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Abstract

Seafood fraud, such as mislabeling low-cost rainbow trout as premium salmon, poses 
serious food safety risks and damages consumer rights. To address this growing concern, 
this study develops a deep learning-based, smartphone-compatible sensing system for 
fish meat identification and salmon freshness grading. By providing consumers with real-
time, image-based verification tools, the system supports informed purchasing decisions 
and enhances food safety. The system adopts a two-stage design: first classifying fish meat 
types, then grading salmon freshness into three levels based on visual cues. An improved 
DenseNet121 architecture, enhanced with global average pooling, dropout layers, and a 
customized output layer, improves accuracy and reduces overfitting, while transfer 
learning with partial layer freezing enhances efficiency by reducing training time without 
significant accuracy loss. Experimental results show that the two-stage method 
outperforms the one-stage approach and several baseline models, achieving robust 
accuracy in both classification and grading tasks. Sensitivity analysis demonstrates 
resilience to blur and camera tilt, though real-world adaptability under diverse lighting 
and packaging conditions remains a challenge. Overall, the proposed system represents 
a practical, consumer-oriented tool for seafood authentication and freshness evaluation, 
with potential to enhance food safety and consumer protection.

Keywords: food fraud; fish meat classification; freshness grading; deep learning; 
DenseNet121; transfer learning

1. Introduction
Seafood fraud, especially the mislabeling of lower-value species as premium 

products, remains a widespread problem, compromising food safety, consumer trust, and 
regulatory oversight [1,2]. A common example is the substitution of rainbow trout for 
salmon in supermarkets and sushi restaurants, where visual similarities can easily 
mislead consumers. This deception poses health risks, as rainbow trout is more prone to 
parasitic contamination and is unsafe for raw consumption [3]. Additionally, undisclosed 
use of genetically modified or farmed fish raises further public health concerns and 
violates consumers’ right to informed choices.
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Salmon is widely consumed in dishes like sashimi, sushi, and steaks, with rising 
consumer demand. As a migratory fish, it lives in seawater and spawns in freshwater, 
unlike rainbow trout, a freshwater species with a higher parasite risk, making it unsuitable 
for raw consumption. However, some vendors fraudulently substitute lower-cost 
rainbow trout for premium salmon, posing food safety and consumer rights concerns. To 
address this, the study proposes a smartphone-based system that distinguishes salmon 
from rainbow trout and evaluates salmon freshness. Consumers can upload fish images 
to a cloud server and receive real-time classification results, supporting safer and more 
informed purchasing decisions.

Salmon is commonly presented to consumers in several forms, such as steaks, fillets, 
and sashimi. These cut types differ in appearance and texture, offering important visual 
cues that help distinguish between salmon and similar species like rainbow trout. Because 
these consumer-ready presentations are the basis for both authenticity verification and 
freshness assessment, this study focuses on analyzing salmon in these forms while 
developing a practical, smartphone-compatible classification and grading system.

1.1. Visual Similarities in Salmon and Rainbow Trout Meat

Salmon and rainbow trout are both popular fish with similar appearances, but their 
meat differs in several key aspects, including biology, habitat, nutritional content, taste, 
texture, and suitability for certain preparations. Visual identification of salmon and 
rainbow trout meat can help consumers distinguish between the two, especially to avoid 
mislabeling or fraud. As summarized in Table 1, salmon typically shows vibrant pink to 
deep orange-red flesh with distinct white fat lines, a glossy texture, and thicker, more 
robust cuts that stay bright when fresh. Rainbow trout is usually paler (light pink to light 
orange), with faint marbling, a softer, less glossy texture, and thinner, more delicate fillets; 
when less fresh, its color often dulls toward grayish or whitish tones. Because some 
vendors may dye trout to resemble salmon, consumers should rely on multiple visual 
cues, especially marbling and texture, rather than color alone.

Table 1. Appearance differences in Salmon flesh and rainbow trout flesh.

Name Salmon Rainbow Trout

Captured fillet images

Appearance 
characteristics:
1. Color
2. Fat Marbling
3. Texture/Grain
4. Surface Sheen
5. Cut/Shape
6. Freshness Indicators

1. Vibrant pink to deep orange-red, depending on 
species. Wild salmon has richer hues; farmed salmon 
may be uniformly orange due to feed additives. 
2. Pronounced white fat lines (intramuscular fat), 
especially in fattier cuts (e.g., belly or farmed salmon). 
Clear, evenly spaced streaks give a glossy, rich look.
3. Firm, smooth, and slightly glossy. Robust, compact 
grain with thicker, defined muscle fibers. Larger flake 
pattern when cut.
4. Glossy and moist due to higher fat content. Slightly 
oily shine, especially when fresh. 

1. Pale pink to light orange, less vibrant. 
Often muted with a slightly grayish or 
whitish cast.
2. Minimal or faint white fat lines. Leaner 
appearance with subtle or no marbling.
3. Softer, delicate, less glossy. Finer grain 
with smaller, less distinct muscle fibers. 
Fragile flake pattern.
4. Matte or subdued surface. Less oily, 
may appear drier or less uniformly 
moist.
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5. Thicker, robust fillets or steaks with smooth edges. 
Tapered fillet shape. Skin (if present) is silvery with a 
blue-green tint (wild) or uniform gray (farmed). 
6. Fresh: Bright pink-orange to red-orange, glossy, no 
browning. Less Fresh: Faded color, less sheen, minor 
browning/yellowing at edges. 

5. Thinner, more delicate fillets. Slimmer 
overall. Skin is often brownish with 
rainbow-like iridescent spots.
6. Fresh: Pale pink to light orange, 
slightly moist. Less Fresh: Fades to 
grayish/whitish, dry or sticky surface.

1.2. Visualization of Salmon Freshness

Freshness in salmon is closely tied to visual attributes such as flesh color, brightness, 
and marbling. These visible features serve as primary cues for both consumers and 
inspectors when judging quality. Unlike chemical or microscopic measures, which require 
laboratory equipment, visual cues can be quickly assessed through images, making them 
particularly relevant for consumer-facing systems. This subsection highlights the 
significance of visual indicators as the foundation for image-based freshness grading in 
this study.

To standardize color, salmon farms use the Roche SalmoFan™ scale (refer to 

Supplementary Figure S1), a physical fan with numbered color chips (typically 20–34), to 
guide feed adjustments based on market preferences. Shades 26–28 are especially favored 
for their visual appeal. While the SalmoFan™ primarily measures pigmentation 
(astaxanthin levels), it also indirectly reflects freshness, as color fades with age or 
improper storage.

Farmed salmon is widely favored over wild salmon due to its consistent availability, 
lower production costs, and reliable quality. Unlike wild salmon, which is only available 
during specific seasons, farmed salmon can be harvested year-round, ensuring a stable 
supply for global markets. Wild salmon and farmed salmon meat differ significantly in 
terms of their origin, diet, environment, and resulting characteristics, which impact their 
appearance, flavor, texture, nutritional content, and suitability for various culinary 
applications. Table 2 contrasts wild and farmed salmon by key visual traits. Wild salmon 
typically shows a deep red–orange color with natural gradients, thin, sparse fat lines, 
firmer, denser muscle, a tapered fillet with varied thickness, and a more matte finish. 
Farmed salmon tends to be uniformly light pink–orange (often feed-influenced), with 
thick, prominent white marbling, a softer “buttery” texture, a more uniform, thicker fillet, 
and a glossier, oilier surface due to higher fat. Because feed colorants (e.g., astaxanthin) 
can deepen farmed color, marbling and texture are more reliable identifiers than hue 
alone.

Table 2. Comparisons of the visual differences between Wild and Farmed Salmon flesh.

Visual Feature Wild Salmon Farmed Salmon

Fish meat

Color Deep red/orange; natural gradient
Uniform light pink/orange via feed 
additives

Fat Marbling Thin, sparse white lines Prominent, thick white streaks
Texture Firm, dense muscle structure Softer, more buttery texture
Fillet Shape Tapered, varied thickness Uniform, thicker appearance
Sheen & Gloss Matte, natural finish Glossy, oilier due to higher fat



Sensors 2025, 25, 6299 4 of 31 
 

 

1.3. Research Motivation and Purpose 

Seafood fraud, such as mislabeling rainbow trout as salmon, poses risks to consumer 
health and undermines trust in the seafood market. Existing laboratory-based methods 
for species authentication and freshness grading are accurate but costly, time-consuming, 
and inaccessible to consumers. This study aims to develop a practical, smartphone-
compatible system for fish meat classification and salmon freshness grading using deep 
learning. The goal is to empower consumers to verify authenticity and freshness at the 
point of purchase or consumption, supporting food safety and consumer rights. 

