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Abstract

Understanding occupant behavior is critical for enhancing safety and situational awareness
in intelligent transportation systems. This study investigates multimodal occupant behavior
recognition using sequential inputs extracted from 2D pose, 2D gaze, and facial movements.
We conduct a comprehensive comparative study of three distinct architectural paradigms:
a static Multi-Layer Perceptron (MLP), a recurrent Long Short-Term Memory (LSTM) net-
work, and an attention-based Transformer encoder. All experiments are performed on
the large-scale Occupant Behavior Classification (OBC) dataset, which contains approxi-
mately 2.1 million frames across 79 behavior classes collected in a controlled, simulated
environment. Our results demonstrate that temporal models significantly outperform the
static baseline. The Transformer model, in particular, emerges as the superior architecture,
achieving a state-of-the-art Macro F1 score of 0.9570 with a configuration of a 50-frame span
and a step size of 10. Furthermore, our analysis reveals that the Transformer provides an
excellent balance between high performance and computational efficiency. These findings
demonstrate the superiority of attention-based temporal modeling with multimodal fusion
and provide a practical framework for developing robust and efficient in-vehicle occupant
monitoring systems. Implementation code and supplementary resources are available (see
Data Availability Statement).

Keywords: occupant behavior recognition; multimodal learning; 2D pose; gaze estimation;
facial movement; temporal modeling; LSTM; MLP; Transformer; sequence classification;
occupant monitoring

1. Introduction

Occupant behavior recognition has emerged as a crucial component of intelligent
transportation systems, enabling real-time monitoring to enhance road safety and situa-
tional awareness. Traditional approaches often rely on single-modality visual cues and
static frame-level classifiers, which struggle with the subtle, temporally dependent patterns
found in complex, simulated driving environments. Moreover, a single feature type is
often insufficient to capture the diverse range of behaviors, from gross body movements to
fine-grained facial expressions.

Recent advancements in multimodal learning and temporal modeling have shown
promise in addressing these limitations. By combining complementary cues such as body
pose, gaze, and facial movements, a more holistic understanding of occupant behavior can
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be achieved. Temporal models, like LSTMs, can further exploit sequential dependencies
to distinguish between visually similar yet temporally distinct actions. More recently,
attention-based architectures such as the Transformer have demonstrated state-of-the-art
performance in various sequence modeling tasks, offering an alternative approach to
capturing long-range dependencies.

To address these challenges, this paper presents a lightweight and modular frame-
work for occupant behavior recognition that leverages temporal modeling of multi-feature
inputs. Our approach fuses three complementary modalities—2D pose, 2D gaze, and facial
movement (FM)—into fixed-length sequences, which are then classified using three distinct
architectures: a static Multi-Layer Perceptron (MLP), a recurrent Long Short-Term Memory
(LSTM) network, and an attention-based Transformer encoder. We conduct a comprehen-
sive evaluation on the large-scale Occupant Behavior Classification (OBC) dataset, and our
main contributions are as follows:

* A multimodal occupant behavior recognition pipeline that integrates 2D pose, 2D gaze,
and facial movement (FM) features using an early fusion strategy.

* A comparative analysis of static (MLP), recurrent (LSTM), and attention-based (Trans-
former) classification models, highlighting the benefits of temporal modeling for
complex behavior recognition.

*  An extensive ablation study on the effects of feature combinations, sequence lengths,
and frame sampling strategies, providing insights into optimal design choices for
in-vehicle monitoring systems.

*  Alightweight and computationally efficient design suitable for practical deployment,
supported by performance and inference cost evaluations.

Through these contributions, this work underscores the importance of multimodal fu-
sion and temporal modeling for occupant behavior recognition, offering practical guidelines
for the development of robust occupant monitoring systems for in-vehicle applications.

2. Related Work
2.1. Pose Estimation for Occupant Behavior

Accurate pose estimation is essential for capturing body dynamics during driving.
Recent YOLO-based frameworks have demonstrated real-time, high-accuracy keypoint
detection by integrating object detection and pose estimation into a unified pipeline. YOLO-
Pose extends the YOLO architecture for multi-person 2D pose estimation, jointly predicting
bounding boxes and keypoints in a single stage, achieving state-of-the-art performance
on large-scale benchmarks [1]. Building on this, YOLOv8-PoseBoost incorporates channel
attention modules, multi-scale detection heads, and cross-level feature fusion to improve
small-target detection in complex environments [2]. These advances provide a robust
foundation for extracting spatial cues in occupant monitoring systems.

2.2. Gaze Estimation

Gaze estimation is a key indicator of occupant attention and situational awareness.
UniGaze [3] proposes a universal gaze estimation framework trained on large-scale, in-
the-wild face datasets using masked autoencoder (MAE) [4] pre-training with a Vision
Transformer backbone. This approach improves cross-domain generalization under both
leave-one-dataset-out and joint-dataset evaluation protocols, making it suitable for deploy-
ment in diverse and unconstrained driving scenarios.

2.3. Facial Movement Modeling

Subtle facial movements can provide critical clues for identifying occupant states, such
as Inattention or drowsiness. The FMAE-IAT framework [5] leverages MAE pre-training
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on the large-scale Face9M dataset, combined with identity adversarial training to avoid
identity-dependent biases. It achieves state-of-the-art performance on action unit detection
benchmarks such as BP4D [6], BP4D+ [7], and DISFA [8], highlighting its capacity to capture
fine-grained facial behavior.

