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Abstract

Due to the limited and fixed field of view of the onboard camera, the guiding beacons
gradually drift out of sight as the AUV approaches the docking station, resulting in unreli-
able positioning and intermittent data. This paper proposes an underwater autonomous
docking visual localization method based on a cage-type dual-layer guiding light array. To
address the gradual loss of beacon visibility during AUV approach, a rationally designed
localization scheme employing a cage-type, dual-layer guiding light array is presented.
A dual-layer light array localization algorithm is introduced to accommodate varying
beacon appearances at different docking stages by dynamically distinguishing between
front and rear guiding light arrays. Following layer-wise separation of guiding lights, a
robust tag-matching framework is constructed for each layer. Particle swarm optimization
(PSO) is employed for high-precision initial tag matching, and a filtering strategy based
on distance and angular ratio consistency eliminates unreliable matches. Under extreme
conditions with three missing lights or two spurious beacons, the method achieves 90.3%
and 99.6% matching success rates, respectively. After applying filtering strategy, error
correction using backtracking extended Kalman filter (BTEKF) brings matching success
rate to 99.9%. Simulations and underwater experiments demonstrate stable and robust tag
matching across all docking phases, with average detection time of 0.112 s, even when han-
dling dual-layer arrays. The proposed method achieves continuous visual guidance-based
docking for autonomous AUV recovery.

Keywords: AUV recovery; AUV docking; visual positioning; optical guidance; dual-layer
light array

1. Introduction
Autonomous Underwater Vehicles (AUVs), capable of autonomous navigation and

operation, have been extensively utilized in fields such as marine resource exploration,
scientific research, seabed mapping, and military target detection, demonstrating irre-
placeable value particularly in hazardous or inaccessible underwater environments [1,2].
Autonomous operation of AUVs significantly reduces human intervention, thereby enhanc-
ing operational safety and efficiency.
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However, limited internal space and energy storage capacity necessitate periodic
energy replenishment, data transmission, and routine maintenance for AUVs, placing high
demands on the efficiency and reliability of docking and recovery technologies. Existing
recovery guidance approaches are mainly categorized into capture docking, platform
docking, and tapered port docking methods [3]. Among these methods, tapered port
docking is the most widely adopted due to its simplicity and high docking success rate,
typically employing funnel-shaped [4] or box-shaped [5] axial docking structures.

Based on different sensing modalities, the underwater recovery positioning methods
for AUVs are classified primarily into acoustic [6,7], electromagnetic [8,9] and visual [10,11]
approaches. Acoustic and electromagnetic methods are typically used for coarse, long-
distance positioning and are predominantly employed during the homing stage. Precise
docking requires AUVs to approach the docking station with controlled velocity and high
accuracy. Consequently, visual positioning methods utilizing optical sensors have gained
prominence owing to their superior accuracy and rapid response features. Beyond docking,
optical technologies have also been widely studied for underwater wireless communication
and energy supply [12–15], demonstrating their versatility as enabling.

For precise positioning during visual docking, AUVs utilize onboard cameras to detect
predefined visual markers. These markers typically fall into two categories: active beacons
and passive markers. Active beacons are predominantly composed of lights. For instance, Li
et al. [16] developed a wide-area single-beacon visual guidance system, which, by analyzing
the morphological changes and movement trajectories of a single light spot, offered a
concise and practical localization solution for low-cost and lightweight AUVs. However,
a single light beacon usually provides guidance only for the dominant direction, thereby
limiting its overall utility. Consequently, multi-beacon localization approaches are generally
preferred. Nevertheless, multi-beacon scenarios frequently present challenges such as
occluded light sources and spurious detections, complicating accurate matching. To address
these issues, Yan et al. [17] proposed a four-degree-of-freedom visual positioning algorithm
that employs an L-shaped light array installed beneath a docking structure. Their method
leverages the geometric configuration of the light array to robustly identify valid beacons
even under partial occlusion. Similarly, Xu et al. [18] utilized four symmetrically arranged
green LEDs on a docking ring for stereo camera-based localization, effectively eliminating
spurious light sources by analyzing their specific topological structure. The second category
comprises passive visual markers, utilized primarily for short-range precise positioning.
Ren et al. [19] introduced ArUco markers combined with blue-green light positioning to
facilitate precise close-range guidance. Zhao et al. [20] enhanced the effective positioning
range of AUVs with limited visual fields by deploying multiple ArUco markers. Wei
et al. [21] proposed an enhanced AR-coded visual marker system combined with an image
restoration model tailored for underwater environments, significantly improving visual
marker detection robustness and localization accuracy.

Existing visual positioning methods guided by beacons or markers continue to ex-
hibit notable limitations. A single-layer planar light array often causes key localization
beacons to fall outside the camera’s limited field of view during AUV docking, resulting
in discontinuous and unreliable localization. While smaller visual markers can offer im-
proved positioning precision and enhanced adaptability to field-of-view variations, their
passive nature significantly restricts detectability over longer distances or in highly turbid
underwater environments.