1.4. Challenges in Image-Based Fish Meat Classification 

Despite its practicality, image-based classification faces challenges due to the visual 
similarities between salmon and rainbow trout, variability introduced by lighting and 
camera angles, and subtle differences in marbling and texture. Additionally, limited and 
imbalanced datasets complicate model training and risk bias. Addressing these challenges 
requires robust architectures capable of learning fine-grained visual distinctions while 
maintaining efficiency for deployment on mobile devices. This study tackles these 
challenges by utilizing an improved DenseNet121 architecture and transfer learning. 

This paper begins with a review of current methods for fish meat classification and 
freshness grading. It then presents a proposed deep learning-based sensing system for 
identifying salmon meat and grading its freshness. The study continues with performance 
and robustness evaluations, and concludes by summarizing key contributions and 
outlining directions for future research. 

2. Literature Review 
Seafood fraud poses serious risks to food safety and consumer rights. Traditional 

identification methods like manual inspection and chemical analysis often lack real-time 
applicability for consumers. Recent studies have explored visual, spectroscopic, and 
machine learning techniques to address these challenges. Among these, deep learning 
approaches have shown promise for automating fish meat classification and freshness 
grading. This literature review highlights existing research on seafood fraud detection, 
fish meat classification methods, freshness evaluation techniques, and deep learning 
models, establishing a foundation for the proposed system. 

2.1. Food Fraud and Safety in the Seafood Industry 

Seafood fraud presents a widespread and growing concern globally. Studies have 
shown mislabeling rates to average around 8–20% depending on region and season, with 
restaurant offerings during the off-season reaching even higher levels [2,4,5]. This type of 
fraud not only deceives consumers economically but also raises public health concerns; 
for instance, trout carries a higher risk of parasites and is not suitable for raw 
consumption. To combat these risks and uphold consumer rights, numerous detection 
strategies have emerged, with DNA barcoding and SNP analysis providing highly 
accurate species identification [6,7]. However, such methods are often resource-intensive 
and not ideal for routine or on-site verification. 

In response to these limitations, recent studies have explored more rapid and 
accessible approaches. Techniques like MALDI-TOF protein fingerprinting and lateral 
flow-based PCR assays aim to reduce processing time while maintaining reliability [8,9]. 
In parallel, regulatory bodies are increasingly implementing traceability systems and 
enforcement actions to deter fraudulent practices. Despite these efforts, consumer 
awareness remains relatively low, underscoring the need for practical detection tools that 
empower buyers directly. Therefore, image-based, deep learning solutions, such as 
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smartphone-compatible classification systems, offer a promising alternative, enabling 
real-time, cost-effective detection of species mislabeling and freshness, ultimately 
contributing to food safety and the protection of consumer interests. 

2.2. Fish Meat Classification Methods 

Fish meat classification traditionally relied on manual inspection and analytical 
techniques. Visual inspectors assess fillet color, marbling, and texture, but this method is 
subjective and inconsistent due to lighting conditions and human variability [10]. 
Biochemical assays, like fatty acid profiling or spectrophotometric pigment analysis, offer 
greater objectivity but are destructive, time-consuming, and unsuitable for real-time use 
in processing lines or at points of sale [11]. 

With advances in imaging and machine learning, noninvasive, automated 
classification methods have become more reliable and accessible [12,13]. Spectroscopic 
methods, such as near-infrared (NIR) spectroscopy and hyperspectral imaging (HSI), 
capture chemical signatures that differentiate species and origin based on subtle 
differences in muscle composition [14]. Computer vision and machine learning 
approaches, utilizing color histograms, texture descriptors, and handcrafted features 
combined with classifiers like SVM and Random Forest, have shown promising accuracy 
[15]. More recently, deep learning models (e.g., CNNs like DenseNet, ResNet) have 
outperformed traditional techniques by automatically extracting discriminative features 
from fish meat images [16]. Deep learning models like DenseNet and ResNet offer 
automated feature extraction, and transfer learning enhances performance even with 
limited training data. These methods represent a significant step toward real-time, 
consumer-facing inspection systems that are both accurate and cost-effective. 

2.3. Fish Freshness Evaluation Techniques 

Fish freshness has historically been evaluated using sensory assessment and chemical 
analyses. Sensory methods involve trained panels inspecting fish meat for odor, color, 
texture, and slime formation, yet these are inherently subjective and prone to inter-
observer variability [17]. Objective spoilage indicators include biochemical markers such 
as total volatile basic nitrogen, trimethylamine, and thiobarbituric acid reactive substances 
[18,19]. Although accurate, these assays are labor-intensive, destructive, and often require 
lab equipment, making them unsuitable for rapid, on-site freshness assessment, especially 
at consumer or retail levels. 

To overcome these limitations, researchers have turned toward non-invasive, rapid 
methods like spectroscopy and computer vision. Techniques such as near-infrared (NIR), 
hyperspectral imaging (HSI), and Raman spectroscopy enable the detection of chemical 
changes in fish tissues related to freshness, including moisture, protein, and pigment 
breakdown [20–23]. However, these systems are often expensive and require controlled 
lighting conditions. Meanwhile, image-based approaches using deep learning models, 
especially convolutional neural networks (CNNs), have emerged as scalable alternatives. 
By analyzing color, marbling, and texture in RGB images, models like DenseNet, ResNet, 
and MobileNet can classify freshness levels with high accuracy [24,25]. These approaches 
offer real-time, non-destructive, and consumer-accessible grading of fish freshness, laying 
the groundwork for practical tools such as mobile applications and automated retail 
sensors. 

2.4. Deep Learning Approaches for Fish Meat Classification and Freshness Grading 

Deep learning has revolutionized the field of fish meat classification by enabling 
models to automatically extract and learn complex image features such as marbling, color 
gradients, and texture patterns, all critical for distinguishing subtle differences in species 
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(e.g., wild vs. farmed salmon, trout impersonating salmon) and cut types. CNNs like 
DenseNet, ResNet, and Inception have demonstrated high accuracy in fish-related tasks 
[26,27]. DenseNet architectures are well-suited for fish classification tasks, offering high 
accuracy with fewer parameters through dense connectivity, efficient gradient 
propagation, and feature reuse [28]. Tupan et al. [29] compared DenseNet with ResNet 
and Inception models for tuna loin classification under various treatment conditions. 
DenseNet achieved the highest accuracy, confirming its effectiveness in capturing fine-
grained visual differences among fish meat types. 

Additionally, DenseNet has been used in fish freshness prediction and species 
recognition. Genç et al. [30] applied DenseNet121 with Gradient-weighted Class 
Activation Mapping (Grad-CAM) and LIME explainability tools to non-destructively 
assess seabream freshness, highlighting its suitability for quality assurance in 
aquaculture. Meanwhile, Malik et al. [31] proposed an improved DenseNet-169-based 
model to classify underwater fish species with higher accuracy than YOLO and traditional 
CNN models, demonstrating DenseNet’s robustness in visually complex environments. 
These findings confirm that DenseNet is a highly suitable backbone for automated fish 
meat classification and quality grading systems [32]. 

For freshness grading, deep learning models are increasingly employed to assess 
visual indicators like flesh color, texture, and fat distribution, offering a scalable, non-
destructive alternative to traditional sensory or chemical assays [33]. Models such as 
CNNs trained on RGB images have demonstrated the ability to classify freshness levels 
effectively, with transfer learning providing the additional benefit of improved accuracy 
under varied imaging conditions [24]. These methods collectively highlight the promise 
of deep learning in delivering rapid, accessible, and objective tools for both fish meat 
authentication and freshness assessment. 

Despite significant advancements in fish meat classification and freshness assessment 
using deep learning techniques, a critical gap remains in developing integrated systems 
that can simultaneously perform species identification, evaluate growth and cutting types, 
and grade freshness levels in a user-friendly and real-time manner. Most existing studies 
focus on either species classification [34,35] or freshness grading [24,25,33] separately, 
often relying on laboratory conditions or requiring specialized imaging equipment. 
Similarly, image-based deep learning studies have explored fish species classification in 
controlled environments, but few have addressed the practical deployment of such 
methods in everyday consumer contexts. To bridge this gap, this study introduces a 
smartphone-compatible, deep learning–based classification system that identifies salmon 
and rainbow trout meat and grades salmon freshness. By utilizing an improved 
DenseNet121 architecture and transfer learning, the proposed system offers both high 
accuracy and computational efficiency, making it practical for mobile applications. Unlike 
prior methods, this approach emphasizes accessibility, cost-effectiveness, and consumer 
usability, empowering end-users to verify seafood authenticity and freshness in real-
world purchasing environments. 

3. Materials and Methods 
The research workflow of this study consists of four parts. (1) Image acquisition: fish-

meat images are gathered from web sources and from our own photography, ensuring 
complete coverage of each category, and then cropped to appropriate sizes. (2) Network 
model building and training: two tasks are addressed, fish meat classification and salmon 
freshness grading, both trained and predicted using the DenseNet121 architecture. (3) 
Performance evaluation: the effectiveness and efficiency of classification and grading are 
assessed using recall, precision, accuracy, and training time. (4) Method comparison: 
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evaluating DenseNet121 against five other commonly used deep learning models to 
identify the most suitable approach for fish-meat classification and freshness grading.