2.4. Al-Based In-Vehicle Occupant Behavior Recognition

Al-based behavior recognition is a cornerstone of modern in-vehicle occupant moni-
toring systems. A significant body of research has focused on driver-centric applications,
leveraging machine learning and deep learning to enhance safety. Convolutional Neural
Networks (CNNs), in particular, have been widely adopted for detecting driver distraction.
For instance, Xing et al. (2019) [9] utilized models like AlexNet and GoogLeNet to classify
seven driver activities, achieving up to 91.4% accuracy in distinguishing distracted from
normal driving. Similarly, Valeriano et al. (2018) [10] recognized 10 types of distracted
behaviors with 97% accuracy using a ResNet-based model. Beyond deep learning, tradi-
tional methods like Support Vector Machines (SVMs) and Decision Trees have also proven
effective. Costa et al. (2019) [11] reached 89-93% accuracy in detecting driver fatigue and
distraction, while Kumar and Patra (2018) [12] achieved 95.58% sensitivity in drowsiness
detection using SVMs with facial features.

More recent works have adopted multimodal approaches, integrating data from RGB,
depth, and infrared sensors to capture a richer representation of behavior. Ortega et al.
(2020) [13] demonstrated a system that monitors distraction, drowsiness, gaze, and hand-
wheel interactions, reporting performance exceeding 90%. While these foundational studies
primarily target the driver for safety-critical alerts, their methodologies are broadly appli-
cable to understanding the behaviors of all vehicle occupants, paving the way for more
holistic in-cabin monitoring systems. Alongside these, attention-based models like the
Transformer [14], originally developed for natural language processing, are increasingly
being adapted for time-series and sequence modeling tasks due to their proficiency in
capturing long-range dependencies.

2.5. Summary and Positioning

Previous studies have successfully established methodologies for classifying specific,
often safety-critical, occupant behaviors within a limited range of 7-10 categories using tech-
niques like CNNs and SVMs [9-11]. However, this focus on the driver often overlooks the
broader spectrum of general occupant behaviors, and many studies do not systematically
compare different feature sets and temporal modeling configurations.

In contrast, our work addresses these gaps by proposing a lightweight pipeline de-
signed for comprehensive occupant behavior recognition. We leverage state-of-the-art
pre-trained models—YOLOv8-Pose, UniGaze, and FMAE-IAT—as efficient feature extrac-
tors for three complementary cues: 2D pose, 2D gaze, and facial movement. Crucially, our
work is distinguished by its validation on the large-scale Occupant Behavior Classifica-
tion (OBC) dataset, which encompasses 79 diverse occupant behavior classes, moving far
beyond driver-specific tasks. We conduct an extensive ablation study to systematically
compare three distinct architectural paradigms, a static model (MLP), a recurrent model
(LSTM), and an attention-based model (Transformer), and analyze the impact of sequence
length and frame sampling strategies. This positions our work at the intersection of multi-
modal fusion and temporal modeling, providing a robust framework and practical insights
for developing next-generation in-vehicle occupant monitoring systems.
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3. Methodology

To address the challenges of recognizing complex, temporally dependent occupant
behaviors, we designed a lightweight and modular recognition pipeline. Our approach
prioritizes both high accuracy through multimodal fusion and computational efficiency
by freezing feature extractors. As illustrated in Figure 1, the pipeline is divided into three
main stages:

*  Feature Extraction: For each input frame, we extract three types of features—2D pose,
2D gaze, and facial movement (FM). Pre-trained models are used to extract these
features, and to improve computational efficiency, the feature extractors are frozen
during training.

e  Fusion and Sequence Construction: The extracted features from each modality are
concatenated to form a unified feature vector per frame. Then, consecutive frames are
grouped into sequences based on a specified number of frames and step size.

e  Temporal Classification: The constructed sequences are fed into a lightweight classifier.
We compare three distinct architectures: a static MLP, a recurrent LSTM, and an
attention-based Transformer. Only the classifier is trainable, keeping the rest of the

pipeline fixed.
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Figure 1. Overview of the proposed occupant behavior recognition pipeline, now including the
Transformer model as a classifier.

This modular design allows easy experimentation with different combinations of
input features, sequence lengths, and model architectures, facilitating both ablation and
computational cost analysis.

3.1. Multi-Feature Fusion

To construct a comprehensive representation of occupant behavior, we fuse three
complementary modalities: 2D pose, 2D gaze, and facial movement (FM). Each feature type
captures a different aspect of occupant behavior: pose encodes gross body movement, gaze
reflects visual attention, and FM captures subtle expressions related to the occupant’s state
(e.g., drowsiness or inattention). Each modality is processed by a specialized, pre-trained
feature extractor chosen for its state-of-the-art performance and efficiency, as discussed in
Section 2.
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* Two-dimensional Pose: We employ YOLOv8-Pose [15], selected for its high accuracy
and real-time keypoint detection capabilities crucial for in-vehicle monitoring.

e Two-dimensional Gaze: We use UniGaze [3], which offers robust cross-domain
generalization, making it suitable for diverse and unconstrained driving scenarios.

e  Facial Movement: We utilize FMAE-IAT [5] to extract a 12-dimensional vector of Facial
Action Units (AUs). The process involves detecting and cropping the occupant’s face,
resizing it, and feeding it into the frozen FMAE-IAT feature extractor, which directly
outputs the 12-dimensional AU intensity vector.

