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Abstract

Structured-light 3D reconstruction is an active measurement technique that extracts spatial
geometric information of objects by projecting fringe patterns and analyzing their distor-
tions. It has been widely applied in industrial inspection, cultural heritage digitization,
virtual reality, and other related fields. This review presents a comprehensive analysis of
mainstream fringe-based reconstruction methods, including Fringe Projection Profilometry
(FPP) for diffuse surfaces and Phase Measuring Deflectometry (PMD) for specular surfaces.
While existing reviews typically focus on individual techniques or specific applications,
they often lack a systematic comparison between these two major approaches. In particular,
the influence of different projection schemes such as Digital Light Processing (DLP) and
MEMS scanning mirror-based laser scanning on system performance has not yet been fully
clarified. To fill this gap, the review analyzes and compares FPP and PMD with respect
to measurement principles, system implementation, calibration and modeling strategies,
error control mechanisms, and integration with deep learning methods. Special focus
is placed on the potential of MEMS projection technology in achieving lightweight and
high-dynamic-range measurement scenarios, as well as the emerging role of deep learning
in enhancing phase retrieval and 3D reconstruction accuracy. This review concludes by
identifying key technical challenges and offering insights into future research directions in
system modeling, intelligent reconstruction, and comprehensive performance evaluation.

Keywords: fringe structured light; fringe projection profilometry; phase measuring
deflectometry; deep learning; 3D measurement

1. Introduction

Three-dimensional reconstruction technology is a key approach for recovering the
spatial structure of objects from images or sensor data, and it has been widely applied in
various fields such as industrial inspection, medical imaging, cultural heritage digitiza-
tion, and virtual reality [1-5]. Based on the method of acquiring depth information, 3D
reconstruction can be categorized into passive and active approaches. Passive methods
rely on natural illumination and image matching—typical examples include stereo vision
and multi-view geometry. However, their reconstruction accuracy is often limited by fac-
tors such as texture richness and occlusions, making them unsuitable for high-precision
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measurement tasks [6-10]. In comparison, active 3D measurement techniques maintain
high reconstruction accuracy even in regions with weak or absent texture features. By
introducing an additional structured light source, they provide phase information to the
measured area, thereby improving the accuracy and completeness of the 3D surface data.
The laser triangulation method relies on the principle of triangulation rather than phase
information for reconstruction [11,12]; however, due to its line-scanning nature, its speed is
generally lower than that of area-based structured-light methods. The Time-of-Flight (TOF)
method estimates depth information by measuring the travel time of laser pulses between
the detector and the object, and it is typically applied in large-scale scenarios on the order
of hundreds of meters [13,14].

Among various active techniques, structured light has emerged as a mainstream
approach for high-precision 3D reconstruction at close range [15-18], owing to its high
resolution, accuracy, and system flexibility [19-21]. It is widely applied in scenarios such
as industrial surface inspection [22,23], facial recognition [24,25], and 3D modeling [26,27].
Most structured-light systems are based on phase encoding principles and can be broadly
categorized into two representative methods: FPP and PMD. FPP is suitable for diffuse
surfaces and reconstructs 3D shapes by projecting multiple phase-shifted fringe patterns
and extracting their phase. In contrast, PMD is designed for specular or highly reflective
surfaces, acquiring gradient information by analyzing the phase variations of reflected
fringe patterns, from which the 3D structure is reconstructed [28-30]. Depending on the
projection mechanism, FPP systems can be implemented in several ways, with the most
common being DLP projectors and MEMS-based micromirror systems. DLP systems offer
high pattern quality and fast refresh rates, making them the dominant solution. While DLP
projectors have been extensively studied and widely applied in structured-light systems,
discussions often focus on their optical design and depth-of-field characteristics. In com-
parison, micro-electro-mechanical systems (MEMS)-based projection has received relatively
less attention, despite offering distinctive advantages. By generating patterns through laser
scanning, MEMS projectors naturally enable large depth-of-field projection without the
need for additional focusing optics. Moreover, their compactness and lightweight design
make them well-suited for complex environments and mobile platforms [31,32]. In recent
years, MEMS projection has attracted increasing attention as a promising direction for
lightweight structured-light systems.

A number of scholars have conducted systematic reviews and studies focusing on key
components of the structured-light 3D reconstruction pipeline. Tobias Moéller provided
an early overview of all-solid-state PMD range imaging, highlighting its feasibility, the
2005 “Hermes Award” commercial product, and key challenges such as background illu-
mination and temperature variations that demand robust solutions [33]. Building upon
these foundations, Xu et al. categorized and summarized the system architecture of PMD,
analyzing critical issues such as measurement accuracy, system complexity, and calibration
difficulty [34]. He et al. systematically compared three common temporal-phase unwrap-
ping methods in FPP—mnamely, Temporal Filtering, Phase Coding , and Gray-Code—and
evaluated their error characteristics and reconstruction performance under different system
configurations [35]. Lv et al. optimized fringe orientation, pixel matching, and 3D recon-
struction models from a theoretical perspective, proposing an FPP method that balances
accuracy, efficiency, and implementation simplicity [36]. Bai et al. reviewed key techniques
in full-field phase-based 3D measurement, including phase error compensation, high-
speed image acquisition, and the application of deep learning in complex scenarios [37].
Kulkarni and Rastogi surveyed mainstream fringe denoising algorithms, comparing their
performance in terms of phase accuracy and edge preservation [38]. In parallel, Liu et
al. reviewed the progress of deep learning in fringe projection, summarizing representa-
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tive methods, network structures, datasets, and application scenarios, and providing a
structured overview of key technical advances and future research trends in this rapidly
evolving domain [39].

Although multiple technical modules of structured-light 3D reconstruction systems
have been extensively studied, most existing reviews focus on a single method or specific
application, and a systematic comparison between the two mainstream approaches—FPP
and PMD—s still lacking. In particular, there is no unified understanding of how different
projection schemes, such as DLP and MEMS, affect system performance. To address this
issue, this paper starts from the general paradigm of structured-light 3D reconstruction
and provides a comprehensive review and comparison of FPP, PMD, and emerging MEMS
technologies, focusing on key aspects such as measurement principles, system implemen-
tation, calibration and modeling, error control, and integration with deep learning. The
paper emphasizes the differences in practical adaptability and the potential for integration
among these approaches. Representative reviews and studies are summarized in Table 1.

Table 1. Representative reviews and studies on fringe-based structured-light 3D reconstruction.