The main contributions of this paper are as follows:

(1) A visual guidance scheme based on a dual-layer light array is proposed to mitigate
the limitations of onboard visual systems with restricted fields of view. By optimizing
the spatial configuration of the light sources, the scheme ensures continuous target
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visibility within the docking station and significantly enhances the reliability of the
autonomous docking process.

(2) Based on this guidance scheme, a corresponding visual localization method for the
dual-layer guiding light array is presented. This method dynamically distinguishes
between the front-layer and rear-layer light sources at each docking stage, ensuring
stable optical guidance with at least one layer at any given time. When the number
of detected light sources in a single layer reaches four or more, the method performs
robust tag matching and achieves pose estimation in world coordinates. The local-
ization of each layer is performed independently to guarantee the robustness of the
overall system.

(3) To verify the effectiveness and accuracy of the proposed method, a series of simulation
and pool experiments were conducted. The experimental results demonstrate that
the proposed method not only adapts effectively to changes in the field of view
but also robustly addresses issues such as missing and spurious light beacons, thus
significantly improving the robustness of the AUV autonomous docking process.

The remainder of this paper is organized as follows. Section 2 introduces the dual-layer
cage-type guide light array position scheme, including the design rationale and phase-wise
analysis of the docking process. Section 3 presents the visual positioning method based
on the dual-layer light array, covering light extraction and discrimination, the robust tag-
matching framework with PSO optimization and backtracking EKF, and pose estimation
techniques. Section 4 describes the comprehensive experimental validation, including
simulation studies of the tag matching framework and pool-based feasibility experiments
for continuous guidance. Finally, Section 5 concludes the paper with a summary of key
contributions, quantitative results, and discussion of future work directions.

2. Dual-Layer Cage-Type Guide Light Array Position Scheme
This section introduces a cage-type docking scheme for AUV recovery based on a

dual-layer guiding light array. By strategically arranging light sources both inside and
outside the docking station, the system ensures continuous visual localization throughout
all docking phases, from initial target search to final docking.

2.1. Design of Dual-Layer Light Array for Cage-Type Docking System

Given the substantial number of LEDs employed in both the front-layer and rear-
layer arrays, the configuration must enable the downstream visual algorithm to accurately
distinguish individual lights tags. To achieve this, the light array design must satisfy the
following criteria:

(1) Front-layer light array: The front layer should support long-distance detection and
adopt a dispersed, asymmetrical configuration to mitigate light overlap or merging
caused by optical diffusion.

(2) Rear-layer light array: The rear layer should adopt a compact layout with lights
featuring narrow beam angles, making it suitable for operation in restricted field-of-
view scenarios and ensuring reliable detection at short distances.

(3) Structural features: The overall arrangement should present distinct spatial patterns,
allowing the AUV to accurately differentiate and match individual light beacons as
they progressively enter the camera’s field of view.

(4) Deployment location: Since AUVs typically approach the docking station while
ascending from deeper to shallower depths, the front-layer light array should be
primarily deployed near the lower section of the docking station to facilitate early
detection and localization.
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Based on the aforementioned requirements, a dual-layer light source configuration was
designed, as illustrated in Figure 1. The dimension of the docking station is 2 × 2 × 5 m. In
this configuration, the front-layer light array consists of seven high-intensity light sources
arranged along the left and right sides and the lower part of the entrance of the docking
station. To enhance distinguishability, white light sources are used in the front layer, while
blue light sources are employed in the rear layer. The numbering of the light sources is
shown in the front-view schematic (right side of Figure 1).

 

Figure 1. Layout of the cage-type recovery system with dual-layer light arrays.

The color selection is based on both detection performance and underwater optical
properties. White LEDs are employed for the front layer because their broadband spectrum
(400–700 nm) produces strong camera responses across the visible spectrum, enabling reli-
able spot detection and segmentation at long ranges where signal strength is critical. Blue
LEDs are used for the rear layer, leveraging the fact that blue wavelengths (455–460 nm)
experience the least attenuation in underwater environments, thus providing more stable
and consistent signals at medium-to-short detection ranges. The distinct spectral difference
between white and blue also facilitates reliable layer discrimination during the detection
and matching process, reducing the likelihood of false associations between front and rear
layer beacons.

2.2. Phase-Wise Analysis of Docking Process

Figure 2 illustrates the proposed cage-type docking scenario. An AUV equipped
with a forward-looking camera detects the guiding-light array on the docking station
and autonomously executes navigation and docking. To maintain seamless, robust pose
estimation throughout the maneuver, the process is organized into four consecutive stages,
with representative camera views shown in Figure 3.

Figure 2. AUV cage-type docking scenario.
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Figure 3. Camera views during the four-stage docking process. (a) Search stage: partial front-layer
lights visible at distance; (b) Front-layer approach stage: all front-layer lights fully visible in field of
view; (c) Transition stage (early phase): rear-layer lights beginning to appear alongside front-layer
lights; (d) Transition stage (late phase): some front-layer lights moving out of view while rear-layer
lights become dominant; (e) Rear-layer docking stage: front-layer lights completely out of view, only
rear-layer lights visible for final alignment.