Once extracted, the features from each modality are concatenated along the channel
axis for each frame. This early fusion strategy allows the temporal model to learn from a
unified representation that incorporates information across all modalities. By design, these
feature extraction modules are frozen during training to maintain a lightweight pipeline
and ensure computational efficiency.

3.2. Temporal Sequence Modeling

Occupant behaviors are inherently temporal phenomena. To effectively model these
dynamics while managing computational load, we transform the continuous video data
into discrete sequences using a two-stage sampling process governed by three key hyper-
parameters, as illustrated in Figure 2.

1 sequence = 30 frames, 10-step sliding window

Seq 1 (1,30)
Seq 2 (11,40)
Seq 3 (21, 50)
Seq 4 (31,60)
Seq 5 (41,70)

| | | | | | | | | | |
I I I I I I I I I I [—* Frames

0 10 20 30 40 50 60 70 80 90 n

Figure 2. Illustration of temporal sequence sampling with overlapping windows.

First, we define a sequence span (Lspq,), which is the total duration of the temporal
window from the raw video. Second, from within this span, we downsample a fixed
number of frame samples (Lggypies). These frames are selected at a uniform interval to form
the final input sequence.

Finally, the step size (S) determines the offset by which this entire sequence span
window is moved to create the next overlapping sequence. A single ground-truth label is
assigned to each final sequence by taking the majority vote of the frame-level labels within
its span.

3.3. Classifier Architectures

For classifying the fused feature sequences, we implemented and compared three
architectures representing different modeling paradigms: a static model (MLP), a recurrent
model (LSTM), and an attention-based model (Transformer). Our design focuses on keep-
ing these classifiers lightweight while freezing the upstream feature extractors, which is
critical for practical deployment. The detailed architectural parameters for each model are
summarized in Table 1.
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Table 1. Detailed architectures of the implemented classifier models. The input for sequential models
is a sequence of fused feature vectors, while the MLP uses a flattened version of this sequence.

Parameter MLP LSTM Transformer Encoder
Input Dimension (LgumplES x 48) Lsamples < 48 Lsamples < 48
Layer Configuration Input — 256 — 128 — 64 — 79 - -

Number of Layers 4 Fully-Connected 3 Layers 4 Encoder Layers
Hidden Dimension - 256 256

Number of Heads - - 8
Activation Function ReLU Tanh ReLU
Normalization BatchNorm1d LayerNorm LayerNorm
Output Dimension 79 79 79

3.3.1. Multi-Layer Perceptron (MLP)

The MLP serves as our static baseline. It processes a sequence by flattening all tem-
poral features into a single large vector, thus ignoring explicit temporal ordering. Our
implementation consists of four fully connected layers with ReLU activations and batch
normalization, which progressively reduce the feature dimension before a final classifica-
tion layer.

3.3.2. Long Short-Term Memory (LSTM)

As a representative recurrent model, the LSTM is chosen for its ability to model
temporal dependencies by processing sequences step by step and maintaining an internal
memory state. We use a three-layer unidirectional LSTM, where the mean-pooled output of
the final time step’s hidden state is passed through a layer normalization step before being
used for classification.

3.3.3. Transformer

To represent attention-based models, we use a Transformer encoder architecture. The
model first projects the input features into a higher-dimensional space and adds sinusoidal
positional encodings to retain sequence order. The data is then processed by a stack of
four multi-head self-attention layers, which allows the model to weigh the importance
of all frames in the sequence simultaneously. The final classification is made from the
mean-pooled and layer-normalized output of the encoder.

4. Experiments

In this section, we describe the dataset used in our study, the evaluation metrics em-
ployed, and the implementation and training details and provide a comprehensive analysis
of our results, including an ablation study to examine the contribution of each component.

4.1. Dataset

For this study, we utilized the Occupant Behavior Classification (OBC) dataset. This
dataset was originally collected at the University of Michigan Transportation Research Insti-
tute (UMTRI) to investigate occupant behaviors across different levels of simulated vehicle
automation (protocol approved by the UMTRI Institutional Review Board: HUM00162942).
The dataset is not publicly available due to privacy protection considerations. The data
collection included 42 licensed drivers (21 men and 21 women) with a broad range of
anthropometric characteristics and ages from 18 to 59 years. All participants were recorded
in a stationary 2018 Hyundai Genesis G90 sedan equipped with two Microsoft Azure Kinect
sensors mounted near the A-pillars to capture both front seats.

The dataset contains approximately 2.1 million frames captured at 10 frames per
second with a resolution of 1280 x 720. It covers 79 distinct occupant behavior classes, which
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were elicited by asking participants to perform a series of scripted tasks. To elicit naturalistic-
style behavior, participants were instructed to perform these tasks as they normally would
in a real moving vehicle and to find postures they would consider comfortable for a
long ride. These tasks were performed under three simulated automation levels: Manual
(MN), Fully Automated (FA), and Semi-Automated (SA). For the MN and SA sessions, the
participant was seated in the driver’s seat, while for the FA session, they were moved to
the passenger’s seat to reflect a non-driving role. The data includes synchronized video
from two front-facing camera views, one positioned in front of the driver seat and the other
in front of the passenger seat. The OBC dataset captures a variety of controlled driving
conditions, including scenarios with a single driver as well as those with passengers seated
in the back. Each frame is annotated with a single occupant behavior class.