3.1. Data Acquisition and Smartphone-Based Image Capture

In this study, three distinct salmon cuts, steak, fillet, and sashimi, are used for both 
classification and freshness grading tasks. A salmon steak is a cross-sectional cut taken 
perpendicular to the spine, typically 1–2 inches thick, often including the central bone and 
skin, and exhibiting pronounced white fat marbling within vibrant orange-red flesh. A 
fillet is a boneless, lengthwise cut parallel to the spine, producing a tapered, flat piece 
(approximately 0.5–1 inch thick) with similar coloration but without the central bone. 
Sashimi refers to thin, skinless, boneless slices (about 0.125–0.25 inches thick) cut from 
sushi-grade fillets for raw consumption, characterized by their glossy and uniform flesh 
color. These cuts are selected because they represent the most common consumer 
presentations of salmon and provide distinct visual characteristics, color, marbling, and 
texture that are critical for both species differentiation and freshness assessment. Each cut 
type was carefully imaged and categorized to build a robust dataset for training and 
testing the proposed deep learning models.

This study adopts a vision-based sensing approach, where customers using 
smartphones capture RGB images of fish meat that are then processed by deep learning 
algorithms for classification and grading. Figure 1 illustrates a cloud-based deep learning 
classification system for fish meat identification and freshness grading. It consists of three 
main components: the client, cloud, and server. On the client side, users capture an image 
of the fish meat using a mobile device and query whether it is salmon or trout. This image 
is transmitted via the cloud to a server equipped with a deep learning model. The server 
processes the image using a CNN to identify the fish type and evaluate its freshness level. 
The classification result—such as “Fresh Salmon”—is then sent back to the client through 
the cloud, allowing consumers to make informed decisions. This setup enables real-time 
image-based fish product verification and freshness assessment through mobile 
applications.

Figure 1. System architecture for image-based fish meat identification and freshness grading using 
cloud-based deep learning inference.

3.2. Image Pre-Processing and Segmentation

A single captured image of a salmon steak is segmented into six distinct grid regions, 
each highlighting different parts of the meat. These cropped grid images are then used to 
build the dataset, with a portion allocated for training the model and the remainder 
reserved for testing its performance. This grid-based approach enhances the model’s 
ability to learn diverse texture and marbling features from various meat sections, thereby 
improving classification accuracy for both training and evaluation phases.
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Figure 2 presents a hierarchical classification framework for fish meat, integrating 
species, growth patterns, cutting types, and freshness grading. At the top level, fish meat 
is categorized into three primary species groups: trout meat (TM), salmon meat (SM), and 
other meat (OM). Salmon meat is further divided by growth patterns into wild salmon 
(W) and farmed salmon (F). Each growth type is then classified by cut type into steak and 
fillet categories, resulting in four subgroups: wild steak (WS), wild fillet (WF), farmed 
steak (FS), and farmed fillet (FF). Each of these six fish meat categories undergoes 
freshness grading, which is stratified into three levels based on color indicators: pink 
orange (high quality), bright orange (premium quality), and red orange (low quality). 
These freshness grades of salmon meat are represented as 𝐺௜,௝ , where i denotes the 
category of combining growth patterns and cutting types, and j the freshness level. This 
structured model supports fine-grained classification and grading of fish meat for quality 
assessment and consumer guidance. 

 

Figure 2. Classification tree diagram of fish meat categorization and freshness grading. 

When training and predicting salmon freshness using deep learning models, each 
image must first be manually labeled with its corresponding freshness level. While 
standard color reference scales in literature include 15 distinct levels, this study simplifies 
the classification into 3 levels. These three reference colors are visually compared against 
each image sample, and, based on this comparison, a ground-truth freshness label is 
assigned manually to each image, completing the annotation process for model training. 

Figure 3 presents a visual comparison between the standard salmon color chart and 
the simplified 3-level experimental color chart employed in this study. The top portion of 
the figure displays the Roche SalmoFan™ standard, which classifies salmon flesh color 
into 15 distinct levels, ranging from level 20 (light pink) to level 34 (deep red-orange). To 
streamline analysis and enhance model performance, these 15 levels were grouped into 
three broader categories for experimental use. As illustrated in the middle of the figure, 
color levels 20 to 24 were classified as Level 1, representing Pink Orange; levels 25 to 28 
as Level 2, denoting Bright Orange; and levels 29 to 34 as Level 3, indicating Red Orange. 
Level 2 bright orange is more favored by consumers due to its fresher appearance, which 
results from a higher astaxanthin content. However, the color of fish meat is not 
necessarily better the redder or the whiter it is. This reclassification allowed for more 
efficient mapping of salmon images (as shown in the lower right corner) to a simplified 
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color grade structure while preserving the essential distinctions relevant to freshness 
evaluation and consumer perception. 

To ensure the three-level system’s validity and practicality, we map the levels to 
ranges of the 15-level SalmoFan™ chart based on perceptual similarity and expert 
judgment. Seafood specialists and quality inspectors then annotate images against 
physical SalmoFan™ cards, and consensus labels are used to confirm consistent color 
categorization. Quantitative testing shows high accuracy with minimal class confusion, 
indicating the grouped labels retain sufficient discriminative power for freshness 
assessment. While finer gradations may suit premium supply chains, a three-level scheme 
offers a clear, reliable, and user-friendly balance for consumer protection and fraud 
detection. 

 

Figure 3. Salmon standard color chart and the corresponding 3-level experimental color chart in this 
study. 

3.3. Deep Learning Models for Salmon and Rainbow Trout Classification 

DenseNet (Densely Connected Convolutional Network) [28] is renowned for its 
densely connected architecture, which facilitates efficient feature reuse and gradient flow, 
enabling the model to effectively learn both low-level textures and high-level semantics 
essential for distinguishing subtle variations in marbling, fat distribution, and color in fish 
meat. Its compact design requires fewer parameters compared to other deep networks, 
reducing the risk of overfitting—an advantage when working with relatively small 
datasets often found in food image analysis. Additionally, DenseNet excels in transfer 
learning scenarios, allowing pretrained models to adapt well to new tasks with minimal 
fine-tuning, which is beneficial for handling real-world variations in fish presentation, 
such as lighting, packaging, or slicing differences. 

3.3.1. DenseNet121 Model 

DenseNet121, introduced by Huang et al. (2017), is a convolutional neural network 
characterized by dense connectivity, where each layer receives inputs from all preceding 
layers [28]. This architecture promotes feature reuse, efficient gradient flow, and reduces 
the vanishing gradient problem, making it well-suited for image classification tasks with 
limited computational resources. 

Figure 4 shows the DenseNet121 architecture applied in this study. Input images of 
salmon meat are first processed through a 7 × 7 convolution layer, followed by 3 × 3 max 
pooling. The core of the network consists of four dense blocks (with 6, 12, 24, and 16 layers, 
respectively), each containing 1 × 1 and 3 × 3 convolutions. Between the dense blocks are 
three transition layers for downsampling, each composed of batch normalization, ReLU, 
a 1 × 1 convolution, and 2 × 2 average pooling. The final feature maps are passed to a 
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classification layer. After feature extraction, a fully connected dense layer with 128 ReLU-
activated neurons processes the feature vector. A dropout layer (rate = 0.2) helps prevent 
overfitting. Finally, a softmax layer outputs probabilities across six classes: wild steak, 
wild fillet, farmed steak, farmed fillet, trout meat, and other meat types. This structure 
enables accurate fish meat classification based on visual characteristics like color, 
marbling, and texture. 

 

Figure 4. Architecture of the DenseNet121-based fish meat classification model. 

3.3.2. Improved DenseNet121 with Global Average Pooling 

To improve classification performance and enhance training efficiency, the original 
DenseNet121 architecture is modified using transfer learning techniques. This process 
involved fine-tuning selected layers, freezing others to retain learned features, and 
structurally adapting the network to better suit the specific task of fish meat classification 
and salmon freshness grading. The modified architecture, termed Improved 
DenseNet121, incorporates four key enhancements: a Global Average Pooling (GAP) 
layer, a dropout layer, a fully connected layer, and a final output layer [36,37]. 

The GAP layer replaces traditional flattening by averaging each feature map, 
transforming multi-dimensional outputs into a compact one-dimensional vector. This 
design drastically reduces trainable parameters compared to fully connected layers, 
lowering overfitting risk and improving generalization, particularly for small or 
specialized datasets like fish meat classification. GAP also preserves spatial context, 
enhances interpretability, and improves computational efficiency, making it a preferred 
choice in modern CNNs. To further strengthen robustness, dropout layers randomly 
deactivate neurons during training, while a fully connected layer maps extracted features 
to class scores, and a softmax layer generates final classification probabilities. Together, 
these enhancements enable DenseNet121 to capture key visual features effectively while 
maintaining both accuracy and computational efficiency. 