1. Search stage: The AUV approaches the docking station from a distance and performs
small-scale vertical and lateral maneuvers to search for the front-layer light array.
During this phase, the system estimates the position of the docking station based
on partially detected front-layer lights. Due to factors such as light attenuation and
relative positioning, typically only a subset of the front-layer lights is visible, while
the rear-layer lights are out of view (Figure 3a).

2. Front-layer light array approach stage: As the AUV moves closer, the front-layer lights
fully enter the camera’s field of view and can be reliably detected. The system utilizes
these lights for precise localization and navigation. At this point, the rear-layer lights
begin to gradually appear (Figure 3b).

3. Transition stage between front and rear arrays: As the AUV continues to advance, the
rear-layer lights progressively enter the field of view. The system must dynamically
distinguish between rear and front layer light sources to ensure a smooth transition
from front-layer-array-based guidance to rear-layer-array-based guidance, avoiding
tracking errors or interruptions (Figure 3c,d).

4. Rear-layer light array docking stage: Once the AUV enters the interior of the docking
station, only the rear light array remains visible. At this stage, the system relies
entirely on the rear light array for fine-grained localization and attitude adjustment,
ensuring accurate and stable final docking (Figure 3e).

3. Visual Positioning Method Based on Dual-Layer Light Array
For continuous-guidance localization using a dual-layer guiding light array, we pro-

pose the following method. We begin by detecting light sources with conventional vision
techniques and then dynamically classify them into front and rear layers based on color
or size. Once the layers are separated, our algorithm addresses multi-source matching
challenges by applying a robust matching framework that guarantees stable light beacons
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tag matching under complex conditions, thus enabling robust pose estimation via the
sequential quadratic programming-based perspective-n-point (SQPNP) algorithm.

3.1. Extraction and Discrimination of Front and Rear Layer Light Arrays
3.1.1. Light Source Feature Extraction

To extract the target light sources from the image, a series of preprocessing steps are
performed. First, the color image is converted to grayscale, the binarization threshold is
automatically determined using the interval-adaptive OTSU method [22]. Canny edge
detection is then employed to extract contours from the binarized image, followed by the
identification of connected regions.

To address edge overlap caused by light source halo diffusion, a distance transform is
introduced, and its output is used to define a threshold for morphological opening, which
refines the connected domains. Subsequently, least-squares circle fitting is applied to the
boundary points of each connected region to calculate shape descriptors such as roundness
and compactness. These metrics are used to filter out spurious light sources caused by
noise or shapes that do not meet geometric constraints, effectively isolating valid light
sources for subsequent matching.

3.1.2. Discrimination of Front and Rear Layer Light Arrays

Given that the dual-layer light array becomes sequentially visible under varying
observation conditions, the system first differentiates the front and rear layers to maintain
robust tag matching.

After detecting the image region corresponding to the light source, the RGB image
is converted to the HSV color space. Using predefined HSV thresholds, light sources are
preliminarily classified into two categories: blue-channel (rear-layer) and non-blue-channel
(front-layer).

In addition, a radius-based decision method is proposed to adaptively classify light
sources into front- and rear-layer groups. The process proceeds as follows:

The detected light sources are initially divided into two clusters: smaller-radius
blue lights representing the rear layer, and larger-radius non-blue lights representing
the front layer. The clustering objective is to minimize the total within-cluster variance,
formulated as:

min
C1,C2

J(C1, C2) = min
C1,C2

( ∑
xj∈C1

|xj − u1|2 + ∑
xj∈C2

|xj − u2|2) (1)

Let C1 and C2 denote the two clusters corresponding to smaller and larger light radii,
respectively, with mean values u1 and u2. Each xj represents a light source. Clustering is
performed by minimizing the above objective function.

If the average radius difference between the two clusters exceeds a predefined thresh-
old (i.e., ||u2 − u1|| > threshold ), the radii of the two clusters are considered a candidate
pair for two-cluster separation. To mitigate misclassification caused by spurious light blobs
with abnormal sizes, which may interfere with radius-based cluster discrimination, an
additional constraint is imposed. Specifically, each cluster must contain at least four light
sources. A frame is considered a valid dual-cluster configuration, and the dual-cluster
counter m is incremented only if both conditions are satisfied.

If the mean radius difference is below the predefined threshold (i.e., ||u2 − u1||< threshold )
or if either cluster contains fewer than four light sources, the current frame is considered
temporarily unclassifiable. To avoid prematurely discarding valid light sources and to
ensure that at least one group of lights is extracted, all detected lights are provisionally
treated as belonging to a single cluster. To determine whether this single group corresponds
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to the front or rear layer, the system refers to the accumulated number of prior frames
identified as dual-cluster. If this count m exceeds a predefined threshold Tcnt, the current
group is classified as rear-layer light array; otherwise, it is considered to belong to the
front-layer light array. Figure 4 illustrates the size detection process.