For our experiments, the dataset was split into training (80%, 1.68 M frames), validation
(10%, 210 K frames), and testing (10%, 210 K frames) subsets. The full list of behavior
classes is provided in Appendix A. It is important to note the constraints of the data
collection environment. The experiments were conducted in a stationary vehicle with a
locked steering wheel, and some seat adjustment controls were deactivated to standardize
conditions. Behaviors were elicited via scripted prompts from an investigator, which may
differ from fully spontaneous actions in an on-road driving context.

4.2. Evaluation Metrics

To evaluate the performance of occupant behavior recognition models, we adopt five
widely used metrics for multi-class classification: accuracy, Balanced Accuracy, Macro
F1, Weighted F1, and the confusion matrix. Accuracy measures the overall proportion of
correctly classified instances:

1
Accuracy = N Y 19 =vi) (1)
i=1

where N is the total number of instances, y; is the ground-truth label, §; is the predicted
label, and 1(-) is the indicator function. Balanced Accuracy computes the average recall
over all C classes, mitigating the impact of class imbalance:

TP,

TP, + EN, @

1 C
Balanced Accuracy = —
Y= G C=Z1
where TP, and FN, denote the true positives and false negatives for class c. Macro F1 is the

unweighted average of per-class Fl-scores:

C

1 7 . Precision. - Recall
Macro F1 = c Z Fl, with Fl, = recision, - Recall,
c=1

Precision, + Recall,

©)

Weighted F1 computes the Fl-score per class and weights each score by the number of
instances in that class:

C
. ne
Weighted F1 = 2 — - F1 4
& 2N @)

where 7, is the number of true instances of class ¢. A confusion matrix is a C x C matrix
M, where M; ; denotes the number of instances of class i predicted as class j. It provides a
detailed visualization of misclassifications:

M;; = #{samples where y = i and § = j}

The full confusion matrix for all 79 classes is provided in Appendix B.
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4.3. Experimental Setup

We trained and evaluated all three models—MLP, LSTM, and Transformer—under
a consistent experimental framework to ensure a fair comparison. The architectural de-
tails of each model are described in Section 3.3. For the sequential models (LSTM and
Transformer), we conducted an extensive ablation study on temporal configurations by
varying the sequence span (Lspan), step size (S), and the number of frame samples (Lggpples)-
Each sequence was assigned a single ground-truth label based on the majority vote of its
constituent frames.

All models were trained using the Adam optimizer for up to 200 epochs, employing
an early stopping mechanism with a patience of 10 epochs based on the validation loss.
The key training hyperparameters, such as learning rate, batch size, and dropout, are
summarized for each model in Table 2. All experiments were implemented in PyTorch
(version 2.7.1+cul26) and executed on a high-performance computing cluster equipped
with an NVIDIA Tesla V100 GPU (Santa Clara, CA, USA).

Table 2. Key hyperparameters used for training the MLP, LSTM, and Transformer models.

Hyperparameter MLP LSTM Transformer
Learning Rate 1x1073 1x1073 1x1074
Optimizer Adam Adam Adam
Batch Size 256 256 128
Dropout 0.0 0.0 0.2
Epochs 200 200 200
Early Stopping Patience 10 10 10
5. Results

This section presents a comprehensive evaluation of our proposed framework, com-
paring the performance of the MLP, LSTM, and Transformer models. We analyze the results
from four perspectives: the impact of input feature modalities, the effect of temporal con-
figurations on the Transformer model, a direct comparison of model performance versus
computational efficiency, and an in-depth analysis of per-class performance.

5.1. Input Modality Ablation Study

To understand the contribution of each visual cue, we first evaluated all three models
with various combinations of 2D pose, 2D gaze, and facial movement (FM) features, using
a fixed sequence length of 30 frames. As shown in Table 3, several key trends emerge.
First, 2D pose is consistently the most dominant modality, providing a strong performance
baseline. Second, both LSTM and Transformer significantly outperform the static MLP
model across all feature combinations, underscoring the importance of temporal modeling.
Third, the Transformer model generally achieves the highest performance, particularly
when modalities are fused. The best overall result is achieved when all three modalities
(‘Pose + Gaze + FM’) are used with the Transformer, reaching a Macro F1 of 0.8970.
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Table 3. Test results on the OBC dataset using different feature combinations and models. Input
sequences use 30 frames with a step size of 10. The upward arrow (1) next to each metric indicates
that higher values are better. For each metric, the best result among models for a given feature set is
highlighted in bold.

Features Model Accuracy T Bal. Acc. T Weighted F11 Macro F1 1
MLP 0.6880 0.6278 0.6836 0.6358
Pose LSTM 0.9027 0.8784 0.9025 0.8784
Transformer 0.9084 0.8780 0.9084 0.8759
MLP 0.0701 0.0320 0.0273 0.0150
Gaze LSTM 0.1387 0.1106 0.1275 0.1145
Transformer 0.1701 0.1331 0.1576 0.1338
MLP 0.3285 0.2408 0.2984 0.2386
M LSTM 0.5928 0.5385 0.5889 0.5425
Transformer 0.7635 0.7134 0.7623 0.7158
MLP 0.6875 0.6308 0.6833 0.6375
Pose + Gaze LSTM 0.9080 0.8853 0.9078 0.8875
Transformer 0.9084 0.8796 0.9084 0.8785
MLP 0.7202 0.6609 0.7167 0.6668
Pose + FM LSTM 0.9072 0.8812 0.9069 0.8838
Transformer 0.9349 0.9069 0.9348 0.9081
MLP 0.3442 0.2653 0.3205 0.2663
Gaze + FM LSTM 0.5708 0.5277 0.5678 0.5306
Transformer 0.7094 0.6584 0.7083 0.6611
MLP 0.7235 0.6651 0.7201 0.6705
Pose + Gaze + FM LSTM 0.9185 0.8913 0.9183 0.8941
Transformer 0.9248 0.8996 0.9249 0.8970