Author

Year FPP PMD MEMS Deep Learning Description

Tobias Moller et al. [33]
Xu etal. [34]

Lv etal. [36]

Kulkarni et al. [38]

He et al. [35]

Liu et al. [39]

Bai et al. [37]

Our article

2005
2020
2020
2020
2021
2024
2024

2025

X

X X Early review of PMD-range imaging

PMD for 3D specular-surface measurement

FPP measurement theory

Fringe denoising algorithms

Temporal-phase unwrapping methods

Deep learning in fringe projection
Three-dimensional shape measurement

First comprehensive review systematically summa-
rizing FPP, PMD, MEMS, and deep learning inte-
gration

SN N N NN
L AX X X X AK
X X X N X X

AN NN X X X X

AN

As illustrated in Figure 1, Section 1 introduces the research background and sig-
nificance, while Section 2 starts from the general paradigm of fringe-structured-light 3D
reconstruction, systematically presenting the principles of wrapped-phase extraction, phase
unwrapping, and 3D shape recovery from phase, thereby laying the theoretical foundation
for subsequent system evolution. Building on this paradigm, Section 3 focuses on the
development of PMD systems, tracing their evolution from single-screen single-camera
configurations to multi-screen direct PMD and multi-camera stereo PMD, gradually re-
vealing their applicability and limitations in complex scenarios. In parallel, Section 4
shifts to FPP systems, analyzing the differences among mainstream projection technologies
and examining calibration strategies and error modeling under MEMS-based projection,
thereby highlighting challenges in accuracy and robustness. As traditional approaches
increasingly reveal their shortcomings, Section 5 introduces the integration of deep learning
into fringe-structured light, covering learning paradigms, network architecture innovations,
supervision strategies, and input design, along with a discussion of evaluation metrics.
Building upon these insights, Section 6 summarizes current challenges and outlines future
research directions, including HDR imaging, extended depth of field, high-speed and
real-time reconstruction, as well as the transferability and interpretability of deep learning
methods. Finally, Section 7 concludes the paper by summarizing research progress and
providing an outlook on future trends.
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Figure 1. Flowchart of the article structure.

2. Fringe-Structured-Light 3D Reconstruction Approach

FPP and PMD are the two mainstream approaches in fringe-structured-light measure-
ment, respectively, suited for 3D measurements of diffuse and specular surfaces. Although
their system architectures differ, both methods fundamentally rely on projecting or display-
ing sinusoidal fringe patterns and utilizing the modulation effect imposed by the target
object to recover 3D shape information [6,40,41]. As the fringe patterns undergo deforma-
tion on the object surface, their phase information directly reflects the spatial geometry
of the surface. Therefore, a deterministic physical mapping exists between the phase and
either depth (in FPP) or surface gradient (in PMD) [42,43]. With high-precision phase
retrieval and phase unwrapping algorithms, FPP systems can construct depth maps, while
PMD systems can reconstruct surface gradients and further recover the shape. Overall,
the core pipeline of different fringe-structured-light 3D reconstruction methods can be
abstracted as a physical sequence of “fringe modulation-phase retrieval-shape mapping.”
The following sections will provide a step-by-step explanation of this reconstruction pro-
cess. A representative experimental setup and workflow of FPP are illustrated in Figure 2,
where the projector and camera are arranged to acquire deformed fringe patterns from the
object. The subsequent processing pipeline includes phase retrieval, phase unwrapping,
and mapping the recovered phase to 3D geometry, providing a concrete example of the

general reconstruction process.
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Figure 2. Typical experimental setup and workflow of FPP-based structured-light 3D reconstruc-
tion [44].
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2.1. Wrapped-Phase Extraction

In the fringe analysis process, the primary task is to obtain the wrapped phase of
the fringe pattern. Commonly used methods for wrapped-phase extraction include the
phase-shifting method [45-47], wavelet transform method [48], and Fourier transform
method [49]. Among these, the phase-shifting method has become the most widely adopted
technique due to its high computational accuracy, strong robustness, and low sensitivity
to environmental changes and noise [50]. In structured-light projection, sinusoidal fringe
patterns are commonly adopted instead of binary patterns. The reason is that sinusoidal
fringes provide smoother intensity transitions, leading to higher measurement accuracy
and stronger robustness against noise and nonlinear response of the projector or camera. A
typical implementation is the N-step phase-shifting method [51], where the generation of
sinusoidal fringes can be described by the following equation:

I(x,y) =Ip+ In cos(zl:[x) 1)

where I(x,y) denotes the projected fringe intensity at pixel (x,y); Iy is the minimum
projection intensity, representing the lowest brightness level of the sinusoidal fringe; I,
is the peak projection intensity, corresponding to the maximum brightness level; P is the
fringe period; and x denotes the spatial coordinate along the fringe direction.
The projected fringe pattern from the projector can be described as follows:
s

1) = 1+ Tacos gl 9) ~ n| @
where (x,y) denotes the coordinates of a pixel in the 2D image; I,(x,y) represents the
intensity value at that pixel, i.e., the brightness or grayscale value of the image; 14 is the
background intensity, which includes ambient light and the unmodulated portion of the
signal; Ip denotes the modulated intensity, which is related to the reflectivity of the object’s
surface; n =0,1,2,...,N — 1 is the number of phase shifts; and ¢(x, y) is the phase at the

pixel to be retrieved. According to the least squares method, the wrapped phase of the
object can be calculated as follows:

N-1 ”
Y Li(x,y)sin(52)

o n=0
¢(x,y) = arctan [ ~— (3)

] In(x,y) cos(231)

n

The Fourier transform method is a single-frame phase extraction technique based on
frequency-domain analysis. In this approach, a sinusoidal fringe pattern with a specific
frequency is projected onto the object. The captured image is then transformed into
the frequency domain, where filtering operations are applied to isolate the fundamental
frequency component. An inverse Fourier transform is subsequently performed to recover
the phase information of the fringe pattern. The primary advantage of this method lies in
its ability to compute the phase from just a single image, making it well-suited for dynamic
objects or real-time measurement scenarios.

According to Euler’s formula, the fringe image can be expressed as follows:

I(x,y) = L4 + Ig cos[p(x,y) + 27 fox]
=g+ 1L+ @)

I+ % [l (@ley)+2mfox) | % Ige—i(@(xy)+27fox)
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Applying the Fourier transform to Equation (3) along the x-direction yields the follow-
ing:

I(f) = 1a(f) + L(f = fo) + I:(f + fo) )

The Fourier spectrum of the fringe image primarily consists of three frequency bands:
the —1st order I.(f — fy), the Oth order I4(f), and the +1st order conjugate component
I(f + fo). Among these, the Oth order component represents the zero-frequency term and
reflects the background intensity distribution, while the +1st order components contain
the essential phase information of the fringe pattern.

In practical applications, a band-pass filter is typically applied to retain the +1st
order component and suppress the other frequency components, thereby enhancing the
accuracy of phase extraction. The retained component is then subjected to an inverse
Fourier transform, yielding

I = % Ig(cos(@(x,y) + 27 fox) +isin(g(x, y) + 27 fox)) ©)

The real and imaginary parts of the Fourier spectrum of the fringe image can be
expressed as follows:

1
Re{l.} = EIB cos(g(x,y) +2mfox) 7)
1. .
Im{I.} = §IB sin(¢(x,y) + 27 fox) (8)
Therefore, the wrapped phase of the object can be expressed as follows:

¢(x,y) = arctan (Egﬁ)

It is important to note that the obtained ¢(x,y) is the wrapped phase, with values

©)

that are confined within the range (—7t, 7r] and exhibit periodic discontinuities. Therefore,
a subsequent phase unwrapping step is required to eliminate these discontinuities and
recover the true absolute phase, which is essential for accurate 3D reconstruction.

2.2. Phase Unwrapping Algorithms

According to the dimensional source of information utilized during the phase un-
wrapping process, phase unwrapping methods in structured-light 3D reconstruction can
be broadly categorized into temporal-phase unwrapping (TPU) and spatial-phase unwrap-
ping (SPU).

2.2.1. Temporal-Phase Unwrapping

TPU refers to a class of methods that project multiple fringe patterns with different
frequencies or encodings, and compute the absolute phase independently for each pixel
based on the temporal variation in grayscale intensity. These methods do not rely on spatial
continuity of the phase map, making them highly robust for surfaces with steep variations,
discontinuities, or occlusions [52]. Depending on the type of modulation encoding used,
TPU methods can be further classified into the following: Gray-code Phase Unwrapping,
Multi-frequency Phase Unwrapping, Multi-wavelength Phase Unwrapping.