Figure 4. Flowchart for detecting the size of front and rear light arrays.

The complete workflow for light source extraction and discrimination is illustrated in
Figure 5.

 

Figure 5. Procedure for extracting and classifying front and rear light arrays.
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3.2. Single-Layer Light Array Tag Matching Framework

After distinguishing the dual-layer light array, it remains necessary to match the
tags within each individual layer. During the AUV’s search phase, the onboard camera
may observe the docking station from varying distances and orientations, often resulting
in partial detection of the light sources. In the transition phase, as the AUV advances,
front-layer lights may gradually exit the field of view, further contributing to incomplete
observations. Moreover, failures in distinguishing between front- and rear-layer lights can
occur for two main reasons. First, color discrimination may fail because our algorithm
classifies a light as “blue” based on the proportion of surrounding pixels falling within a
blue hue range. In practice, this threshold may not always be satisfied due to underwater
scattering or intensity attenuation. In addition, the diffusion of blue light can overlap
with adjacent front-layer white lights, leading to their misclassification as blue. Second,
size-based discrimination may fail when the number of detected lights in one layer is
insufficient. In such cases, the algorithm may erroneously merge all detected lights into a
single class, thereby assigning the entire front layer to the rear layer (or vice versa).

To address light source detection errors—specifically, missing sources caused by partial
visibility and spurious detections caused by tag misclassification—this paper proposes
a robust tag matching framework that integrates Particle Swarm Optimization (PSO),
geometric tolerance filtering, and a backtracking iterative Extended Kalman Filter (BTEKF).
First, the initial correspondence between detected beacons and their expected positions
is established by optimizing affine transformation parameters under known geometric
constraints of the light array, using an enhanced PSO tailored for AUV navigation. To
eliminate false matches, a geometric consistency check based on joint distance and angle
tolerances is applied, retaining only correspondences that satisfy both thresholds. Finally,
when this check identifies erroneous matches in the current frame, a backtracking EKF is
triggered: current matches are discarded, a Gaussian motion model is constructed from
previous pose estimates, and predicted light source reprojections are used to infer and
correct tag assignments in the next frame.

The complete algorithm steps are as follows:

3.2.1. Enhanced PSO for AUV Active Beacon Matching

During the autonomous docking process of the AUV, the geometric relationship
between the known beacon positions in the world frame and their detected projections
in the image plane can be approximated by a 2D affine transformation. To achieve both
efficiency and robustness in beacon matching, we develop an enhanced Particle Swarm
Optimization (PSO) algorithm tailored for AUV navigation. A swarm of N particles
explores a four-dimensional search space, with each particle encoding the transformation
parameters: rotation angle θ, translations tx, ty, and scaling factor s.

We first normalize the 3D world beacon coordinates to 2D coordinates
Pw = {Si, i = 1, . . . , n1}, by projecting them onto the frontal (x-o-y) plane, discarding the
depth component, and applying scale normalization. The image-plane pixel coordinates
are normalized as Pc =

{
Rj, j = 1, . . . , n2

}
. The goal is to find the affine transform that best

aligns these two sets of points. The fitness function is defined as:

Fitness(p) = ∑||T(θ, s) · Pc + t − Pw||
i,j

(2)

where the affine transform matrix is:

T(θ, s) =

[
s · cos(θ) −s · sin(θ)
s · sin(θ) s · cos(θ)

]
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Each particle evaluates this fitness, and both its personal best position pbest and the
global best gbest are recorded. Particle velocities and positions are updated by:

vt+1
i = wvt

i + c1r1(pbest − xi) + c2r2(gbest − xi) (3)

xt+1
i = xt

i + kvt+1
i (4)

where w denotes the inertia weight; c1, c2 represent the cognitive and social coefficients,
respectively; r1 and r2 ∈ (0, 1) are uniformly distributed random numbers; and k is a scaling
factor for the velocity.

Premature convergence is a common challenge in Particle Swarm Optimization
(PSO) [23,24]. To effectively address this and enhance performance for our AUV active
beacon matching scenario, we introduce following improvements:

First, refine the learning rate by making it decrease linearly as the number of
iterations increases.

c1 = c1BASE + (c1FINAL − c1BASE)

(
1 − iter_count

MAX_ITER

)
(5)

c2 = c2BASE + (c2FINAL − c2BASE)

(
1 − iter_count

MAX_ITER

)
(6)

c1BASE, c1FINAL denote the initial and final values of c1, c1BASE > c1FINAL, with c2BASE,
c2FINAL defined similarly. iter_count and MAX_ITER are the current and maximum
iteration counts. This linear decay allows faster updates in early iterations and finer
adjustments near the end.

Second, since the initial distribution of particles in the search space can affect their
update directions, and considering the actual motion range of the AUV docking task,
particle parameters of the search space are constrained:

θ ∈ (−10◦, 10◦), s ∈ (0.5, 8), tx ∈ (−1, 1), ty ∈ (−1, 1)

These constraint selections are based on the following physical considerations:
First, for the translation parameters tx and ty, we normalize all detected light points by

subtracting their mean and scaling them into the [−1, 1] space. This normalization makes
the translation estimation dimensionless and robust to scale variations, which justifies our
choice of tx, ty ∈ [−1, 1].

