful life estimation using a bidirectional recurrent neural network based
autoencoder scheme. Mech. Syst. Signal Process. 2019, 129, 764–780. [CrossRef]

33. Li, Y.; Chen, Y.; Hu, Z.; Zhang, H. Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning
models. Reliab. Eng. Syst. Saf. 2023, 229, 108869. [CrossRef]

34. Philip, J. CNN-LSTM Hybrid Deep Learning Model for Remaining Useful Life Estimation. arXiv 2024, arXiv:2412.15998.
[CrossRef]

35. Wahid, A.; Breslin, J.G.; Intizar, M.A. TCRSCANet: Harnessing temporal convolutions and recurrent skip component for enhanced
RUL estimation in mechanical systems. Hum.-Centric Intell. Syst. 2024, 4, 1–24. [CrossRef]

36. Duan, Y.; Li, H.; Zhang, N. Mechanical health indicator construction and similarity remaining useful life prediction based on
natural language processing model. Meas. Sci. Technol. 2022, 33, 094008. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10489-023-04855-3
http://dx.doi.org/10.1109/TIM.2024.3370801
http://dx.doi.org/10.3390/a15110393
http://dx.doi.org/10.1007/s00170-021-07950-2
http://dx.doi.org/10.1016/j.ins.2023.03.064
http://dx.doi.org/10.1109/JIOT.2024.3363610
http://dx.doi.org/10.1109/ACCESS.2023.3263196
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1017/aer.2023.84
http://dx.doi.org/10.1109/TIE.2017.2787586
http://dx.doi.org/10.1561/2200000071
http://dx.doi.org/10.3390/en14102806
http://dx.doi.org/10.1016/j.fraope.2024.100083
http://dx.doi.org/10.1109/TII.2020.3032690
http://dx.doi.org/10.1109/JIOT.2024.3363837
http://dx.doi.org/10.1016/j.ymssp.2019.05.005
http://dx.doi.org/10.1016/j.ress.2022.108869
http://dx.doi.org/10.48550/arXiv.2412.15998
http://dx.doi.org/10.1007/s44230-023-00060-0
http://dx.doi.org/10.1088/1361-6501/ac793f

	Introduction
	Theoretical Basis
	Multi-Head Self-Attention Mechanism
	Convolutional Neural Networks
	Attention-Enhanced Depthwise Separable Convolution
	LSTM Network
	Deep Reinforcement Learning

	Proposed Method
	Data Preprocessing
	Construction ofPersonalized Datasets with Similarity Degradation Stages
	Attention-Enhanced Multi-Scale Hybrid Network for Remaining Useful Life Prediction
	Strategy for Balancing Model Complexity and Efficiency

	Experiments
	Evaluation Metrics
	Engine Dataset Prediction
	Data Preprocessing
	Construction of Personalized Datasets
	Parameter Selection
	Reinforcement Learning-Driven Adaptive Parameter Tuning
	Experimental Results

	Prediction of Railway Freight Car Wheels Dataset

	Conclusions
	References 