5.2. Temporal Configuration Analysis for the Transformer

Given the strong performance of the Transformer, we conducted an extensive ablation
study to analyze its sensitivity to different temporal configurations, with detailed results
presented in Table 4. The results indicate that a smaller, denser step size (S) consistently
yields better performance. For instance, with a sequence span (Lspan) of 50, a step size of
10 achieves a Macro F1 of 0.9570, whereas a step size of 50 results in a score of only 0.3012.
The number of frame samples (Lgypies) also plays a crucial role. The highest performance
was achieved with a 50-frame span and a step size of 10. Specifically, the configuration
with Lggmpres = 50 yielded the best Macro F1 score of 0.9570, while the configuration with
Lsampies = 25 achieved the highest Balanced Accuracy of 0.9567.

Table 4. Comprehensive performance analysis of the Transformer model across varying temporal
configurations. The overall best-performing configuration is highlighted in bold.

Configuration Performance Metrics
(Lspan, S; Lsamples) Accuracy Bal. Acc. Weighted F1 Macro F1
(10,5, 5) 0.9531 0.9390 0.9530 0.9395
(10, 5,10) 0.9468 0.9317 0.9468 0.9297
(10, 10, 5) 0.8472 0.8061 0.8466 0.8090

(10, 10, 10) 0.8559 0.8130 0.8555 0.8144
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Table 4. Cont.
Configuration Performance Metrics
(Lspans S; Lsamples) Accuracy Bal. Acc. Weighted F1 Macro F1
(20, 10, 10) 0.8753 0.8433 0.8752 0.8439
(20, 10, 20) 0.9148 0.8863 0.9147 0.8854
(20, 20, 10) 0.6881 0.6245 0.6870 0.6252
(20, 20, 20) 0.6429 0.5702 0.6404 0.5708
(30, 10, 15) 0.9306 0.9090 0.9307 0.9080
(30, 10, 30) 0.9305 0.9075 0.9305 0.9066
(30, 15, 15) 0.8489 0.8071 0.8488 0.8078
(30, 15, 30) 0.8109 0.7626 0.8104 0.7653
(30, 30, 15) 0.5802 0.5140 0.5763 0.5139
(30, 30, 30) 0.5217 0.4587 0.5164 0.4609
(40, 10, 20) 0.9523 0.9360 0.9524 0.9360
(40, 10, 40) 0.9438 0.9270 0.9438 0.9271
(40, 20, 20) 0.7485 0.6982 0.7483 0.6996
(40, 20, 40) 0.7340 0.6842 0.7336 0.6858
(40, 40, 20) 0.4688 0.4275 0.4607 0.4242
(40, 40, 40) 0.4104 0.3524 0.3955 0.3511
(50, 10, 25) 0.9676 0.9567 0.9676 0.9561
(50, 10, 50) 0.9675 0.9561 0.9675 0.9570
(50, 25, 25) 0.6441 0.6069 0.6410 0.6010
(50, 25, 50) 0.6671 0.6204 0.6645 0.6227
(50, 50, 25) 0.4178 0.3645 0.4060 0.3632
(50, 50, 50) 0.3516 0.3000 0.3364 0.3012

5.3. Performance vs. Efficiency Comparison

A critical aspect for practical deployment is the trade-off between predictive perfor-
mance and computational cost. We summarize this comparison in Table 5. As expected,
the MLP is the most lightweight model but provides the lowest performance. While
the LSTM model shows the highest peak performance (Macro F1 of 0.9931), this result
stems from our initial experimental design using a frame-level data split. As detailed in
our Discussion (Section 6), this approach can lead to performance inflation. In contrast,
the Transformer model offers a compelling balance. Its best-performing configuration
(Lspan = 50,5 = 10, Lsgmpres = 50) achieves a high and, crucially, more robust Macro F1
score of 0.9570. This positions the Transformer as the superior architecture, providing
state-of-the-art performance within our revised framework. Furthermore, its most efficient
configuration (Lspan = 10,5 = 5, Lsgmples = 5) delivers a strong Macro F1 of 0.9395 with
only 0.02 GFLOPs, highlighting its suitability for resource-constrained environments.
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Table 5. Computational efficiency and performance comparison of the models. The Transformer
is evaluated on its best-performing and most resource-efficient configurations. The best overall
configuration balancing performance and efficiency is highlighted in bold.