Figure 5 illustrates the architecture of the improved DenseNet121 model for fish meat 
classification. Input images are first processed by the DenseNet121 backbone to extract 
deep features. These features are then passed through a GAP layer to reduce spatial 
dimensions and computational load. A dropout layer (0.2) is applied to mitigate 
overfitting, followed by a fully connected dense layer with 128 ReLU-activated neurons. 
Another dropout layer is added before the final softmax layer, which outputs probabilities 
across six meat categories. This enhanced structure improves the model’s generalization 
and classification accuracy, especially for visually similar classes. 
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Figure 5. Architecture of the improved DenseNet121-based fish meat classification model. 

3.4. Transfer Learning of Source Domains and Weights 

During the training phase of a deep learning model, each neuron requires an initial 
weight (W), which can either be randomly initialized or transferred from a previously 
trained model. The use of pre-trained weights for training a new model is known as 
transfer learning (TL). As illustrated in Figure 6, this study adopts a two-stage transfer 
learning approach. In the first stage, pre-trained weights from the ImageNet database are 
used as the source domain, while the target domain consists of fish meat images. In the 
second stage, the pre-trained weights obtained from the fish meat classification model in 
the first stage are reused as the source domain for the salmon freshness grading task, 
resulting in improved classification performance in the freshness grading process. 

 

Figure 6. Schematic diagram of transfer learning for fish meat classification and freshness grading. 

A common method for implementing transfer learning is to freeze the lower layers 
of a pre-trained model—typically the early convolutional layers—while fine-tuning the 
later layers with new data. This involves keeping the feature extraction layers unchanged 
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and retraining only the upper layers, especially those closer to the output. The final 
classification layer is modified to match the number of categories in the new dataset. 
During fine-tuning, a smaller learning rate is applied to avoid overwriting learned 
features. If the dataset is small, only the last layer is trained; for medium-sized datasets, 
early layers are frozen while later layers are updated. 

The classification and grading methods in this study are implemented using transfer 
learning, with the Improved DenseNet121 model serving as the adapted network. To 
optimize performance, experiments are conducted by freezing different portions of the 
model’s 426 layers, targeting either low-level or high-level feature extractors. Eleven 
configurations are tested, with layer freezing applied in 10% increments from 0% to 100%, 
as detailed in Table 3. Each configuration included three components: frozen layers (blue), 
fine-tuned layers (green), and modified classification layers (red). The final classification 
layers are adjusted in every case to match the new task. These experiments aim to identify 
the configuration that provides the best trade-off between accuracy and efficiency while 
preserving valuable pre-trained features. 

Table 3. Improved DenseNet121 with transfer learning architecture table. 

Model Structure 
TL 

(0%) 
TL 

(10%) 
TL 

(20%) 
TL 

(30%) 
TL 

(40%) 
TL 

(50%) 
TL 

(60%) 
TL 

(70%) 
TL 

(80%) 
TL 

(90%) 
TL 

(100%) 
First 43 layers 

(10%) 
Fine-tuning Freezing Freezing Freezing Freezing Freezing Freezing Freezing Freezing Freezing Freezing 

First 85 layers 
(20%) 

Fine-tuning 
Fine-

tuning 
Freezing Freezing Freezing Freezing Freezing Freezing Freezing Freezing Freezing 

First 128 layers 
(30%) 

Fine-tuning 
Fine-

tuning 
Fine-

tuning 
Freezing Freezing Freezing Freezing Freezing Freezing Freezing Freezing 

First 170 layers 
(40%) 

Fine-tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Freezing Freezing Freezing Freezing Freezing Freezing Freezing 

First 213 layers 
(50%) 

Fine-tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Freezing Freezing Freezing Freezing Freezing Freezing 

First 256 layers 
(60%) 

Fine-tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Freezing Freezing Freezing Freezing Freezing 

First 298 layers 
(70%) 

Fine-tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-tuning Freezing Freezing Freezing Freezing 

First 341 layers 
(80%) 

Fine-tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-tuning 

Fine-
tuning 

Freezing Freezing Freezing 

First 383 layers 
(90%) 

Fine-tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-tuning 

Fine-
tuning 

Fine-
tuning 

Freezing Freezing 

First 426 layers 
(100%) 

Fine-tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-

tuning 
Fine-tuning 

Fine-
tuning 

Fine-
tuning 

Fine-
tuning 

Freezing 

Global average 
pooling 

Modification Modificati
on 

Modificati
on 

Modificati
on 

Modificati
on 

Modificati
on 

Modificatio
n 

Modificati
on 

Modificati
on 

Modificati
on 

Modificatio
n 

Activation 
function 

ReLU 
Modification 

Modificati
on 

Modificati
on 

Modificati
on 

Modificati
on 

Modificati
on 

Modificatio
n 

Modificati
on 

Modificati
on 

Modificati
on 

Modificatio
n 

Activation 
function Sofmax Modification 

Modificati
on 

Modificati
on 

Modificati
on 

Modificati
on 

Modificati
on 

Modificatio
n 

Modificati
on 

Modificati
on 

Modificati
on 

Modificatio
n 

The integration of DenseNet121 with transfer learning in this study follows three key 
steps. First, data augmentation techniques, including scaling, translation, and flipping, are 
applied to expand the dataset and increase feature diversity, thereby enhancing model 
robustness. Second, DenseNet121 serves as the core deep learning backbone, consistently 
applied across all experiments to extract hierarchical features. Finally, the classification 
stage incorporates GAP and dropout layers, which simplify feature maps, reduce 
overfitting, and generate reliable class predictions. 
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3.5. Integrated System for Salmon Meat Classification and Freshness Grading 

The developed system is an end-to-end system (smartphone capture, cloud 
processing, classifier output), emphasizing consumer accessibility, real-time results, and 
integration of classification and grading models. Figure 7 presents a three-stage 
framework for automated fish meat classification and salmon freshness grading using 
image analysis and machine learning. In Stage 1, the process begins with an initial fish 
image (a), from which a region of interest (ROI) is extracted (b) and divided into smaller 
gridded meat patches (c). In Stage 2, these mixed gridded images (d) are input into a deep 
learning model (e) to classify them into six fish meat types (f): wild steak, wild fillet, 
farmed steak, farmed fillet, trout meat, and other meat types. Stage 3 focuses on assessing 
the freshness of classified salmon images (g) by analyzing their RGB and HSV color space 
components (h), which are then processed by a machine learning model (i) to assign 
freshness grades (j) across three levels: pink orange, bright orange, and red orange. This 
system integrates classification and grading to enhance the accuracy and efficiency of fish 
product evaluation. 

In steps (b) and (c) of Stage 1, each grid patch inherits the label of its source fillet to 
enable large-scale, consistent training without the prohibitive effort of expert patch-level 
annotation. To minimize label–patch mismatch, we (1) select central ROIs with uniform 
flesh before grid division to avoid edges and background, (2) apply patch quality filtering 
to remove crops with artifacts, skin, shadows, or glare, (3) calibrate grid size so patches 
are large enough to capture marbling/texture yet small enough for effective augmentation, 
and (4) validate empirically, finding minimal accuracy differences between central-only 
and full-patch training, which supports the fidelity of the inherited-label strategy. 

In our pipeline, patches inherit the parent fillet’s label (species/cut or freshness), but 
we reduce label–patch mismatches in three ways. First, ROIs are restricted to flesh-only 
regions: we generate a binary flesh mask and discard any grid patch with <80% flesh pixels 
or contamination by skin, bloodline, glare, or background; edge-adjacent patches are 
excluded a priori. Second, we use context-preserving patches (224 × 224 with 50% overlap) 
to retain sufficient marbling/texture cues so a small crop remains representative of the 
fillet-level label; illumination normalization (white balance/color constancy) reduces local 
color distortion. Third, at inference, we aggregate patch predictions (majority voting) to 
form the image-level decision, limiting the impact of any residual ambiguous patches. 

In step (i) of Stage 3, in addition to deep learning models, several classical machine 
learning approaches are tested for salmon freshness grading. Backpropagation Neural 
Network (BPN) is a feed-forward neural network trained with backpropagation, using 
RGB and HSV color features as input to classify fish meat [38]. The Fuzzy Inference System 
(FIS) applies fuzzy rules and membership functions to color inputs, capturing uncertainty 
but with limited performance on complex image data [39]. The Adaptive Neuro-Fuzzy 
Inference System (ANFIS) integrates neural networks and fuzzy logic to learn fuzzy rules 
automatically, offering nonlinear adaptability with rule-based interpretability [40]. These 
baseline methods, relying on hand-crafted color features, provided useful benchmarks, 
but the proposed Improved DenseNet121, trained directly on RGB images, achieved 
superior performance by utilizing richer image-level features. 