Second, regarding the roll angle θ, the AUV’s roll motion is physically constrained
during docking and cannot be very large. We therefore limit the search range to [−10◦, 10◦],
which covers all realistic roll variations while reducing unnecessary search space in the
PSO algorithm.

Finally, the scale factor s is more complex. In an ideal case without spurious detections
or missing points, s should be close to 1.0. However, when spurious lights (e.g., distant
reflections) are present, they are included in the normalization range, artificially inflating
the apparent observation span. For instance, in an extreme case where the docking station
is at the bottom of the image and a reflection appears at the top, with the camera at 18.64 m
distance and a 60◦ field of view, the vertical observation span would be approximately
21.52 m. Given that the docking station is only 2 m × 2 m, the theoretical normalized scale
could become about 10 times larger. To maintain robustness under such rare but possible
cases, we cap the upper bound of s to about 8.

Another extreme case is partial visibility due to missing detections. When the missing
points correspond to exactly the upper (or lower) half or left (or right) half of the lights, the
effective observation space is halved. This causes the normalization to relatively enlarge
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the visible points by a factor of two. To compensate, we set the lower bound of s to 0.5,
ensuring reliable matching under such extreme scenarios.

Moreover, to ensure continuity in attitude changes during updates, an adaptive penalty
function Penalty′ is introduced when the updated angle deviates excessively from the
previous frame:

Penalty′ =

{
0 |θnow − θused| < 10◦

Penalty ∗
(

1 + |θnow−θused |−10
5

)
else

(7)

Furthermore, we define a composite fitness function that simultaneously accounts for
the registration accuracy in the current frame and the pose-continuity with the previous
frame:

Fitness(p) = ∑ w1|T(θ, s) · PC + t − Pw|
+∑ w2

∣∣∣T(θ, s) · PC + t − T
(
θpre, spre

)
· PCpre + tpre

∣∣∣+ Penalty′
(8)

w1 balances the influence of current-frame registration error, while w2 penalizes
discontinuities (rotation, translation, scaling) between successive frames.

Finally, to enhance global search capability and avoid particles stagnating in local
optima, an intelligent restart mechanism is employed:

Particles whose fitness shows no significant improvement over several iterations are
reinitialized randomly before the next update; Restarted particles are redistributed into
under-explored regions, increasing swarm diversity and the chance of escaping local traps.

Figure 6 illustrates the evolution of the swarm over iterations: the 3D scatter plots
show the changes in translation components tx, ty, and rotation θ, while the color gradient
encodes the scale parameter s.

Figure 6. PSO point set registration with tag matching and particle distribution evolution.

3.2.2. Consistency of Distance and Angular Ratios

Due to the limited number of PSO iterations and frequent omission of multiple light
sources, the raw PSO output may fail to provide accurate tag correspondences.

Let P = {P1, P2, . . . , Pn} represent the known beacon coordinates in the world coor-
dinate system (after removing depth), and p = {p1, p2, . . . , pn} denote the corresponding
matched points in the image plane obtained by PSO. To robustly validate each candidate
correspondence set, we introduce two geometric tolerance criteria:
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a. Distance-Ratio Consistency

For every ordered triple (i, j, k), compute the pairwise distance ratios before and
after matching:

λijk =
djk

dij
=

∣∣Pj − Pk
∣∣∣∣Pi − Pj
∣∣ , λ′

ijk =
d′jk
d′ij

=

∣∣pj − pk
∣∣∣∣pi − pj
∣∣ (9)

∀i, j, k s.t.|1 −
λijk

λ′
ijk
| <∈λ

where ∈λ denotes the maximum allowable relative deviation in the distance ratio.

b. Angular Consistency

For the same triple (i, j, k), compute the interior angle at point Pi before and
after matching:

θijk = arccos(
→

Pi Pj ·
→

PjPk∣∣∣∣ →
Pi Pj

∣∣∣∣·∣∣∣∣ →
PjPk

∣∣∣∣ ), θ′ijk = arccos(
→

pi pj ·
→

pj pk∣∣∣ →
pi pj

∣∣∣·∣∣∣ →
pj pk

∣∣∣ )
∀i, j, k s.t.|θ′ijk − θijk| <∈θ

(10)

where ∈θ denotes the maximum allowable angular deviation.
A candidate correspondence set is accepted only when both geometric criteria are

satisfied across all point triplets. Otherwise, a backtracking iterative Extended Kalman
Filter (BTEKF) procedure is triggered to re-estimate the tag matching based on historical
motion information.

3.2.3. Backtracking EKF Matching Correction

To robustly re-associate beacons and update the AUV’s pose in frames with erroneous
tag matches, the predicted pose and its covariance are incorporated into an Extended
Kalman Filter (EKF) [25]. The EKF operates in the image space through an iterative predict–
correct process to refine the estimated associations.

a. Predictive Covariance Projection

The prior pose Pg and its covariance ∑
p
g are modeled as a single Gaussian distribution.