Gray-code Phase Unwrapping is a typical temporal-phase unwrapping method that
combines structured encoding projection with the phase-shifting technique. It is widely
used for absolute phase reconstruction tasks. The fundamental principle is as follows:
a set of Gray-code patterns is first projected to encode the fringe periods pixel by pixel,
allowing for the precise determination of each pixel’s fringe order. Subsequently, a set of
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sinusoidal phase-shifted fringe patterns is projected, from which the wrapped phase is
extracted using a phase-shifting algorithm [53]. By integrating the encoded fringe order
from the Gray-code and the wrapped phase from the phase-shifting method, the wrapped
phase within the interval (—7, 7] can be converted into a globally continuous absolute
phase, enabling accurate 3D shape reconstruction. The encoding and decoding process is
illustrated in Figure 3a.
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the binary-to-decimal decoding process. (b) Multi-frequency PU using different fringe periods for
coarse-to-fine unwrapping. (c) Multi-wavelength PU leveraging synthetic wavelengths to extend the
unwrapping range.

Multi-frequency Phase Unwrapping is a representative temporal-phase unwrapping
method. As illustrated in Figure 3b, this method utilizes the phase information obtained
from low-frequency fringe patterns to assist in unwrapping the wrapped phase of high-
frequency fringe patterns, thereby achieving a balance between high measurement accuracy
and a large measurement range. Typically, this method involves projecting two or more sets
of sinusoidal fringe patterns with different spatial frequencies and extracting the wrapped
phase from each set independently [40].

Pu(x,y) = on(x,y) + 27k, (x,y)

@(x,y) = ¢i(x,y) + 27k (x, y) (10)

@4(x9) = ()

fi

where @y, (x,y) and ®;(x, y) represent the unwrapped absolute phases of the high- and low-
frequency fringes, respectively; ¢, (x, y) and ¢;(x,y) denote the wrapped phases extracted
from the high- and low-frequency fringe patterns using the phase-shifting method; kj, and
k; are the fringe orders of the high- and low-frequency patterns, respectively; and f;, and f;
are the corresponding spatial frequencies of the projected fringe patterns.

To further resolve the fringe order kj,(x, y), Equation (10) provides a rounding-based
formulation that exploits the relationship between the high- and low-frequency wrapped
phases. Specifically, the difference between the scaled low-frequency phase %CDZ (x,y) and
the high-frequency wrapped phase ¢, (x, y) is normalized by 27t and then rounded to the
nearest integer. This process effectively determines the correct fringe order by constraining
the phase discrepancy within a 27t range, thereby enabling the reliable recovery of the
absolute high-frequency phase.

Ly (x,y) = gu(x,y)
271

ky(x,y) = Round (11)
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Once the fringe order kj, is determined, the absolute phase can be progressively
recovered across different frequencies.

Multi-wavelength phase Unwrapping is a temporal technique that leverages the prin-
ciple of beat frequency. As illustrated in Figure 3¢, its core idea is to project multiple sets of
sinusoidal fringe patterns with closely spaced spatial frequencies (or equivalently, wave-
lengths) to synthesize a phase map with a significantly extended equivalent wavelength.
This synthetic phase greatly increases the unambiguous measurement range and effectively
mitigates phase ambiguity, thereby improving the robustness and accuracy of the final
reconstruction.Typically, two sets of fringe patterns with closely spaced frequencies are
used, denoted by spatial frequencies fi and f,. The resulting synthetic phase map @, (x, )
and equivalent wavelength A.; can be expressed as follows:

Peq(x,y) = ¢2(x,y) — @1(x,y) (12)
1 Ay

Aoy = — = 13

il Sl P 13)

Therefore, the fringe order k, can be expressed as follows:

ka(x,y) = Round ( (14)

Ae
2 Peq(x,y) — @2(x,y)
27

2.2.2. Spatial-Phase Unwrapping

Unlike temporal-phase unwrapping, spatial-phase unwrapping techniques utilize
phase information from neighboring pixels in space. By comparing phase differences
between adjacent pixels, the method progressively removes the periodic discontinuities
in the wrapped phase and recovers the true surface phase of the object. However, phase
unwrapping errors in this approach tend to propagate from high-noise regions to low-
noise areas and beyond. The computational strategies for spatial-phase unwrapping are
generally divided into two categories: path-following local methods and path-independent
global methods [54]. Among them, quality-guided unwrapping and branch-cut algorithms
are representative local methods, while unweighted and weighted least-squares methods
belong to the global category. Global phase unwrapping methods are typically based on
the least-squares principle, which transforms the phase unwrapping problem into algebraic
equations or matrix solutions to obtain a globally optimal result [55-59]. The basic idea is to
convert the measured phase gradient field into a system of linear equations and recover the
unwrapped phase through least-squares solutions (e.g., QR decomposition, i.e., orthogonal—-
triangular decomposition, or algebraic number theory methods). Although such methods
are theoretically well-supported by algebraic and statistical tools, in practice, they tend to
be sensitive to noise, less accurate in the presence of occlusions or fringe discontinuities,
and computationally demanding, making them unsuitable for real-time applications. In
contrast, local methods demonstrate greater robustness in handling noise, discontinuities,
and complex surfaces, and thus remain the mainstream approaches in current research
and applications.

Quality-Guided Phase Unwrapping has been widely studied due to its efficiency and
speed [51,60]. This method evaluates the quality of the wrapped phase using a quality
map, and applies a flood-fill algorithm to initiate unwrapping from high-quality regions.
This strategy effectively limits the propagation of unwrapping errors into low-quality
areas, thereby enhancing both accuracy and stability. Su et al. proposed a reliability-
guided phase unwrapping method based on parameter mapping, in which one or more
parameters—such as modulation of the fringe pattern, spatial frequency, phase differences
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between neighboring pixels, and signal-to-noise ratio—are used to construct a parameter
map. The phase unwrapping path is then guided by the high-reliability regions of this map.
As illustrated in Figure 4, this approach effectively confines phase unwrapping errors to
localized areas and demonstrates strong robustness [61].

Index Position Value
3 (3.4) 0.70
4 (4.3) 0.75
2 (2.3) 0.76
1 (3.2) 0.90

Index Position Value
7 4.2) 0.60
5 (3.1) 0.65
3 (3.4) 0.70
6 (2,2) 0.72
4 (4.3) 0.75
2 (2.3) 0.76

Index Position Value

7

8 (1,3) 0.60
7 (4.2) 0.60
5 (3.1) 0.65
3 (3.4) 0.70
6 (2,2 0.72
4 (4.3) 0.75
9 (2,4) 0.85

Figure 4. Schematic diagram of phase unwrapping based on directed parallel mapping [61].

Branch-Cut Phase Unwrapping, also known as the Goldstein algorithm, was first
proposed by Goldstein in 1988 [62], and is a commonly used path-dependent phase un-
wrapping algorithm. The main steps include the following: (1) identifying and labeling
the polarity of phase residues; (2) constructing branch cuts to connect all residues and
ensuring that the sum of the polarity values on each branch cut is zero; (3) bypassing
the branch cuts during the unwrapping process and using the phase information from
neighboring unwrapped pixels to unwrap the residues. Compared with quality-guided
phase unwrapping, the branch-cut method offers stronger noise resistance. By constructing
branch cuts and preventing error propagation, it effectively reduces the impact of noise on
phase unwrapping.