Although color cues (RGB/HSV components) form the most direct indicator for 
freshness, the improved DenseNet121 model also captures additional visual features such 
as texture, marbling distribution, structural patterns, and surface gloss through its 
convolutional layers. By learning multi-scale features from raw images, the network 
integrates both color and non-color cues, enabling it to identify freshness-related 
differences that extend beyond simple pigmentation levels. 
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Figure 7. Stage diagram of the salmon classification and grading system. 

3.6. Combined Categorization of Fish Classification and Freshness Grading 

The classification problem in this study follows a two-stage approach. If fish meat 
classification and freshness grading are combined into a single step, a comparison 
between the two-stage and one-stage methods is further investigated. In the two-stage 
approach, fish meat is first classified into six categories, followed by freshness grading 
applied only to four salmon categories. Each of these four categories is further subdivided 
into three freshness levels, yielding a total of 6 (fish types) + 12 (freshness grades) = 18 
distinct classes. Conversely, the one-stage approach attempts to classify the input directly 
into 14 categories: 12 combinations of salmon type and freshness, along with two 
additional classes for other fish types. 

This comparative setup enables a performance evaluation between modular (two-
stage) and integrated (one-stage) classification strategies. While the two-stage method 
potentially allows for specialized fine-tuning in each phase, the one-stage model benefits 
from end-to-end optimization. Both models are trained and evaluated on the same dataset 
to ensure fairness and consistency. Their performance is analyzed using standard metrics 
such as accuracy, F1-score, and confusion matrices, as discussed in Section 4. 

4. Results and Discussion 
To validate the proposed system for identifying fish species, growth environments, 

cutting types, and grading salmon freshness, this study conducts practical experiments 
and performance evaluations. Results are benchmarked against alternative methods to 
assess effectiveness, followed by sensitivity analyses to explore additional influencing 
factors. 

4.1. Experimental Hardware, Captured Images, and User Interface 

This study utilized the following hardware configuration: a personal computer 
equipped with an Intel® Core™ i7-10700F CPU, 32GB RAM, and an NVIDIA GeForce 
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RTX™ 3070 GPU, running Windows 10 Professional. The software environment included 
Python 3.8.1, TensorFlow 2.7.3, and MATLAB R2021b. The experimental images used in 
this study are fish meat images, each resized to 224 × 224 pixels. Table 4 presents the 
distribution characteristics and descriptions of fish meat and fat across different image 
categories. 

Table 4. Characteristics of sample images for fish meat classification. 

Category Wild Salmon 
Steak (WS) 

Wild Salmon 
Fillet (WF) 

Farmed Salmon 
Steak (FS) 

Farmed Salmon 
Fillet (FF) 

Trout Meat 
(TM) 

Other Meat 
(OM) 

Experimental 
Image 

      

Description 

Fat distribution 
is relatively 
unclear, with a 
circular pattern 
in the texture. 

Fat distribution 
is relatively 
unclear, with 
parallel line 
patterns. 

Fat distribution 
is more distinct, 
with circular 
texture patterns. 

Fat distribution 
is more distinct, 
with parallel line 
texture patterns. 

Flesh is 
relatively pale, 
with parallel line 
texture patterns. 

Flesh is dark red, 
and fat 
distribution is 
unclear. 

The user interface of the automated fish meat classification and salmon freshness 
grading system is illustrated in Supplementary Figure S2. 

4.2. Training and Testing Sample Numbers of Fish Meat Category and Freshness Grade 

In the first stage of fish meat classification, the samples are divided into six categories: 
Wild Steak (WS), Wild Fillet (WF), Farmed Steak (FS), Farmed Fillet (FF), Trout Meat (TM), 
and Other Meat (OM). The number of training and testing images for each category is 160 
and 80. In the second stage, each of the four salmon categories undergoes freshness 
grading, classified into three levels: Pink Orange (PO), Bright Orange (BO), and Red 
Orange (RO). The training and testing image counts for each freshness category are 120 
and 60. The detailed composition of the training and testing datasets used for fish meat 
classification and salmon freshness grading is provided in Supplementary Tables S1 and 
S2. 

4.3. Network Model Selection and Parameter Settings 

In the fish meat classification stage, DenseNet121 is selected as the base model, with 
input image dimensions set to 224 × 224 pixels. The training parameters are configured 
with a learning rate of 0.0001, batch size of 8, and 80 training epochs. Following this, 
various combinations of DenseNet versions, learning rates, batch sizes, training epochs, 
and other parameters are compared to determine the most effective configuration for 
optimal classification performance. 

4.4. Comparison of Detection Effectiveness of Different Models 

This study visualizes the model’s classification results using confusion matrices, 
followed by the calculation of performance evaluation metrics, including precision, recall, 
F1-score, and classification accuracy. To thoroughly assess classification performance, the 
analysis focuses on the classification outcomes of each individual category. 

4.4.1. Performance Evaluation Indices and Confusion Matrix of Experimental Results 

In the first and second stages, the quantities of classification results are denoted by F 
and S, representing fish meat classification and salmon freshness grading, respectively. 
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To evaluate the performance of the proposed fish meat identification and salmon 
freshness grading system, this study presents two confusion matrices, summarized in 
Tables 5 and 6, for fish meat classification and freshness grading, respectively. Standard 
classification metrics are used for evaluation, including recall, precision, accuracy, and F1-
score, where the F1-score represents the harmonic mean of precision and recall. Higher 
F1-score and accuracy values indicate stronger overall detection performance and greater 
model reliability. In both confusion matrices, the classification metrics are illustrated 
using the first category as an example; the similar definitions and calculation methods 
apply to the remaining categories. 

Table 5. Confusion matrix table for classification of fish species, growth patterns, and cutting 
methods. 

Predicted 
 

Actual 

Wild Steak 
(WS) 

Wild Fillet 
(WF) 

Farmed Steak 
(FS) 

Farmed Fillet 
(FF) 

Trout Meat 
(TM) 

Other Meat 
(OM) 

Total 

Wild Steak (WS) F1,1 F1,2 F1,3 F1,4 F1,5 F1,6 𝐹ଵ,∙ = ∑ 𝐹ଵ,௝଺௝ୀଵ  

Wild Fillet (WF) F2,1 F2,2 F2,3 F2,4 F2,5 F2,6 𝐹ଶ,∙ = ∑ 𝐹ଶ,௝଺௝ୀଵ  

Farmed Steak 
(FS) 

F3,1 F3,2 F3,3 F3,4 F3,5 F3,6 𝐹ଷ,∙ = ∑ 𝐹ଷ,௝଺௝ୀଵ  

Farmed Fillet 
(FF) 

F4,1 F4,2 F4,3 F4,4 F4,5 F4,6 𝐹ସ,∙ = ∑ 𝐹ସ,௝଺௝ୀଵ  

Trout Meat (TM) F5,1 F5,2 F5,3 F5,4 F5,5 F5,6 𝐹ହ,∙ = ∑ 𝐹ହ,௝଺௝ୀଵ  

Other Meat 
(OM) 

F6,1 F6,2 F6,3 F6,4 F6,5 F6,6 𝐹଺,∙ = ∑ 𝐹଺,௝଺௝ୀଵ  

Total 
𝐹∙,ଵ = ∑ 𝐹௜,ଵ଺௜ୀଵ  

𝐹∙,ଶ = ∑ 𝐹௜,ଶ଺௜ୀଵ  𝐹∙,ଷ = ∑ 𝐹௜,ଷ଺௜ୀଵ  𝐹∙,ସ = ∑ 𝐹௜,ସ଺௜ୀଵ  𝐹∙,ହ = ∑ 𝐹௜,ହ଺௜ୀଵ  
𝐹∙,଺ = ∑ 𝐹௜,଺଺௜ୀଵ  𝐹∙,∙. = ∑ ∑ 𝐹௜,௝଺௝ୀଵ଺௜ୀଵ  

For fish meat identification, the recall rate or detection rate for wild steak (WS) of 
salmon is defined as: 𝑅𝑒𝑐𝑎𝑙𝑙_𝑊𝑆(%) = ൬𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑤𝑖𝑙𝑑 𝑠𝑡𝑒𝑎𝑘 𝑜𝑓 𝑠𝑎𝑙𝑚𝑜𝑛𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑓𝑜𝑟 𝑤𝑖𝑙𝑑 𝑠𝑡𝑒𝑎𝑘 𝑜𝑓 𝑠𝑎𝑙𝑚𝑜𝑛 ൰ × 100% = 𝐹ଵ,ଵ𝐹ଵ,∙  ×  100% (1)

Precision rate for wild steak of salmon is defined as: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑊𝑆(%) = ൬𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑤𝑖𝑙𝑑 𝑠𝑡𝑒𝑎𝑘 𝑜𝑓 𝑠𝑎𝑙𝑚𝑜𝑛𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑤𝑖𝑙𝑑 𝑠𝑡𝑒𝑎𝑘 𝑜𝑓 𝑠𝑎𝑙𝑚𝑜𝑛 ൰ × 100% = 𝐹ଵ,ଵ𝐹∙,ଵ  ×  100% (2)

F1-Score rate for wild steak of salmon is defined as: 𝐹1 − 𝑠𝑐𝑜𝑟𝑒_𝑊𝑆(%) = ൬2 ×  𝑅𝑒𝑐𝑎𝑙𝑙_𝑊𝑆 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑊𝑆𝑅𝑒𝑐𝑎𝑙𝑙_𝑊𝑆 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑊𝑆 ൰ × 100% (3)

Accuracy rate for fish meat (FM) classification is defined as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝐹𝑀(%) = ൬𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 ൰ × 100% = ∑ 𝐹௜,௜଺௜ୀଵ𝐹∙,∙  ×  100% (4)

Table 6. Confusion matrix table for salmon freshness grading. 