For each known 3D beacon xi, the Jacobian J(xi) of its 2D projection with respect to the
pose is calculated. The aggregate observation-space covariance is then given by:

∑v
i = J(xi)∑p

g (J(xi))
T (11)

where ∑v
i is the projected covariance of beacon xi in image space, and J(xi) represents the

partial derivatives of the projection function with respect to pose parameter.

b. Candidate Gating via Mahalanobis Distance

For each beacon xi, denote its predicted image projection as vi, and let {uj} represent
the set of candidate points. A measurement uj is accepted only if its Mahalanobis distance
to vi satisfies: (

vi − uj
)T

(
∑v

i

)−1
(vi − uj) ≤ M2 (12)

where M is the chi-square threshold corresponding to the desired confidence level.

c. EKF Update

Process the surviving
(
xi, uj

)
pairs in order of increasing gating residual. For each

pair, the prior pose and covariance are then updated as follows:
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K = ∑
p
g J(xi)

T(J(xi)∑
p
g J(xi)

T + R)
−1

p+g = pg + K
(
uj − Proj

(
pg; xi

))
∑

p+
g = (I − KJ(xi))∑

p
g

(13)

where K is the Kalman gain matrix, R is the measurement noise covariance matrix, I is the
identity matrix, Proj

(
pg; xi

)
represents the projection of 3D beacon xi onto the image plane

using pose Pg, and the superscript “+” denotes the updated (posterior) estimates.

d. Backtracking Logic

After each update, compute the reprojection residual. If it falls below the acceptance
threshold, lock in the match and proceed to the next beacon. Otherwise, discard that
candidate uj and try the next. If all candidates for xi fail, backtrack to the previous beacon
xi−1, re-evaluate its matches, and then resume the forward process.

e. Convergence and Pose Acceptance.

Once the filter has converged (i.e., at least three beacons have been successfully
updated), the final pose is recorded. Subsequently, all 3D beacons are reprojected onto
the image plane, and among those within a specified pixel–distance threshold, the nearest
valid 2D beacon is selected as the initialization reference for SQPNP pose estimation in the
next frame.

Figure 7 illustrates the complete workflow of the backtracking EKF-driven pose refine-
ment, highlighting a scenario in which one beacon is missing and a noisy point is present.

Figure 7. Process Diagram of point set optimization matching via backtracking iterative Kalman filter.
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3.3. Pose Estimation

To achieve high-precision pose estimation during the AUV docking process, it is
essential to establish a transformation between the world coordinate system and the camera
coordinate system (Figure 8). In this work, the Sequential Quadratic Programming for
Perspective-n-Point (SQPnP) algorithm [26] is employed to solve the nonlinear PnP problem.
This algorithm offers both global optimality and computational efficiency in multi-point
matching scenarios, making it well-suited for the pose estimation task involving multiple
light source correspondences in the proposed system. In this experiment, SQPNP was
used for the front layer light array and the rear layer light array respectively. The complete
continuous navigation and localization method described in Section 3 is shown in Figure 8.

Figure 8. AUV continuous navigation processing framework.

4. Experiment
To validate the effectiveness and robustness of the proposed dual-layer light array

visual localization method, we designed and conducted a series of simulation trials and
pool-based experiments, systematically evaluating the algorithm’s performance across a
range of representative scenarios.

4.1. Single-Layer Light Array Tag Matching Framework

(1) Simulation Environment and Parameter Settings

We built a 1:1-scale simulation environment, an AUV moves toward the docking
station along the Z-axis at approximately 1.5 m/s, capturing four images per second.
Simultaneously, it performs small-amplitude perturbations in the X- and Y-directions
(up to ±1 m) and maintains roll, pitch, and yaw angles within ±3◦.

(2) Robustness to Missing and Spurious Beacons

To assess the algorithm’s robustness under conditions of partial beacons loss and
spurious beacons, we focus on the front-layer light array and design two test scenarios:

a. Randomly remove 1 to 3 front-layer light beacons from the detection results and
match using the remaining ones, to evaluate the algorithm’s performance in matching the
remaining beacons under conditions of missing beacons.

b. Introduce 1 to 2 randomly moving spurious light beacons into the front-layer light
array and test the algorithm’s capability to extract the real beacons from data containing
spurious beacons.
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Figure 9 presents the matching and pose estimation results under simulated partial
beacons loss, where one, two, or three beacons from the detected set are randomly omitted
in each frame to emulate missing observations. The results are shown at different distances
of 9 m, 5 m, and 3 m, respectively.

 
Figure 9. Simulation results under various beacon-loss conditions.

Figure 10 shows the matching results in the presence of one or two injected spurious
beacons at distances of 9 m, 5 m, and 3 m. These spurious beacons are randomly added to
the detected light set to evaluate the algorithm’s robustness to outliers.