Model Configuration Macro F1 Params (M) GFLOPs  Time (ms) F1/GFLOPs
MLP Frame-level 0.6705 0.06 <0.001 0.08 -
LSTM (Low-Cost) (10, 10, 5) 0.6601 1.39 0.01 0.17 66.01
LSTM (High-Perf.) (40, 10, 40) 0.9931 1.39 0.05 0.44 19.86
Transformer (Efficient) (10,5, 5) 0.9395 4.24 0.02 0.33 46.97
Transformer (Best-Perf.) (50, 10, 50) 0.9570 4.24 0.21 0.34 4.55

5.4. Per-Class Performance and Error Analysis

To gain deeper insights into the Transformer model’s behavior, we analyzed its per-
class performance using its best-performing configuration, as detailed in Table 6. A notable
finding is the model’s exceptionally high performance even on what are predicted to be
challenging classes. The Top-5 performing classes are distinct actions like ‘Tilting sun visor’
or ‘Using laptop on armrest’. More impressively, the Bottom-5 classes, which often involve
subtle motions or have low sample counts (e.g., “Adjusting pelvis in seat’), still achieve F1
scores near or above 0.90. This demonstrates the Transformer’s strong ability to capture
discriminative features even from limited data.

Table 6. In-depth analysis of the Transformer model’s per-class performance, showing the Top-5 and
Bottom-5 classes based on their F1 scores. Support indicates the number of test samples for each class.
Full behavior descriptions are available in Appendix A.

Group Class ID Behavior Description (Summarized) F1Score  Support

78 Tilting sun visor 1.0000 9
13 Using laptop on armrest 0.9916 239
Top-5 11 Repositioning with laptop 0.9902 608
17 Finding new resting posture 0.9901 661
55 Repositioning with phone 0.9901 1056
70 Removing/donning seat belt 0.9077 137
12 Reaching to passenger floor 0.9074 159
Bottom-5 20 Adjusting vent settings 0.9057 103
40 Adjusting pelvis in seat 0.8966 90
34 Using visor mirror 0.8963 123

This high overall performance is also reflected in the confusion matrices shown in
Figure 3. For the 20 most frequent classes, the matrix shows a strong diagonal, indicating
few misclassifications. For instance, some notable confusion can be observed between
similar fine-grained tasks, such as different types of phone use or subtle posture changes.
While the bottom-20 classes show slightly more confusion, the overall performance remains
robust, consistent with the findings in our per-class analysis.
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Figure 3. Confusion matrices for the top-20 and bottom-20 classes, generated from the best-performing
Transformer model.

6. Discussion

Our experimental results provide several key insights into multimodal temporal
modeling for occupant behavior recognition. This section discusses the implications of
our findings, focusing on the comparison between static, recurrent, and attention-based
models, the role of multimodal fusion, the trade-off between performance and efficiency,
and the surprising robustness of our best model.

First, our comparative analysis confirms the critical importance of temporal modeling.
As shown in the input modality ablation study (Table 3), both the LSTM and Transformer
architectures substantially outperform the static MLP across all feature combinations. This
demonstrates that capturing the sequential nature of actions is fundamental to achieving
high accuracy. Between the two temporal models, the Transformer consistently shows a
competitive edge, especially with fused modalities like ‘Pose + FM’, suggesting that its
self-attention mechanism is highly effective for this task.

Second, the analysis of temporal configurations for the Transformer (Table 4) reveals
a clear pattern: denser, more overlapping sequences created with smaller step sizes yield
superior results. However, this increased performance comes at a higher computational
cost. The trade-off between performance and efficiency, summarized in Table 5, is central
to our findings. The MLP is the most efficient but least accurate model. In contrast,
the Transformer presents a compelling balance; it achieves high performance (Macro F1
of 0.9561) while being significantly more resource-efficient than the LSTM in terms of
parameters and FLOPs. This positions the Transformer as a strong candidate for practical,
resource-constrained in-vehicle systems.

Third, the per-class performance analysis of our best Transformer model (Table 6)
offers further insights into its robustness. A key finding is the model’s exceptionally high F1
scores even for its “Bottom-5" classes, which remain near or above 0.90. These classes, such
as ‘Adjusting pelvis in seat’, are characterized by low support counts and subtle motions.
This suggests that the Transformer s self-attention mechanism is highly effective at learning
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discriminative patterns even from limited examples. This is visually corroborated by the
confusion matrices in Figure 3, which display a strong diagonal dominance.

Finally, our study has several key limitations. The frame-level splitting of the dataset
introduces potential data leakage from two perspectives. First, it does not guarantee
that the training, validation, and test sets are subject-disjoint, which presents a risk of
the model learning subject-specific mannerisms (identity leakage). Second, it preserves
temporal continuity across the split boundaries, meaning a sequence at the beginning of the
validation set can be a direct continuation of a sequence from the training set. Both factors
can inflate performance and limit conclusions about generalization. Furthermore, the OBC
dataset was gathered in a stationary vehicle with scripted tasks, not in an actual on-road
driving context. Generalizing these findings to unconstrained scenarios requires further
validation. The model was also not evaluated under challenging conditions common in on-
road driving, such as poor illumination, partial occlusions, or unscripted, extreme postures.
Additionally, while our analysis provides efficiency metrics on a high-performance GPU
(Table 5), we did not benchmark the model on embedded hardware, such as the NVIDIA
Jetson series, which is more typical for in-vehicle applications. Although our lightweight
design with frozen feature extractors is a strong candidate for such resource-constrained
environments, formal validation of its real-time performance on such hardware remains
a critical task for future work. Lastly, this study did not include a fairness analysis to
assess potential performance biases related to demographic factors such as gender or age.
Future work should investigate the model’s performance across these groups to ensure the
system is equitable and reliable for all occupants. We contend that these risks are partially
mitigated by our feature-based approach. Nonetheless, future research must validate this
framework using a strict subject-disjoint split on datasets captured in more naturalistic
on-road conditions to confirm its real-world applicability.