Predicted 
 

Actual 
Pink Orange (PO) Bright Orange (BO) Red Orange (RO) Total 

Pink Orange (PO) S1,1 S1,2 S1,3 𝑆ଵ,∙ = ∑ 𝑆ଵ,௝ଷ௝ୀଵ  
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Bright Orange 
(BO) 

S2,1 S2,2 S2,3 𝑆ଶ,∙ = ∑ 𝑆ଶ,௝ଷ௝ୀଵ  

Red Orange (RO) S3,1 S3,2 S3,3 𝑆ଷ,∙ = ∑ 𝑆ଷ,௝ଷ௝ୀଵ  

Total 𝑆∙,ଵ = ∑ 𝑆௜,ଵଷ௜ୀଵ  𝑆∙,ଶ = ∑ 𝑆௜,ଶଷ௜ୀଵ  𝑆∙,ଷ = ∑ 𝑆௜,ଷଷ௜ୀଵ  𝑆∙,∙ = ∑ ∑ 𝑆௜௝ଷ௝ୀଵଷ௜ୀଵ  

For salmon freshness grading, the recall rate or detection rate for the pink-orange 
(PO) level of salmon freshness is defined as: 𝑅𝑒𝑐𝑎𝑙𝑙_𝑃𝑂(%) = ൬𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑝𝑖𝑛𝑘 − 𝑜𝑟𝑎𝑛𝑔𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑎𝑙𝑚𝑜𝑛 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑓𝑜𝑟 𝑝𝑖𝑛𝑘 − 𝑜𝑟𝑎𝑛𝑔𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑎𝑙𝑚𝑜𝑛 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 ൰ × 100% = 𝑆ଵ,ଵ𝑆ଵ,∙  ×  100% (5)

Precision rate for the pink-orange level of salmon freshness is defined as: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑃𝑂(%) = ൬𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑝𝑖𝑛𝑘 − 𝑜𝑟𝑎𝑛𝑔𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑎𝑙𝑚𝑜𝑛 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑝𝑖𝑛𝑘 − 𝑜𝑟𝑎𝑛𝑔𝑒 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑎𝑙𝑚𝑜𝑛 𝑓𝑟𝑒𝑠ℎ𝑛𝑒𝑠𝑠 ൰ × 100% = 𝑆ଵ,ଵ𝑆∙,ଵ  ×  100% (6)

F1-Score rate for the pink-orange level of salmon freshness is defined as: 𝐹1 − 𝑠𝑐𝑜𝑟𝑒_𝑃𝑂(%) = ൬2 ×  𝑅𝑒𝑐𝑎𝑙𝑙_𝑃𝑂 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑃𝑂𝑅𝑒𝑐𝑎𝑙𝑙_𝑃𝑂 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑃𝑂 ൰ × 100% (7)

Accuracy rate for salmon freshness (SF) grading is defined as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑆𝐹(%) = ൬𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 ൰ × 100% = ∑ 𝑆௜,௜ଷ௜ୀଵ𝑆∙,∙  ×  100% (8)

In terms of efficiency indicators, it is important to distinguish between training time 
and inference time in this study. Training time refers to the total computational effort 
required to optimize the model parameters on batches of training images at the server 
side; this metric is mainly used for comparing the efficiency of different architectures and 
training strategies. In contrast, inference time refers to the time needed to process and 
classify a single test image once the model has been trained, which directly determines 
the feasibility of real-time deployment on consumer devices. In our experiments, the 
improved DenseNet121 achieved an average inference time of approximately 45–60 
milliseconds per image on a standard GPU, corresponding to near real-time performance 
for smartphone-based applications. While training time is relevant for research and 
efficiency analysis, inference time is the critical metric for end-users, as it reflects how 
quickly the system can deliver classification and freshness grading results in practice. 

4.4.2. Classification Results of Fish Meat 

Figure 8 presents a comparative analysis of performance indicators: precision, recall, 
and F1-score, for wild salmon steak classification using various deep learning models. 
Among the eight models evaluated, the Improved DenseNet121 demonstrates the highest 
performance across all metrics, achieving 77.02% in F1-score. In contrast, models like 
Inception and Xception show relatively low performance, with F1-scores below 45%. 
DenseNet121 and ResNet50 also perform moderately well, with F1-scores around 58.23% 
and 55.14%, respectively. Overall, the results highlight that enhancing the DenseNet121 
architecture significantly boosts classification accuracy for wild salmon steak images. 

Figure 9 presents a comparison of the average classification accuracy and training 
time for various deep learning models applied to fish meat classification. The Improved 
DenseNet121 model achieves the highest accuracy at 84.58%, but it also incurs the longest 
training time of 1533 s, reflecting a trade-off between accuracy and computational 
efficiency. In contrast, Mobilenet shows the shortest training time (807 s) while 
maintaining a moderate accuracy of 67.29%, making it more suitable for resource-
constrained scenarios. Other models like ResNet50 and DenseNet121 offer a balance, with 
ResNet50 achieving 65.21% accuracy in 1045 s, and DenseNet121 reaching 70.83% in 918 
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s. Overall, this figure highlights that while deeper or improved architectures enhance 
accuracy, they also increase training time significantly.

Figure 8. Performance indicators for wild salmon steak classification across various deep learning 
models.

Figure 9. Comparative results of accuracy and training time across different deep learning models 
for fish meat classification.

To ensure fair comparisons, all models were trained and tested on the same dataset 
of fish meat and freshness images. This approach guarantees that performance differences 
reflect the architectures and configurations rather than dataset variations. While this 
strengthens internal validity, it also introduces certain limitations. Using a single dataset 
may inadvertently bias model learning toward specific image characteristics, such as 
lighting, background uniformity, or acquisition conditions. Such dataset dependence 
could limit generalizability when applied to broader real-world environments.

4.4.3. Experimental Results of Adding Transfer Learning

The experimental results of adding transfer learning are summarized in Table 7, 
which compares the performance and operational differences between three DenseNet121 
models and the Improved DenseNet121 model. The Improved DenseNet121 consistently 
outperformed the baseline DenseNet121 configurations, achieving the highest accuracy 
(84.58%). These results highlight the benefits of incorporating global average pooling and 
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dropout layers, as well as the efficiency gains from partial layer freezing. These findings 
confirm that architectural enhancements and layer-freezing strategies yield both practical 
efficiency and accuracy gains, emphasizing the robustness of the Improved DenseNet121 
for fish meat classification and freshness grading. 

Table 7. Comparison table of DenseNet121 and Improved DenseNet121 models. 

Changed Items DenseNet121 DenseNet121 
Improved 

DenseNet121 
Improved 

DenseNet121 

Image 
augmentation 

Scaling/Zooming 0.3 0.3 0.3 0.3 
Translation/Shifting 0.2 0.2 0.2 0.2 

Cropping 0.2 0.2 0.2 0.2 
Flipping/Mirroring No Yes Yes No 

Brightness adjustment No 0.8~1.2 0.8~1.2 No 
Main model structure DenseNet121 

Classification 
layer 

Global average pooling No No Yes Yes 
Dropout layer No No 0.2 0.2 

Dense 128, ReLU 128, ReLU 128, ReLU 128, ReLU 
Dropout layer 0.2 0.2 0.2 0.2 

Softmax Softmax Softmax Softmax Softmax 
Performance Accuracy 70.21% 70.83% 77.92% 84.58% 

Figure 9 compares seven candidate models from the selection stage with the 
Improved DenseNet121 used in this study in terms of effectiveness and efficiency. In 
terms of effectiveness, the proposed model attains a higher classification accuracy of 
84.58%. In efficiency, its training time is 1533 s, which is 67% longer than the original 
DenseNet121. When choosing the model, effectiveness is prioritized first, followed by 
efficiency. 