However, the branch-cut method also has some limitations. In regions where phase
residues are densely distributed, incorrect branch cuts may be generated, or the constructed
branch cuts may not be globally shortest, which could lead to unwrapping errors. In
addition, branch cuts may form closed loops, resulting in the “island effect,” which further
aggravates local error accumulation. Therefore, the performance of the branch-cut method
is highly dependent on the placement of cuts. If the noise level is high, significant unwrap-
ping errors may occur. To address these problems, subsequent research has introduced
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several improvements to the Goldstein algorithm. For example, Huntley proposed placing
artificial barriers or using independent unwrapping paths to avoid noise propagation and
obtain unique and accurate phase unwrapping results [63]. Zheng introduced a random
search-based method for locating branch cuts, which improves computational speed and
solves the inaccuracy issue of branch cut construction in the Goldstein algorithm [64].
Gdeisat et al. proposed increasing the number of residues in the wrapped-phase map to
improve unwrapping accuracy, but this method is computationally intensive and time-
consuming [65]. To address this issue, Du et al. proposed a simplified algorithm that
significantly speeds up computation, reducing processing time by more than 50% and
effectively improving measurement efficiency [66].

2.3. 3D Shape Reconstruction from Phase

The recovery of 3D surface shape relies on the mapping relationship between phase
and spatial geometry. In general, the phase information reflects the geometric modulation
of fringe patterns on the surface of the measured object, and the degree of modulation
depends on the optical path variation caused by the surface geometry. To reconstruct the
3D coordinates from the phase, PMD and FPP techniques each establish distinct geometric
mapping models.

2.3.1. 3D Shape Recovery in PMD

PMD is an optical measurement technique specifically designed for 3D reconstruction
of specular or highly reflective surfaces. As shown in the top part of Figure 5a, a typical
PMD system consists of a liquid crystal display (LCD), a camera, and a computer. The
computer generates sinusoidal fringe patterns and displays them on the LCD. These
patterns are reflected by the mirror-like surface of the object and then captured by the
camera. Because the specular surface geometrically modulates the fringe pattern, the
captured image contains phase distortion information caused by variations in the surface
normal [67,68]. After extracting the wrapped phase from the captured fringe images using
techniques such as phase-shifting, the system uses a geometric model and calibration
parameters to convert the phase information into the surface gradient data of the object [69].
Since the phase is proportional to the deflection angle of the surface normal vector, PMD
essentially measures a gradient field that reflects the surface slope. To reconstruct the full
3D shape of the object, this gradient field must be numerically integrated over the 2D
image plane to recover the relative height at each pixel, thereby producing the complete 3D
surface profile [70].

In recent years, researchers have proposed a Direct Phase-Measuring Deflectometry
(DPMD) system based on a dual-LCD and dual-camera setup. This architecture is designed
to bypass the complex gradient integration process required in traditional PMD, enabling
direct height reconstruction of specular objects [71,72]. As shown in the bottom part of
Figure 5a, this method captures sinusoidal fringe patterns reflected from both a reference
plane and the measured specular surface, using two LCD screens and two cameras. Each
camera simultaneously acquires the distorted fringe images along two different optical
paths, thereby recording the phase variations corresponding to these paths. When the
fringe patterns are reflected by the object and the reference plane, the images captured by
the cameras contain the phase difference between the two reflection paths. Through system
calibration, this phase difference can be directly mapped to height differences on the object
surface, effectively eliminating the gradient integration step required in traditional PMD.
The modeling principles and technical details of this method will be further discussed in
Section 3.2.
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which can be further integrated into object shape [37]. (b) FPP directly recovers depth maps via
phase-based reconstruction.

2.3.2. 3D Shape Recovery in FPP

FPP is an active optical 3D measurement technique based on phase encoding, widely
used for measuring diffuse reflective surfaces. It has attracted significant attention due
to its simple structure, high accuracy, and broad applicability. The core principle of FPP
is to project periodic sinusoidal fringe patterns onto the surface of the measured object
under known geometric relationships between the projection direction and the camera’s
viewing angle. The fringe patterns are distorted by the surface geometry of the object. After
being captured by the camera, the 3D shape of the surface can be reconstructed through
phase decoding.

As illustrated in the top part of Figure 5b, a typical FPP system consists of a projector,
the object being measured, and a camera. A geometric imaging model is established
among these three components through spatial calibration. The computer controls the
projector to display a sequence of phase-shifted sinusoidal fringe patterns onto the object’s
surface, while the camera synchronously captures the deformed fringe images. According
to the procedure described in Section 2.2, the absolute phase of the object can be retrieved.
Once phase unwrapping is completed and phase discontinuities are removed, the phase
information becomes spatially continuous [73]. After obtaining the absolute phase, the
system must convert the phase values into the actual 3D coordinates of the object surface
using a calibration model. The core task of this model is to establish a mapping between
the absolute phase and the spatial geometric information. Depending on the modeling
approach, these calibration models are generally classified into two categories: the phase-
height model and the triangulation model [74].

The phase-height model is a method that establishes a direct functional relationship
between phase and height using multiple reference planes with known elevations. It
is well-suited for scenarios where the object is located near the reference plane and the
surface variation is relatively smooth. Common phase-height models can be generally clas-
sified into three categories, linear models [75], inverse linear models [76], and polynomial
models [77,78].

A classic phase-height model is illustrated in the bottom part of Figure 5b, where
A®pE(x,y) denotes the phase difference between the object and the reference plane, O,
O, represent the optical centers of the projector and camera, respectively, I denotes the
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baseline distance between them, d is the vertical distance between the camera and the
reference plane, and p is the width of a projected stripe on reference plane. Let B be a point
on the surface of the measured object, and let i denote the height of point B relative to the
reference plane. According to the principle of triangulation, the height & of point B can be

expressed as [79].
AqDDE “p- d

T A®pr - p +2nl (15)

where p, [, and d are the parameters that need to be calibrated in the phase-height model.

If the measurement system satisfies / > DE, and the actual height distribution of the
object is not uniform, then according to Equation (14), the linear phase-height relationship
can be expressed as follows:

) = SPREEL PO Dy )ndn (1) (16

where k(x, ) is a proportional coefficient to be calibrated, which can be obtained through
least-squares fitting using known heights from a set of reference planes. To improve model-
ing accuracy, phase values are typically collected at multiple height levels, and pixel-wise
fitting is performed to determine k(x, y), thereby yielding more accurate local reconstruc-
tion results. The linear phase-height model is simple to implement and computationally
efficient, making it suitable for fast measurement tasks. However, when the system’s
structural parameters do not satisfy the approximation condition (I >> DE), the accuracy of
the linear model degrades significantly.

To relax the strict geometric assumptions required by the traditional linear model,
researchers have proposed the inverse linear phase-height model. This model introduces a
reciprocal relationship between phase and height, establishing a linear mapping between
the reciprocal of height and the reciprocal of the phase difference.

1

1
iy a(x,y) +b(x,y) - Aoe(%,y)

(17)

where a(x,y) and b(x, y) are the calibration coefficients to be determined for each pixel. This
model allows for more flexible configurations of the camera and projector, requiring only a
shared field of view for measurement, without the need for strict coplanarity between the
projection path and the reference plane. By applying least-squares fitting using multiple
reference planes with known heights, the coefficients a(x,y) and b(x, y) can be efficiently
determined, thus completing the system calibration. It is worth noting that Equation (16)
can be rearranged as follows:

A®pe(x,y) = h(x,y)Adpe(x,y)a(x,y) + h(x,y)b(x, y) (18)

Although the two equations mentioned above appear to be different forms of the same
expression, in practical applications, Equation (16) is more susceptible to noise, which can
lead to significant error amplification in regions with large object height, indicating its
dependency on object height [77,80]. In contrast, Equation (17) demonstrates stronger
robustness against noise.