7. Conclusions

In this paper, we presented and evaluated a lightweight, modular framework for
occupant behavior recognition using multimodal visual features. Our approach effectively
fused 2D pose, 2D gaze, and facial movement features and utilized three distinct classifier
architectures—a static MLP, a recurrent LSTM, and an attention-based Transformer—to
model the temporal dynamics of 79 distinct behaviors from the OBC dataset.

Our comprehensive experiments demonstrated several key findings: (1) temporal
models (LSTM and Transformer) significantly outperform static, frame-based MLP clas-
sification, confirming the importance of sequential context; (2) fusing all three modalities
consistently yields the best performance for the temporal models, validating the benefits of
a multimodal approach; and (3) the Transformer model achieved the best overall perfor-
mance, reaching a Macro F1 score of 0.9570 with a configuration of a 50-frame span, a step
size of 10, and 25 sampled frames. Furthermore, our analysis revealed that the Transformer
offers a superior balance between high accuracy and computational efficiency, positioning
it as a strong candidate for practical, resource-constrained systems.

Overall, this work underscores the critical importance of integrating temporal context
and complementary multimodal features for robust occupant behavior recognition. The
findings provide a strong foundation and practical guidelines for the development of
next-generation, computationally efficient in-vehicle occupant monitoring systems, with
the Transformer architecture emerging as a particularly promising solution.
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Appendix A. List of Behavior Classes

The complete list of the 79 classes from the Occupant Behavior Classification (OBC)
dataset is detailed in Tables A1 and A2. Each class represents a unique occupant behavior
performed under a specific, simulated driving condition. A more comprehensive descrip-
tion of the dataset’s composition and data collection protocol is provided in Section 4.1.

Table A1. A detailed list of the 79 behavior classes in the OBC dataset (Part 1 of 2).

ID  Driving Mode Behavior Category Detailed Description

0 Fully Automated ~ Posture Change Change head positions: Use the headrest or use a hand to support

the head.

Head Range of Motion ~ Rotation (Left/Right): Turn head as far as possible to the left/right while
still being able to drive.

1 Manual

2 Fully Automated  Reaching Reaching to floor: Reach to the floor by the right and left foot to pick

something up.

3 Manual Non-Driving Task Take a drink from the water bottle and then return it to the cupholder.

4 Manual Non-Driving Task Talk over right shoulder to a passenger in the rear seat.

5 Manual Reaching Reach to the glove box (or as far right as possible on the dash).

6 Fully Automated ~ Phone Use Select other body postures for using a phone (seat adjustment allowed).

7 Manual Head Range of Motion ~ Extension: Tip head backward, rotating face to the ceiling as far as
possible while driving.

8 Fully Automated ~ Laptop Use Reposition legs to hold the laptop differently.

9 Manual Reaching Reach to the center of the passenger seat cushion.

10  Fully Automated  Reaching Reach to the floor directly in front of the driver seat.

11 Semi-Automated ~ Laptop Use In auto-mode, select another laptop location and posture and then type
and read for 10 seconds.

12 Manual Reaching Reach to the floor directly in front of the passenger seat.

13 Fully Automated  Laptop Use Place the laptop on the center armrest to use it.

14 Fully Automated  Non-Driving Task Talk over left shoulder to a passenger in the rear seat.

15  Fully Automated  Vehicle Interaction Remove and don the seat belt.

16 Manual Vehicle Interaction Open and then close the sunglasses compartment above the center mirror.
17 Semi-Automated  Sleep/Resting In auto-mode, use armrest, door, or seat contours to find other comfortable
resting postures.

18  Manual Vehicle Interaction Change the vent settings.
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Table Al. Cont.

ID  Driving Mode Behavior Category Detailed Description

19  Semi-Automated  Laptop Use In auto-mode, use armrest or door to find other postures for using
the laptop.

20  Fully Automated  Vehicle Interaction Change the vent settings.

21 Fully Automated  Reaching Reach to the center of the driver seat cushion.

22 Fully Automated = Non-Driving Task Use phone to make a call (using right hand, left hand, and speaker).

23 Fully Automated  Sleep/Resting Select other body postures for sleeping/resting (seat adjustment
allowed).

24 Manual Non-Driving Task Use phone to make a call (using right hand, left hand, and speaker).

25 Semi-Automated Driving Task Transition from manual to auto-mode, check mirrors, and then perform
a takeover request.

26  Manual Reaching Reach behind the passenger seat (as a specific reaching task).

27  Manual Posture Change Change head positions: Use the headrest or use a hand to support
the head.

28  Manual Vehicle Interaction Pretend to press one of the seat position memory buttons on the door by
the left knee.

29  Manual Driving Task Check right/left blind spot and pretend to change lanes.

30  Fully Automated  Posture Change Use armrests (center or door) to adjust position.

31  Manual Non-Driving Task Use the mirror on the back of the visor to look at your face (as a primary task).

32 Manual Reaching Reach behind the passenger seat (during a general posture change).

33  Manual Head Range of Motion  Flexion: Tip chin to chest as far as possible while driving.

34  Manual Non-Driving Task Use the mirror on the back of the visor to look at your face (during sun
visor adjustment).

35  Semi-Automated  Riding Task In auto-mode, select another comfortable body posture (seat adjustment
allowed).

36 Manual Torso Range of Motion ~ Slouch: Push body back and slide hips forward as far as possible
while driving.

37 Fully Automated  Sleep/Resting Recline seat more, lean on vehicle side, or rest head on hand.

38  Fully Automated  Reaching Reach to the area of the steering wheel.

39 Fully Automated  Vehicle Interaction Pretend to press one of the seat position memory buttons on the door

near the right knee.