If efficiency is suboptimal, it can be compensated for through other techniques, such 
as layer freezing in transfer learning. In this study, the model contains a total of 426 layers, 
and experiments are conducted by freezing layers at 10% intervals from 0% to 100%, as 
illustrated in Figure 10. As the number of frozen layers increases, training time decreases 
accordingly. We freeze 40% of DenseNet121’s layers based on a sensitivity study (freeze 
ratios at 10–50%) to balance efficiency and accuracy. At 40%, training time dropped by 
~30% with only a small accuracy decrease (84.58% → 81.04%). Freezing less (e.g., 30%) 
offered marginal speed gains, while freezing more (e.g., 50%) caused >5% accuracy loss. 
Thus, 40% provided the optimal trade-off for faster training with minimal performance 
impact. To balance both effectiveness and efficiency, the model with 40% of its layers 
frozen is selected, and its trained weights are saved for use in the second-stage salmon 
freshness grading as the source domain for transfer learning. 

Table 8 presents a performance comparison of classification models in the first stage 
of fish meat classification. The Improved DenseNet121 model shows a 19.41% increase in 
classification effectiveness compared to the original DenseNet121 but suffers a 66.99% 
decrease in efficiency (longer training time). When applying transfer learning with 40% of 
the layers frozen to the Improved DenseNet121 model, effectiveness decreases slightly by 
4.18%, but training efficiency improves by 31.05%. To assess whether the accuracy 
difference (84.58% vs. 81.04%) is statistically meaningful, we apply McNemar’s test on 
paired predictions from both models over the same test set. The resulting p-value was 
>0.05, indicating no significant difference at the 95% confidence level. Therefore, the small 
accuracy drop when freezing layers is not statistically significant, supporting the 
feasibility of this efficiency-focused trade-off. Compared to the original DenseNet121, this 
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transfer learning-enhanced model still achieves a 14.41% gain in effectiveness with only a 
15.14% drop in efficiency. Considering the trade-off between performance and 
computational cost, the study concludes that Improved DenseNet121 with 40% of layers 
frozen through transfer learning is the optimal model for the first-stage fish meat 
classification task.

Figure 10. Performance comparison of fish classification using the Improved DenseNet121 model at 
different freezing layer percentages, red box indicating the optimal selection. 

Table 8. Model effectiveness and efficiency changes across different methods for the fish meat 
classification stage.

Classification Models

Comparison Criteria

DenseNet1
21

Improved
DenseNet1

21

Improved 
DenseNet121 + TL

(40%)

Effectiveness: Accuracy (%) 70.83 84.58 81.04

Efficiency: Training time (s) 918 1533 1057

Compare with DenseNet121

-Change (%) in accuracy 19.41% 14.41%

Change (%) in training time −66.99% −15.14%

Compare with Improved 
DenseNet121

- -
Change (%) in accuracy −4.18%

Change (%) in training time 31.05%

4.4.4. Grading Results of Salmon Freshness

In the second stage, the system performs individual freshness grading for four types 
of salmon based on different cutting methods and growth environments. The 
DenseNet121 model, which showed better performance in the first-stage fish meat 
classification, is used as the network architecture. After tuning various parameters, the 
results are visualized using confusion matrices, and classification accuracy and training 
time are calculated. This study also conducts experiments on transfer learning using four 
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different source domains: randomly initialized weights, pre-trained weights from the 
ImageNet dataset, pre-trained weights from the first-stage fish meat classification model 
with 0% layer freezing, and pre-trained weights from the first-stage model with 40% layer 
freezing. Additionally, different freezing ratios (0%, 25%, 50%, 75%, and 100%) are applied 
in the second-stage freshness grading model to compare the classification results for the 
four salmon types. Performance is evaluated based on average classification accuracy 
(effectiveness) and average training time (efficiency). Figures 11 and 12 show the line 
charts comparing the effectiveness and efficiency of the four source domain 
configurations. The results indicate that both the random weight configuration and the 
0% freeze configuration from the fish meat classification model yield a higher average 
accuracy of 73.75%. However, the training time differs significantly—679 s for the random 
weights and 470 s for the 0% freeze configuration. Therefore, the 0% freeze configuration 
from the fish meat classification model is selected as the optimal source domain, offering 
a balance of both accuracy and training efficiency.

Figure 11. Accuracy comparison of four source domain configurations under varying freezing ratios 
in the second-stage freshness grading model.

Figure 12. Training time comparison of four source domain configurations under varying freezing 
ratios in the second-stage freshness grading model.

Table 9 presents a performance comparison of different source domain weights used 
in the second-stage salmon freshness grading. Using ImageNet pre-trained weights 
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resulted in 3.96% lower accuracy but 29.31% faster training compared to randomly 
initialized weights. When switching to weights from the first-stage fish meat classification 
model with 0% frozen layers, both effectiveness and efficiency improved by 4.12% and 
2.08%, respectively, over ImageNet weights. However, using 40% frozen weights from the 
same model slightly reduced effectiveness by 1.69% while improving efficiency by only 
0.43%. Considering both accuracy and training time, the study identifies the 0% frozen 
fish meat model weights as the optimal source domain for transfer learning in the second-
stage salmon freshness grading. 

Table 9. Improved DenseNet121 model for salmon freshness grading: effectiveness and efficiency 
changes across different source domains. 

Source Domains 
 

Comparison Criteria 

Random 
Weights 

ImageNet 
Weights 

Fish Meat TL 
(0%) Weights 

Fish Meat TL (40%) 
Weights 

Effectiveness: Accuracy (%) 73.75 70.83 73.75 72.50 

Efficiency: Training time (s) 679 480 470 468 

Compare with Random weights 

- 

   

Change (%) in accuracy −3.96% 0.00% −1.69% 

Change (%) in training time 29.31% 30.78% 31.08% 

Compare with ImageNet weights 

- - 

  

Change (%) in accuracy 4.12% 2.35% 

Change (%) in training time 2.08% 2.50% 

Compare with Fish meat TL (0%) 
weights 

- - - 

 

Change (%) in accuracy −1.69% 

Change (%) in training time 0.43% 

In this study, alongside deep learning models, classical machine learning approaches 
such as Backpropagation Neural Network (BPN), Fuzzy Inference System (FIS), and 
Adaptive Neuro-Fuzzy Inference System (ANFIS) are also employed to evaluate salmon 
freshness. Unlike deep learning models that directly process RGB image data, these 
machine learning methods require input in the form of feature vectors, which are 
constructed using both RGB and HSV color components. This design enables a fair 
benchmark comparison against the image-based deep learning framework. The results of 
this comparison are presented in Table 10, which shows that the Improved DenseNet121 
model with 0% freezing achieved superior accuracy, demonstrating higher effectiveness 
than the classical machine learning methods. 

Table 10. Accuracy comparison of classical machine learning methods and the Improved 
DenseNet121 model for salmon freshness grading. 

Methods Inputs Overall 
Average Wild Steak Wild Fillet Farmed 

Steak 
Farmed 

Fillet 
BPN 

RGB + HSV 
components 

62.50% 63.75% 55.00% 61.25% 70.00% 
Fuzzy (FIS) 39.38% 40.00% 26.25% 46.25% 45.00% 

ANFIS 61.75% 61.54% 69.62% 48.75% 67.09% 
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Improved 
DenseNet 121 

with 0% freezing 
RGB images 73.75% 78.33% 73.33% 73.33% 70.00% 

4.5. Comparative Evaluation of One-Stage vs. Two-Stage Classification Approaches 

To evaluate classification pipeline design, this study compares the performance of 
the proposed two-stage approach with a one-stage approach that combines both tasks into 
a single multi-class problem. Table 11 summarizes the sample distribution and 
performance outcomes. To control for sample imbalance, particularly the dominance of 
visually distinct non-salmon fish types, all classes are balanced prior to training and 
evaluation. The improved DenseNet121 model, enhanced with GAP and regularization 
layers, consistently outperformed the original version across all scenarios. Specifically, it 
achieved 84.58% accuracy in the fish meat classification stage and 73.75% in freshness 
grading under the two-stage setup, compared to 66.50% in the one-stage configuration. 
The observed drop in accuracy for the one-stage model is primarily due to the increased 
category complexity, the inherent challenge of learning multiple feature domains 
simultaneously, and the error propagation reduction in the two-stage setup. The two-
stage approach proves more effective by decomposing the task into simpler, sequentially 
optimized sub-tasks, thus offering better performance and interpretability. 

Table 11. Comparison of sample size and experimental results of one-stage and two-stage 
approaches. 

Approach Two-Stage One-Stage 

Number of categories 
Fish meat classification 

(6 categories) 
Freshness grading 

(12 categories) 14 categories 

Training images 160 images × 6 categories 40 images × 12 categories 70 images × 14 categories 
Testing images 80 images × 6 categories 20 images × 12 categories 35 images × 14 categories 

Accuracy    
(DenseNet 121) (70.83%) (None) (52.25%) 

Improved DenseNet 121 84.58% 73.75% 66.50% 

4.6. Robustness Analysis of Proposed Approach 

To evaluate the robustness of the proposed methods, a sensitivity analysis is 
conducted on 480 test images (80 per category). The analysis examined the effects of 
motion blur and camera angle variations on classification accuracy, providing insights 
into the stability of the system under practical image-capture conditions. 