Figure 10. Simulation results in the presence of spurious beacons.
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A total of 30 physical-camera trials were conducted in simulation under three condi-
tions: no spurious beacon, one spurious beacon, and two spurious beacons. Across these
trials, the front-layer light array was fully detected 2108 times in the absence of spurious
lights, 2076 times with one spurious light, and 2153 times with two spurious lights. Ad-
ditionally, extreme beacon-loss scenarios were evaluated to measure the success rate of
matching and pose estimation. The summarized results are presented in Table 1. These
results demonstrate that even under the extreme condition of three missing beacons, the
PSO-based matcher alone achieves a 90.3% correct matching rate, highlighting its strong
initialization capability. During the search phase, the algorithm maintains high success
rates despite the absence of some beacons. In the subsequent guided phase, the integra-
tion of PSO with the backtracking EKF achieves a perfect 100% matching rate. Moreover,
the PSO algorithm effectively suppresses spurious beacons and accurately identifies the
real beacons.

Table 1. PSO matching accuracy with backtracking EKF.

Condition Missing 3 Missing 2 Missing 1 1 Spurious 2 Spurious

PSO 90.3% 98.6% 100% 99.6% 99.6%

PSO + BT EKF 100% 100% 100% 100% 99.9%

Furthermore, in continuous guidance tests involving both spurious and missing
beacons, conventional one-to-one Hungarian matching may mistakenly associate missing
beacons with spurious beacons, resulting in failure of the PSO-based initialization. In
contrast, the backtracking Extended Kalman Filter (EKF) leverages the pose history from the
previous frame to reliably recover correct beacon tag matching, even under such challenging
conditions. Figure 11 illustrates a continuous guidance scenario: in the left image, a
spurious beacon appears; in the subsequent right image, a true beacon becomes occluded
while the spurious beacon persists. Under this challenging condition, the backtracking
Extended Kalman Filter effectively suppresses the spurious beacon and correctly identifies
the tags of the remaining real beacons.

Figure 11. Simulation results under simultaneous spurious and missing beacon conditions.

(3) Search-Phase Simulation Verification

To further evaluate the algorithm’s adaptability to varying approach directions, the
camera was placed 15 m in front of a simulated docking station, with its optical axis perpen-
dicular to the docking plane. It traversed a rectangular path parallel to the docking plane,
simulating the docking station entering the field of view from multiple approach directions.

Figure 12 presents representative matching results when the AUV approaches the
docking station from below, left, above, and right. Regardless of the approach direction,
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as long as at least four lights are visible, the system consistently achieves correct beacon
tag matching.

 

Figure 12. Simulation results in the planar rectangular search experiment.

The corresponding camera trajectories in Figure 13 closely match the expected paths,
further confirming the algorithm’s robustness and effectiveness under long-distance, multi-
directional approach conditions.

Figure 13. Localization trajectory during planar rectangular path search.

4.2. Pool-Based Feasibility Experiment for Continuous Guidance

(1) Test Platform and Equipment

The experimental setup consists of an LED beacon array, a TS-MINI AUV equipped
with an underwater camera (Figure 14), and an onboard processing computer. The TS-
MINI, developed by Shenyang Institute of Automation, Chinese Academy of Sciences, has
been widely adopted for underwater visual localization research [27,28]. Detailed system
specifications are listed in Table 2.
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Figure 14. The docking station with dual-layer light array and TS-MINI AUV of SIA.

Table 2. Visual guidance system specifications.

Component Specification Quantity

White LED Beacons

Spectrum range: 400–700 nm
Power Consumption: 5.4 W
Luminous Intensity: 637 cd

beam angle: 120◦
7

Blue LED Beacons
Wavelength: 455–460 nm
Power Consumption: 2 W
Luminous Intensity: 127 d

6

beam angle: 90◦

TS-MINI AUV Physical dimensions: 160 cm × 10 cm × 10 cm
Underwater Camera Sensor Model: Sony IMX264 1

Effective pixels: 2448 × 2048
Field of view: 60◦

Voltage: 9–24 VDC
Pixel size: 3.45 µm × 3.45 µm

Frame rate: 15 FPS
Focal length: 7.2 mm

Onboard Computer NVIDIA Jetson AGX Xavier 1
CPU: 6-core NVIDIA Carmel ARM

GPU: NVIDIA Volta

(2) AUV Recovery and Docking Experiment

Prior to the docking tests, the AUV’s camera was calibrated, and the docking rig was
suspended in the pool. The AUV initiated its approach from a distance of 30 m at a speed
of approximately 1 m/s. Upon detecting the front-layer light beacons, the system started
localization based on their observed positions. Once all six rear-layer lights became visible,
the system switched to rear-layer guidance. Throughout both the front-layer and rear-layer
guidance phases, the AUV was maintained within 1 m of the docking-plane center.