By further rearranging Equation (18), we obtain the following:

ACIDDE(x,y)
X, y)Appe(x,y) +b(x,y)

h(x,y) = a0 (19)

This equation reflects the nonlinear relationship between the phase difference
A®pe(x,y) and the object height h(x,y) [77]. However, the nonlinear fitting process
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depends heavily on the initial values of a(x,y) and b(x,y), which can affect the overall
calibration accuracy and system stability. To address this issue, some researchers have
proposed using polynomial fitting to model the nonlinear relationship more flexibly [78].
In this case, the height h(x,y) can be expressed as a polynomial function of the phase
difference: .
h(x,y) =3 ai(x,y)[APpe(x,y)]' (20)
i=0

It is worth noting that although increasing the polynomial order can improve the
accuracy of fitting the nonlinear relationship, an excessively high order may lead to Runge’s
phenomenon [81]. Therefore, the degree of the polynomial should be carefully selected to
balance fitting accuracy and model stability.

In the phase-height models described above, the system typically does not perform
geometric modeling or calibration of the camera and projector. Instead, it fits a functional
relationship between phase and height through empirical calibration. In contrast, the
triangulation model requires precise calibration of both the camera and the projector in
order to recover the 3D coordinates of the object’s surface using the principle of triangula-
tion. A projector can be treated as an inverse camera, and its geometric parameters can be
calibrated using methods similar to those used for cameras. However, unlike a camera, the
projector cannot directly form an image. Therefore, it requires the assistance of a reflective
surface—either the measured object or a reference plane—to reflect fringe patterns, and
relies on phase encoding to establish the correspondence between projector pixels and
camera pixels. In this process, phase information plays a key role in pixel matching.

As illustrated in Figure 6, projector calibration typically involves projecting vertical
and horizontal fringe patterns. Using phase-shifting and temporal-phase unwrapping
algorithms, the absolute phase in the vertical direction, ®;(x, yc), and the absolute phase
in the horizontal direction, @y, (x, y¢), can be obtained for each pixel.

Ve

q)h(xwyc)

Camera Projector

Figure 6. Illustration of how the projector observes the measurement point with the aid of cameras [74].
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Assuming the projector resolution is H, x W), with n, vertical fringes and nj, hori-
zontal fringes in the projected patterns, a camera pixel at (x¢,yc)T corresponds to a point
(xp,yp)T on the projector pixel plane. The coordinates can be computed as follows:

_ q)v(xo]/c)wp

o, =
. q’h(xc/y6>Hp

yp - 27T71h (22)

The projector can then be calibrated by following the same procedure as camera
calibration [82].

3. Evolution and Advances of PMD Systems

PMD is a 3D measurement technique based on the laws of optical reflection, specifi-
cally designed for reconstructing the 3D shape of highly smooth, specular surfaces. The
fundamental idea is to project sinusoidal phase-shifted fringe patterns onto a display screen
and to use a camera to capture the modulated images of these patterns reflected from the
object’s surface. Phase information is then extracted from the captured images to infer the
surface normals or height distribution of the object. PMD is essentially a reflection-based
structured-light method, and it is closely related in principle to Moiré deflectometry [83-86]
while offering stronger advantages in terms of measurement accuracy, dynamic range,
and system adaptability [87-92]. Depending on the system configuration, existing PMD
systems can be categorized into three types: Single-screen and single-camera PMD systems,
Multi-screen direct PMD systems, and Multi-camera stereo PMD systems [34].

3.1. Single-Screen and Single-Camera Systems

Among all PMD configurations, the single-screen and single-camera system has been
widely adopted in both early and contemporary research on specular surface 3D measure-
ment, due to its compact structure and minimal construction complexity [93]. This system
typically consists of an LCD, a camera, and a computer. The computer controls the screen
to project a sequence of sinusoidal fringe patterns onto the surface of the specular object.
The camera, positioned in the reflection direction, captures the modulated fringe patterns.
Through phase extraction and surface reconstruction algorithms, the 3D geometry of the
surface is recovered.

As shown in Figure 7, typical single-screen single-camera PMD systems can be mod-
eled using three different approaches, paraxial approximation model, reference-plane-based
model, and surface estimation and reprojection model. The paraxial approximation model
assumes small incidence and reflection angles, making it well-suited for standard specular
surface measurement tasks but less accurate for large-angle scenarios. In contrast, the
planar reference-based model introduces a physical reference plane to extend the applicable
range, though its accuracy depends on precise calibration. The reprojection model further
relaxes the small-angle constraint by incorporating full geometric relationships, thereby
achieving higher accuracy in complex or large-angle measurement conditions.

The paraxial approximation model has been widely used in standard specular surface
measurement tasks. This approach typically assumes that the angle between the reflected
fringe direction and the surface normal is small, allowing a simplified phase-to-height
mapping to be established. Based on this assumption, Hdusler et al. proposed a compact
single-screen single-camera PMD system suitable for objects with relatively small surface
variations [94]. Later, Liu et al. further optimized the geometry of this model to maintain
high measurement accuracy even when measuring mildly curved surfaces [95]. Due to
its mathematical simplicity and ease of implementation, the paraxial model has been
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adopted in many studies and has become a classical configuration in early PMD research
and industrial applications. However, this model struggles to maintain accuracy when
measuring complex specular surfaces with high curvature or sharp geometric variations,
limiting its applicability in high-precision tasks.
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Figure 7. Illustration of three typical phase-to-height mapping models. (a) Paraxial approximation
model. (b) Planar reference-based model. (c) Shape estimation and reprojection model [34].

To overcome the limited measurement flexibility inherent in the paraxial approxima-
tion model, researchers have proposed the reference-plane-based model, as illustrated in
Figure 7b. This method assumes that the measured specular object is adjacent or approxi-
mately parallel to a known reference plane in space. By leveraging a geometric relationship
among three key points—the image point P, the object point S, and the projection point
Q—the surface gradient at point S can be derived. Compared to the paraxial approx-
imation model, this model places fewer constraints on the geometric configuration of
system components, offering greater flexibility. Huang et al. developed a fast measurement
system based on this structure and used the Windowed Fourier Transform algorithm to
achieve dynamic 3D reconstruction from a single-frame image, successfully capturing
temporal deformations of water surface perturbations [96]. Li et al. further investigated
the impact of reference plane positioning errors on measurement accuracy and introduced
dual-laser-assisted positioning and confocal white-light distance sensors to improve spatial
localization of the reference plane [97]. However, this model is mainly applicable to nearly
flat surfaces. For objects with significant curvature or large deviations from the reference
plane, its measurement accuracy degrades noticeably.