4.6.1. Impact of Object Movement on Classification Effectiveness 

When consumers capture images in real-world environments such as conveyor belt 
sushi restaurants or supermarkets, image blurring can occur due to object movement. 
Blurred images may reduce classification accuracy. To investigate this factor, this study 
applied average filtering to simulate motion blur on fish meat images, replicating the 
visual effects caused by photographing moving fish. Furthermore, the study examined the 
tolerance of the proposed network model in classifying blurred images of moving fish. 
The average filtering method employed three mask sizes to represent different levels of 
blur: a 3 × 3 mask for mild blur, a 5 × 5 mask for moderate blur, and a 7 × 7 mask for severe 
blur. Sample images for each blur level are shown in Table 12. We conduct experimental 
classification on fish meat images with three different levels of blur, and the results are 
shown in Figure 13. The line chart indicates that, as blur increases, the correct classification 
rate gradually decreases; however, overall performance remains above 80%, with no 
significant difference from the results using the original (unblurred) images. 



Sensors 2025, 25, 6299 24 of 31 
 

 

  



Sensors 2025, 25, 6299 25 of 31

Table 12. Images of six types of fish meat with three different blur levels.

Meat Types Original Mild Blur Moderate Blur Severe Blur

Wild steak

Wild fillet

Farmed steak

Farmed fillet

Trout meat

Other meat

Figure 13. Classification accuracy at different blur levels.

4.6.2. Impact of Tilted Capture Direction and Angle on Classification Effectiveness

Consumers often capture tilted images in settings like restaurants or supermarkets. 
Figure 14 schematizes the image-capture tilt conditions examined in this study. A 
reference salmon flesh patch is shown at the center, surrounded by four wedge-shaped 
sectors indicating the tilt directions—forward, backward, left, and right. For each 
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direction, three tilt magnitudes (4°, 8°, and 12°) are evaluated, producing 12 distinct 
imaging conditions. This diagram summarizes the controlled perspective deviations 
applied to simulate real-world capture bias (e.g., in restaurants or retail displays) and to 
quantify the system’s tolerance to camera tilt when assessing fish-meat classification and 
freshness. Corresponding sample images for each tilt direction and angle are shown in 
Figure 15. 

Figure 16 presents a line chart showing the classification accuracy of fish meat images 
under varying tilt directions and angles. The baseline accuracy without tilt is 84.58%. With 
small tilts (4 degrees), accuracy remains relatively high across most directions, except for 
a significant drop to 63.21% with a rightward tilt. Medium tilts (8 degrees) show stable 
performance in forward, backward, and left directions (above 80%), but, again, a notable 
drop occurs with right tilt (68.75%). At large tilts (12 degrees), accuracy remains above 
82% for forward and backward directions but falls sharply for left (66.04%) and right 
(63.96%) tilts. Overall, the model is robust to forward/backward tilts up to 12° (≈2–4% loss) 
but is sensitive to rightward tilts and large left tilts (≈16–21 percentage-point loss). 

 

Figure 14. Schematic diagram of capture tilts at different directions and angles. 
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Figure 15. Sample images at different tilt directions and angles.

Figure 16. Line chart of the classification accuracy at different tilt directions and angles.

4.7. Discussion and Limitations

Compared with state-of-the-art techniques such as hyperspectral imaging, near-
infrared spectroscopy, or biochemical freshness assays, the proposed system provides a 
balanced compromise between accuracy and practicality. Laboratory-based methods, 
while offering objective chemical or microscopic validation, remain costly, resource-
intensive, and inaccessible to everyday consumers. In contrast, the smartphone-based 
DenseNet121 approach relies solely on RGB images captured with widely available 
devices, enabling rapid, low-cost deployment without specialized equipment. This 
practicality is critical for consumer protection, as the tool empowers users to verify fish 
authenticity and freshness at the point of sale or consumption. By combining a simple 
interface with an efficient model, the system supports real-time decision making in 
contexts where mislabeling or fraud poses significant food safety risks.

The enhancements to DenseNet121, combined with transfer learning, make the 
model particularly well-suited for consumer-facing applications. The addition of global 
average pooling and dropout layers reduces overfitting and improves generalization, 
enabling the system to sustain high accuracy under real-world conditions such as motion 
blur, lighting variation, and camera angle shifts. Transfer learning further enhances 
practicality by freezing a portion of the layers, which shortens training time while 
preserving essential low-level feature representations. This dual benefit of efficiency and 
robustness ensures that the system delivers rapid, reliable results on resource-limited 
devices like smartphones, providing consumers with a trustworthy tool for fish meat 
classification and freshness grading.

While the proposed system demonstrates strong potential for automated fish meat 
classification and salmon freshness grading, several limitations should be noted. First, the 
dataset size is relatively small and partly sourced from online images, which may 
introduce bias due to uncontrolled variability in lighting and acquisition standards. 
Second, the labeling of freshness levels relied on manual expert annotation using the 
SalmoFan™ color chart. Although widely recognized in industry practice, this process is 
inherently subjective and is not validated through inter-rater agreement or biochemical 
testing. Third, the absence of objective biochemical indicators such as TVB-N, microbial 
load, or pH reduces the scientific robustness of the freshness grading results. Fourth, the 
dataset lacks external validation images captured in real-world scenarios such as 
supermarkets, restaurants, or consumer devices, which may limit the generalizability of 
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the findings. Finally, the system has not yet been benchmarked against human inspection 
performance (both expert and non-expert), which would provide valuable context 
regarding its practical utility. Future research should address these issues by expanding 
the dataset, incorporating biochemical markers, collecting real-world validation images, 
and comparing machine predictions with human evaluations. 

Another key limitation of this study is that the system has not yet been tested against 
advanced fraud techniques, such as artificially dyeing rainbow trout to resemble salmon. 
Although the model performs well on natural samples, deliberate pigment manipulation 
can obscure visual cues like color and marbling, reducing reliability. Addressing this 
requires future datasets to include dyed trout, along with complementary methods such 
as hyperspectral imaging, chemical validation, or anomaly detection, to enhance 
robustness and consumer protection. 

To ensure a more reliable measure of performance consistency, rigorous statistical 
analysis is essential. In this study, performance metrics are reported as single values 
without cross-validation or confidence intervals. Although the observed numerical 
differences are large, future work will incorporate k-fold cross-validation (e.g., 5-fold) and 
statistical significance testing to verify that improvements are robust, generalizable, and 
not due to random variation. 

The model’s interpretability also requires improvement. While the use of patch-
based training partially reveals attention focus, a detailed visualization of decision 
making, using techniques like Grad-CAM, would help identify the key features the model 
uses, such as marbling, fat lines, or color shifts. This would build user trust and provide 
insight for further optimization. Lastly, while the model currently supports Atlantic 
salmon and rainbow trout classification, expanding its capabilities to include other fish 
species would require retraining and further validation. Future iterations should also aim 
to improve generalizability across camera devices, environmental settings, and fish 
preparation methods. 

5. Conclusions 
This study introduces a two-stage fish meat identification and freshness grading 

system based on an improved DenseNet121 architecture. By integrating global average 
pooling, dropout layers, and a streamlined classification pipeline, the model achieves high 
accuracy while remaining computationally efficient, making it suitable for consumer-
oriented deployment via smartphones. Compared with one-stage and baseline models, 
the two-stage approach effectively reduces complexity and improves accuracy by 
sequentially addressing species classification and freshness grading. 

Despite the promising results, the study has inherent limitations that must be 
addressed in future work. These include the relatively small dataset size, reliance on 
subjective manual labeling, absence of biochemical validation, and lack of external 
validation datasets. These factors may constrain generalizability and robustness under 
real-world conditions. In addition, the system’s performance has not been benchmarked 
against human inspectors, which would further validate its practical relevance. 

Future work will focus on expanding and diversifying the dataset, integrating 
biochemical freshness markers to enhance scientific validity, and testing the model under 
real-world conditions such as packaged fish, supermarket lighting, and varied 
smartphone devices. External validation with consumer-captured images and 
benchmarking against human inspectors are also planned. Furthermore, the system has 
not yet been tested against deliberate fraud techniques such as artificially dyeing rainbow 
trout to mimic salmon, which may obscure genuine visual cues. To address this, future 
research will include such fraudulent cases and investigate complementary methods such 
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as biochemical analysis and hyperspectral imaging to strengthen robustness and 
reliability. 

In summary, mobile deployment is both feasible and essential, and further 
refinements in user experience, dataset diversity, and fraud detection capability will 
maximize the system’s societal impact as a practical tool for seafood authentication and 
consumer protection. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/s25206299/s1, Figure S1. Roche SalmoFan fan. Figure S2. 
User interface of the classification and grading system developed in this study. Table S1. Number 
of training and testing images for fish meat classification. Table S2. Number of training and testing 
images for salmon freshness grading.  
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