Table A2. A detailed list of the 79 behavior classes in the OBC dataset (Part 2 of 2).

ID  Driving Mode Behavior Category Detailed Description

40  Fully Automated  Posture Change Adjust pelvis in the seat.

41 Manual Torso Range of Motion ~ Rotation (Left/Right): Twist body as much as possible to the left/right
while driving.

42 Manual Driving Task Try out other hand positions on the steering wheel (right hand only, left
hand only).

43 Fully Automated  Phone Use Move the phone to other positions (lower, higher, to the side) and
continue to use it.

44 Manual Driving Task Check mirrors (center, left, right), moving head to see more of the field
of view.

45  Fully Automated  Non-Driving Task Take a drink from the water bottle and then return it to the cupholder.

46 Manual Torso Range of Motion  Flexion: Tilt body forward toward the steering wheel as far as possible.

47 Fully Automated  Non-Driving Task Use the mirror on the back of the visor to look at your face.

48  Semi-Automated  Sleep/Resting In auto-mode, perform takeover, return to resting, and then select an-
other resting posture.

49  Semi-Automated  Sleep/Resting In auto-mode, receive a “takeover in 2 miles” warning, adjust seat to
prepare, and then takeover.

50  Semi-Automated = Phone Use While using phone in auto-mode, perform a takeover and then return to
preferred position.

51 Fully Automated =~ Non-Driving Task Use phone to text or to look at a map.

52 Manual Posture Change Select other body postures for driving (seat adjustment allowed).

53  Fully Automated  Vehicle Interaction Change the fan speed or temperature using the controls on the dash.

54  Manual Posture Change Use armrests (center or door) to adjust position.

55  Semi-Automated = Phone Use In auto-mode, find a new comfortable position while using phone (seat
adjustment allowed).

56  Semi-Automated  Riding Task In auto-mode, check mirrors and then perform a takeover request.

57 Manual Head Range of Motion ~ Lateral Bend (Left/Right): Tilt head to the left/right, ear toward shoulder.

58  Manual Reaching Reach to the floor by the right and left foot to pick something up.

59  Manual Vehicle Interaction Change the fan speed or temperature using the controls on the dash.

60  Fully Automated  Laptop Use Move the laptop to other resting positions and continue typing/reading.
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Table A2. Cont.

ID  Driving Mode Behavior Category Detailed Description

61 Fully Automated ~ Phone Use Try holding the phone at different locations such as lower, higher, or to
the side.

62  Manual Driving Task Simulate stopping the car, shifting to park, and reversing for 3 s.

63  Fully Automated  Laptop Use Use a laptop browser to search a topic, including typing and reading.

64 Manual Torso Range of Motion ~ Lateral Bend (Left/Right): Tilt body as far as possible to the left/right
while driving.

65 Fully Automated Standard Posture Standard posture: Seated full rear, feet forward on heels, hands on lap,
looking forward.

66  Fully Automated  Laptop Use Select other body postures for using a laptop (seat adjustment allowed).

67 Fully Automated  Vehicle Interaction Tilt sun visor down, to the side, and back up.

68  Manual Posture Change Adjust pelvis in the seat to be more relaxed (slouching) or more alert.

69  Fully Automated  Reaching Reach behind the driver seat.

70 Manual Vehicle Interaction Remove and don the seat belt.

71 Fully Automated  Vehicle Interaction Open and then close the sunglasses compartment by the center mirror.

72 Fully Automated  Posture Change Select other body postures for riding as a passenger (seat adjustment
allowed).

73 Fully Automated = Phone Use Use phone for various tasks: look up number, call, text, use
browser/maps, view video.

74  Fully Automated  Sleep/Resting Change head positions: Use the headrest or use a hand to hold the
head up.

75  Fully Automated  Sleep/Resting Adjust pelvis in the seat.

76  Fully Automated = Phone Use Rest elbow on the armrest while holding and using the phone.

77  Manual Non-Driving Task Use phone to text or look at a map while considering how to hold it
for navigation.

78 Manual Vehicle Interaction Tilt sun visor down, to the side, and back up.

Appendix B. Full Confusion Matrix

Figure A1 presents a heatmap visualization of the 79 x 79 confusion matrix, illustrating
the model’s classification performance on the test set. The vertical axis represents the true
class labels, while the horizontal axis represents the labels predicted by the model. The
color intensity of each cell corresponds to the number of instances, with brighter colors
along the main diagonal indicating a high number of correct predictions. Off-diagonal
bright spots highlight specific classes that the model tends to confuse. The complete list of
class IDs for the axes is detailed in Appendix A.

Confusion Matrix of 79 Classes
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Figure Al. Heatmap visualization of the 79 x 79 confusion matrix. The color intensity corresponds to
the number of instances, showing where the model most often confuses classes.
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