The surface estimation and reprojection model, as illustrated in Figure 7c, represents a
more advanced modeling framework for PMD systems, specifically developed to address
the challenges associated with measuring highly curved and complex surfaces.Unlike
previous models, it does not rely on a flat reference plane or paraxial assumptions. Instead,
it uses a coarsely estimated surface shape as a substitute for the reference plane and
iteratively refines both surface shape and normal vectors based on reflective geometry
principles. Within this framework, Bothe et al. achieved high-precision measurements
for various highly reflective objects, including metals, transparent plastics, and glass, and
demonstrated the model’s broad applicability to complex targets [98]. Su et al. developed
the Software Configurable Optical Test System, which is used for 3D measurement of large
curved mirrors in astronomical telescopes. The system iteratively improves measurement
accuracy through reprojection optimization [99]. It is worth noting, however, that this model
relies heavily on the accuracy of the initial surface estimate. Significant estimation errors can
lead to substantial reconstruction deviations. To address this issue, some studies have used
external devices such as coordinate measuring machines (CMM) to acquire coarse surface
data. Nevertheless, achieving high-precision registration between the coordinate system
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of the CMM and the PMD system remains a critical challenge in practical deployment. In
response, Xu et al. proposed a calibration method that integrates the manufacturing system
and the PMD measurement system, directly establishing the spatial relationship between
the two for real-time surface estimation in online measurement environments [100,101].

3.2. Multi-Screen Direct PMD

To overcome the limitations of single-screen PMD systems in terms of surface normal
estimation accuracy and visible measurement area, multi-screen configurations in direct
PMD have been developed. As shown in Figure 8, such systems incorporate two or more
display screens into the scene, allowing the viewing ray reflected from the measured point
to pass through multiple known fringe patterns. This enables more stable and accurate
reconstruction of surface normal [102-104].
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Figure 8. Schematic diagram of a multi-screen configuration in direct PMD systems. (a) Model based
on screen movement. (b) Model based on DPMD [34].
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A typical working principle of multi-screen PMD is illustrated in Figure 8a. Assume
the camera’s viewing ray is reflected from a surface point S and sequentially passes through
pixel positions Q1 and Q; on two display screens. Given the known camera intrinsics and
screen calibration data, the surface normal # at point S can be derived based on a ray
reflection model. However, in practical implementations, the first screen may obstruct
part of the optical path, preventing the camera from seeing the second screen directly.
As a result, early systems often suffered from limited visibility and required specific
geometric arrangements to overcome occlusion issues. Although this approach is effective,
it significantly increases system complexity and measurement time, making it unsuitable
for dynamic or real-time applications. To address this issue, Li et al. proposed an improved
multi-screen PMD system based on a transparent display [105]. The core idea is to use a
transparent screen as the front display, allowing the camera’s line of sight to pass through
it and directly observe the fringe patterns on the second screen behind. This design
enables simultaneous observation of two fixed screens without any mechanical movement,
greatly simplifying the system structure, improving measurement efficiency, and enhancing
adaptability for wide field-of-view measurements.

DPMD is an innovative specular surface 3D measurement technique proposed in recent
years. Unlike traditional PMD, which relies on gradient field integration to reconstruct
3D shape, DPMD constructs symmetric reflection paths and directly obtains the phase
difference in the surface under two different optical paths. This eliminates the need for
complex integration and allows for direct computation of the object’s surface height [71,72].
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In this method, the camera ray is sequentially reflected by a reference plane and the
measured specular surface, intersecting fringe patterns displayed on two parallel screens.
When fringe patterns are displayed on two parallel screens and reflected by a specular
surface, four key phase values can be obtained: ®; and @, along the reference path, and
@/ and @, along the object path. A schematic diagram (Figure 8b) is provided to illustrate
the baseline distance d between the two parallel screens and the correction factor Ad
accounting for possible system misalignment. Based on this geometry, the depth value &
can be calculated as follows:

d[(@) — y) — (D} — D))] — Ad(D} — D7)

h =
(Oy — ®q) + (P, — D))

(23)

In practical systems, to achieve symmetric phase acquisition, a parallel configuration
is typically constructed using one physical screen and one virtual screen created by a beam
splitter. However, ensuring strict parallelism between the virtual and physical screens
remains challenging and may affect the overall system accuracy. Compared to traditional
PMD, DPMD exhibits better adaptability and stability when measuring specular objects
with large slope variations or discontinuities, making it particularly suitable for targets
with step edges or abrupt surface changes. On the other hand, since DPMD does not rely
on a complete gradient field, its measurement accuracy for smooth continuous surfaces is
slightly lower than that of traditional PMD methods based on gradient integration.

3.3. Multi-Camera Stereo PMD

Stereo PMD is a specular surface 3D measurement technique based on multi-sensor
collaborative imaging, first introduced by Knauer et al. in 2004 [93]. This method enables
multiple cameras to observe the specular object synchronously from different viewpoints.
By combining the phase information of the projected fringe patterns, surface normal is
estimated from each viewpoint and then matched to reconstruct the 3D shape of the
target object.

As illustrated in Figure 9, a typical Stereo PMD system operates as follows: one
primary camera selects a spatial point S1, and, based on the system calibration parameters,
determines its corresponding image point P; on the screen. The corresponding phase value
at this location can then be retrieved from the screen’s phase map, allowing the reflected
fringe point Q; to be identified. Using the three points Q1, S1, and Py, the surface normal
at point S can be computed according to the law of reflection. Meanwhile, a secondary
(auxiliary) camera also captures the same target point S;, producing its own image point
P,. Following the same process, a second reflection point Q; is obtained, providing an
independent estimation of the surface normal. Theoretically, the surface normals estimated
from the two views should converge, allowing the recovery of the surface gradient through
normal vector matching, and thereby enabling full 3D shape reconstruction. The main
advantage of this method lies in its strong adaptability to surfaces with complex curvature,
and its ability to achieve high reconstruction accuracy through normal matching. Studies
have shown that Stereo PMD can achieve nanometer-level relative depth accuracy [106,107].

Furthermore, since it does not rely on a reference plane or prior surface estimation, it
offers greater generalizability for applications involving large-scale specular surfaces or
free-form reflective geometries.
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Figure 9. Illustration of stereo deflectometry [34].

4. Evolution and Advances of FPP Systems

In FPP systems, the projection module is the core front-end component for generating
fringe patterns, and its performance directly determines key system metrics, including
spatial resolution, projection speed, measurement depth of field, and environmental adapt-
ability. With the continuous evolution of 3D measurement requirements—from static scenes
to highly dynamic environments, from bulky setups to miniaturized devices, and from
shallow-range measurements to large-depth tasks—traditional projection methods have
exposed clear drawbacks. Specifically, focusing optics constrain the available depth of field,
bulky hardware limits portability, and high sensitivity to ambient light reduces robustness
in practical applications. In recent years, laser scanning projection technologies based on
MEMS micromirrors as have attracted widespread attention due to their advantages in
high precision, high speed, low power consumption, and compact structure. As shown
in Figure 10, this technology achieves rapid deflection of laser beams and the generation
of fringe patterns through MEMS micromirrors. Notably, the continuous advancement of
MEMS technology has not only driven the development of novel projection architectures
but also demonstrated strong compatibility with mainstream DLP-based systems. Given its
high synergy with existing solutions and its tremendous potential in next-generation FPP
systems, this chapter focuses on MEMS-based projection technologies and their applications
in advanced structured-light systems.