Figure 15 shows the tag-matching and center-point localization results produced by
the algorithm. Throughout most of the trial, the algorithm reliably identified true beacons,
rejected spurious detections, and maintained consistent tag matching. During the early
far-distance stage, the beacon signal becomes too weak relative to the background, which
reduces the likelihood of successful detection. At very close range, specular reflections
from the docking station cause adaptive-threshold segments to merge, interfering with
recognition. These effects are expected for optical sensing in underwater environments.
Even so, the system can still estimate pose from the remaining visible beacons when some
tags are missed. In terms of processing speed, the average detection-and-matching times
were 0.112 s for the dual-layer array and 0.097 s for the single-layer array, both below the
fixed 0.15 s per-frame interval, fully satisfying real-time constraints.
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Figure 15. Beacon matching result during the underwater continuous guidance experiment.

As shown in Figure 16, the actual localization trajectory is represented by a solid line
for the front-layer lights and a dashed line for the rear-layer lights. The experimental data
was collected with a fixed sampling interval of 0.15 s per frame. The experimental results
show that the localization results of the front-layer lights are available from approximately
18.62 m and terminate at around 1.73 m. The localization results of the rear-layer lights
become available from 10.07 m, ensuring continuous guidance coverage throughout the
approach sequence. By fusing information from the dual-layer light array, the AUV is
guided accurately to the target docking plane at z = −3 m. The localization offset between
the center points of the front and rear beacon arrays remained below 0.3 m, which falls
within the expected parallax deviation under nominal AUV attitudes, including small pitch,
yaw, and roll angles.

Figure 16. XYZ pose estimation trajectory during continuous guidance.
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5. Conclusions
In this work, we present a monocular visual localization method for continuous au-

tonomous docking of underwater vehicles, based on a novel dual-layer guiding light array.
To accommodate the varying field during AUV entry into a cage-type docking station, we
designed a dual-layer guiding light array and developed a corresponding pose-estimation
algorithm. The proposed approach dynamically differentiates front-layer and rear-layer
light arrays, overcoming the point-matching challenges inherent in PnP formulations.
Whether the dual-layer light array is fully visible or only partially observed, the method
consistently enables reliable visual guidance. It effectively addresses partial-visibility pose
estimation issues during the search phase, extends the vehicle’s operational search range,
and robustly handles both undetected beacons and spurious beacon detections, thereby
reducing the risk of localization failure during docking.

Extensive simulations and pool-based experiments verify the robustness of the pro-
posed algorithm. Under extreme conditions with three missing lights or two spurious
beacons, it achieves matching success rates of 90.3% and 99.6%, respectively, while the
incorporation of a filtering strategy and backtracking extended Kalman filter (BTEKF)
raises the success rate to above 99.9%. Regardless of whether the dual-layer light array
is fully visible or only partially observed, the method provides consistent and reliable
visual guidance throughout the docking process. The system maintains stable, real-time
performance with an average detection time of 0.112 s and keeps the localization offset
between front and rear beacon arrays below 0.3 m, enabling the AUV to remain within
1 m of the docking-plane center during continuous guidance from a 30 m approach to
final docking.

However, certain limitations of the proposed approach should be acknowledged.
Although the introduction of geometric consistency correction mechanism and backtracking
extended iterative Kalman filter resolves the one-to-one dependency after initialization, the
initialization method still relies on Hungarian matching (one-to-one matching). This means
that when spurious light sources and missing light sources coexist simultaneously at the
beginning, the algorithm may incorrectly match spurious sources to the missing sources,
leading to failure in finding correct correspondences. The geometric consistency mechanism
cannot obtain correct matching point pairs under such circumstances. This situation
often occurs at the initial phase of docking when light source detection is incomplete
while spurious light sources caused by interference exist on the water surface, such as
reflections. This may result in the inability to initially locate the docking station until all
correct light sources are fully detected, potentially shortening the effective localization
distance. This limitation needs to be addressed in future work. Furthermore, it should be
noted that the proposed method operates downstream of the detection stage, focusing on
beacon matching and pose estimation given detected light centroids. A comprehensive
study of environmental factors such as water turbidity, salinity, and varying illumination
conditions would primarily involve the image acquisition and front-end detection stage,
which requires dedicated imaging algorithms and detector-level evaluations. A full imaging
and front-end detection study represents an important direction for future work to further
enhance the system’s robustness under diverse underwater environmental conditions.

This study provides a valuable technical solution for beacon-based localization in
underwater robotic navigation and AUV recovery tasks. Future work will further explore
the integration of artificial intelligence technologies to enhance the stability of multi-marker
matching and improve adaptability in turbid waters or dynamic marine conditions. Adap-
tive reward-shaping reinforcement learning methods [29] provide insights for visual guid-
ance deep learning approaches and could be used to optimize the feature extraction and
matching strategies in this study through adaptive mechanisms. Recent advancements
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in swarm intelligence optimization methods [30] could be applied to achieve adaptive
parameter tuning of the PSO algorithm in this study through multi-agent mechanisms
and knowledge-driven strategies. A hybrid deep learning and geometric optimization
end-to-end method [31] offers a potential technical path for constructing the entire visual lo-
calization process as an end-to-end trainable network, which is expected to further improve
the performance of dual-layer light array matching.
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