4.1. Comparison of Mainstream Fringe Projection Technologies

In structured-light 3D measurement systems, the method of fringe pattern generation
and the optical quality are among the most critical factors influencing reconstruction
accuracy, robustness, and overall system performance. Different projection techniques
exhibit significant differences in terms of fringe contrast, spatial resolution, refresh rate,
and system size, all of which directly affect the stability of phase calculation and the
system’s adaptability in dynamic or complex environments. As illustrated in Figure 11a,
current mainstream fringe generation approaches can be roughly categorized into the
following types: (1) optical interferometric projection, based on interference principles;
(2) physical grating projection, using static optical gratings; (3) LCD-based pixel modulation
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projection, utilizing liquid crystal displays; (4) DLP digital projection, based on digital
micromirror devices (DMD); (5) MEMS micromirror-based laser scanning projection, using
micro-electro-mechanical systems. Each method has its own characteristics in terms of
pattern flexibility, system complexity, cost, and suitable application scenarios. Among
them, DLP projection has become the most widely adopted technique due to its high
pattern flexibility and strong grayscale modulation capability. However, it typically relies
on projection lenses for focusing, which limits the depth of field of the system. In contrast,
MEMS micromirror projection generates fringe patterns by directly scanning a laser beam
in space. This approach requires no focusing optics, and offers distinct advantages such
as large depth of field, compact size, low power consumption, and mechanical simplicity,
making it particularly well-suited for embedded systems, dynamic scenes, and mobile
platform-based 3D measurement applications.
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Figure 10. MEMS scanning mirror-based laser scanning FPP system.

To further compare and analyze the practical performance of the five aforementioned
structured-light projection methods, Figure 11b presents a radar chart evaluating their
capabilities across five key dimensions: resolution, speed, depth of field, system size,
and cost. Additionally, Table 2 summarizes the representative technical specifications of
each system.

Table 2. Performance comparison of typical structured-light systems.

Parameter Interference Phys'lcal LCD DLP MEMS
Grating
Accuracy 107! mm 1073 mm 1072 mm 1073 mm 1073 mm
Speed ~50 fps ~100 fps ~50 fps ~120 fps >1000 fps
Resolution <1K <1K ~1K ~1K >4 K
Programmable No No Yes Yes Yes
Power Consumption ~100 W ~300 W ~40 W ~50 W ~5W
Cost >$10,000 >$10,000 ~$1500 ~$2000 ~$500

Optical Efficiency Medium Low Medium Low High
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Figure 11. (a) Comparison of typical structured-light projection methods and their performance.
(b) Radar charts comparing the performance of each projection method across multiple criteria [108].

From the chart and table, it can be observed that interference-based structured-light
systems generate fringe patterns through coherent beam interference, achieving sub-micron
spatial resolution and excellent depth-of-field performance. These characteristics make
them particularly suitable for measurements of micro/nano-scale structures and the char-
acterization of curved surface topographies. However, such systems lack pattern pro-
grammability, impose strict requirements on environmental stability, involve complex
system construction, and incur high costs, all of which limit their practical applicability.
Structured-light systems based on physical gratings generate periodic fringe patterns by
combining fixed grid structures with illumination sources. These systems are character-
ized by simple configuration and stable fringe quality, making them suitable for static
measurement scenarios requiring high accuracy [109]. However, their fringe patterns are
not programmable, which limits their ability to implement multi-frequency modulation or
adaptive pattern adjustments. Consequently, their flexibility is significantly constrained.
Furthermore, similar to interference-based projection methods, physical grating systems
are non-digital and are thus inadequate for applications requiring a high diversity of fringe
encodings or precise modulation in dynamic and complex environments. LCD-based
structured-light systems modulate patterns by controlling the transmittance of liquid crys-
tal elements. These systems offer advantages such as low cost, design flexibility, and low
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power consumption, making them well-suited for mass production at scale [110]. Nev-
ertheless, the slow response speed of liquid crystal elements and their limited grayscale
control capability result in insufficient sharpness and refresh rates for high-speed and
high-precision measurements.

In addition, the pixelated structure of LCD panels introduces non-ideal responses
under high-frequency fringe patterns, which negatively affects phase demodulation accu-
racy, thereby limiting their applicability in industrial precision inspection. DLP projection
systems are currently the most mainstream digital implementation of structured-light
technology. Their core component is the digital micromirror device (DMD), which en-
ables high refresh rates, support for arbitrary pattern projection, and multi-level grayscale
control [111]. In standard 8-bit mode, DLP projectors can achieve projection rates on the
order of hundreds of frames per second while maintaining excellent pattern consistency
and spatial resolution, making them suitable for most static and low-speed dynamic 3D
reconstruction tasks. To overcome speed limitations, some studies have proposed the use
of one-bit binary defocused projection strategies, enabling projection rates of over one
thousand frames per second while maintaining acceptable pattern fidelity. However, DLP
systems are typically equipped with front-end focusing lenses, which limit their depth of
field and make them unsuitable for targets with significant depth variation or pronounced
surface curvature. Moreover, the complex optical layout, large physical footprint, and
high cost of DMD components present challenges for integration into portable or embed-
ded systems. MEMS-based micromirror projection technology has steadily matured in
recent years. By using single- or dual-axis resonant micromirrors to scan laser beams and
generate two-dimensional fringe patterns, MEMS systems offer a significant advantage
in that they can form sharp patterns without the need for focusing optics. This enables
designs with ultra-large depth of field, compact size, and low power consumption. Ad-
ditionally, MEMS projectors can dynamically control laser power via high-speed TTL or
analog modulation, supporting wide dynamic range and frequency-controllable pattern
generation. These features enable excellent real-time performance and high frame rates,
making MEMS systems particularly well-suited for mobile platforms, robotic grasping,
and dynamic 3D perception tasks. Owing to their beam controllability and miniaturized
structure, MEMS-based solutions provide essential hardware support for the development
of lightweight and intelligent structured-light systems.

In summary, MEMS-based micromirror projection technology demonstrates excep-
tional system integrability and environmental adaptability, owing to its lens-free con-
figuration, large depth of field, compact size, low power consumption, and high-speed
performance. These characteristics make it particularly well-suited for space-constrained,
mobile, or dynamic 3D reconstruction scenarios. By employing laser beam scanning to
directly render fringe patterns, MEMS projectors achieve a seamless integration of pattern
precision and flexibility, effectively overcoming the trade-off constraints among volume,
depth of field, and resolution typically encountered in traditional lens-based projection
systems. With ongoing advancements in MEMS device fabrication precision and control
algorithms, MEMS-based structured-light projection is emerging as a strong contender
to DLP technology, driving the evolution of 3D reconstruction systems toward higher
precision, greater miniaturization, and enhanced intelligence.

4.2. System Calibration Strategies for MEMS-Based Structured-Light Systems

Conventional structured-light systems typically employ the Phase-Height Model and
the Triangulation Model for system calibration, as thoroughly reviewed in Section 2.3.2 [74].
However, due to the fundamental differences in physical mechanisms, calibration models
must be adapted accordingly [112]. In particular, MEMS-scanned structured-light systems
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differ significantly in their projection principles and fringe generation mechanisms, render-
ing traditional pinhole-based projector models unsuitable for direct application. Specifically,
in MEMS systems, fringe patterns are generated by a laser beam rapidly scanned by mi-
cromirrors, resulting in a dynamically varying beam incidence direction rather than a fixed
projection center as in conventional projectors. This dynamic “point-line-plane” projection
mechanism necessitates calibration models that incorporate the nonlinear relationship
among laser scanning angles, power modulation, and camera imaging.

The design of calibration models for MEMS-based structured-light systems must
take into account two essential characteristics of their projection modules: (1) the absence
of focusing lenses and (2) unidirectional scanning projection [113,114]. To address these
challenges, several studies have proposed calibration models tailored to MEMS micromirror
scanning mechanisms. The following section introduces three representative modeling
approaches: the unified model, the iso-phase surface model, and the phase-angle model.

4.2.1. Joint Calibration Model

To address the projection characteristics of MEMS micromirror-based structured-light
systems, the unified model provides a physically grounded and high-precision calibration
strategy. As illustrated in Figure 12a, the core idea of the unified model is to couple the
spatial coordinates of the MEMS laser scanning system with the camera imaging model
under a common coordinate framework, thereby establishing an analytical mapping from
phase values to 3D point coordinates [32].
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Figure 12. Three calibration models of MEMS-based structured-light systems. (a) Joint calibration
model. (b) Equal-phase surface model. (c) Phase-angle model [108].

Since the MEMS projection process essentially involves laser beam scanning along a
defined plane, it can be assumed that the spatial positions of the projected points lie on
a scanning plane subject to linear constraints. Given the known distance d between the
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reference plane and the initial projection point, and incorporating the geometric constraints
of the laser scanning trajectory, the position of the projected point in the projector coordinate
system can be derived as follows:

Xp — i XP (24)
Yp]  Lp|Yp
Meanwhile, the camera imaging process can be described by the standard pinhole
projection model [82]:
X¢ 1 (X,
= — 25
yc‘| Zc | Ye @)

By applying the rotation matrix R and translation vector T to align the coordinate
systems of the projector and the camera, a unified representation in the world coordinate
system can be obtained:

Xc X,
Ye| =Rpe| Yy | +Tpe (26)
Z Z,

Combining Equations (23)—(25) and eliminating the intermediate variables y,, X, Y},
Zp, X¢, Ye, one can derive the following expression:

(ro2r33 — r3r32)ty + (113732 — r12733)t2 + (r12723 — 113722 B3+

(r12723 — r137r22 + (1227133 — 123733) X + (112721 — r11722)Xp /d
((roar31 — raarap)ty + (riars2 — r12r31)ta + (112721 — r11r22)t3) xp /d+
(raar31 — roar3)xcXp/d + (113732 — r12733)Ye + (r11732 — r12731)YeXp/d

7, =

(27)

where r;; and ¢; represent the elements of the rotation matrix and translation vector, respec-
tively. Each scanning position x;, corresponds to a phase value ¢, with ¢ = 27x, /¢, where
c denotes the preset fringe period constant. By substituting this phase relationship into
the geometric expression of the unified model and consolidating the constant terms, two
interpretable calibration models for MEMS-based structured-light systems can be further
derived.

The first type is the global calibration model, which assumes that all pixels in the
system share the same set of geometric and system parameters. In this model, all constant
terms are incorporated into a single expression, providing a concise formulation that
describes the pixel depth Z, as a function of image coordinates (x, y.) and phase value ¢

a1 + ar,®

Z. = 28
¢ az + agxe + asP + agx P + azy. + agy P (28)

The second type is the per-pixel calibration model, which relaxes the unified parameter
constraints imposed by the global model. This approach assumes that each pixel possesses
an independent set of calibration parameters. Accordingly, in practical modeling, the
constants associated with each pixel can be extracted and combined with other terms to
form the following per-pixel expression [32].

/! !/
o + a,®

g —11""
¢ ay + a,® (29)

In both models, the unknown calibration parameters are typically solved using a linear
least-squares method in conjunction with a system of homogeneous equations [74,78].
Since the above derivations are based on ideal image coordinates, while real imaging
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processes inevitably introduce camera distortion, it is necessary to first use the camera
calibration results to convert the distorted image coordinates into ideal ones in order to
ensure modeling accuracy. Moreover, MEMS-based structured-light systems generally
adopt a lensless projection design, which eliminates projection distortions caused by optical
lenses in the projection path, thereby simplifying the geometric modeling process.

4.2.2. Equal-Phase Surface Model

To address the calibration challenges arising from the unique imaging structure of
MEMS-based projection systems, Miao et al. proposed the isophase plane model [115]. This
method constructs a series of isophase light planes formed by laser scanning and leverages
the geometric relationship between the camera’s imaging center and the surface reflection
point to achieve pixel-wise 3D coordinate estimation. As illustrated in Figure 12b, the
isophase planes can be regarded as a set of approximately parallel light planes generated
at specific scanning angles. Each plane is associated with a unique phase value. By corre-
lating the phase information received at a particular camera pixel, the intersection point
between the reflected light ray and the corresponding isophase plane can be determined.
Subsequently, the 3D coordinate of the measured point is derived by fitting the reflection
path between the camera and the isophase planes, resulting in a mapping function between
the phase and spatial coordinates.

XCIL-I-LI)(, Y. = Nl + by, ZCZ%

N
Y. a,d" Y. by®" Y, ¢ @
n=0 n=0 n=0

+cz (30)

This method fully accounts for image distortion effects in the calibration modeling
process; as a result, higher-order polynomials are often introduced in the denominator
of the mapping expressions. However, to prevent overfitting caused by excessive model
complexity, it is essential to carefully select the polynomial order [74]. Currently, two
primary approaches are used to mitigate the impact of image distortion on system calibra-
tion. The first is based on the actual image coordinates and employs polynomial fitting
to suppress image noise. The second approach involves converting all image coordinates
into ideal coordinates using the intrinsic camera parameters before performing modeling.
Experimental results have shown that both strategies can achieve satisfactory calibration
performance in MEMS-based structured-light systems.

4.2.3. Phase-Angle Model

As shown in Figure 12¢, the phase-angle model is a calibration method that directly
relates the geometry of laser beam propagation to phase information, and it is particularly
well-suited for laser scanning projection mechanisms commonly found in MEMS-based
structured-light systems [116,117]. During the scanning process of a MEMS micromir-
ror, each isophase position corresponds to a unique scanning angle. Therefore, given a
known phase value and combined with geometric constraints, the three-dimensional spatial
coordinates of a specific reflection point can be inferred.

In this model, the laser beam at a specific phase value ¢ corresponds to a unique
scanning direction, and the reflected rays associated with different phase values exhibit
a strictly linear relationship along the projection path. Based on this, and in combination
with the camera imaging model, a direct mapping can be established between the pixel
coordinates (u,v), the phase ®, and the spatial coordinates (X,, Y, Z.) of the reflection
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point on the measured object. By introducing auxiliary parameters A, B, C, and D, the
complex geometric computation can be simplified into the following expression:

—uD —ovD —-D

Xxi=— W Y= J=— 1
T uA+9vB+C ° uA+uvB+C ° uA+9B+C (31)

The primary advantage of this method lies in its independence from the need for an
explicit calibration board that fully covers the camera’s field of view, as well as from the
complex gradient integration process required in traditional models. This significantly
simplifies the system calibration workflow. Additionally, the phase-angle model demands
relatively low quantities and precision of image acquisition, allowing for complete system
calibration using only a subset of captured images. This makes it particularly suitable for
embedded systems or online measurement scenarios where computational resources and
time are constrained.

4.3. Analysis of Systematic and Random Errors

Similar to conventional structured-light systems, MEMS-based structured-light sys-
tems are also subject to a range of common error sources. However, due to their distinctive
laser scanning principles and physical implementation mechanisms, MEMS systems exhibit
a series of unique error factors. These errors manifest throughout various stages of the 3D
reconstruction pipeline, spanning from fringe pattern projection and image acquisition to
phase extraction and the final generation of 3D point clouds [118-123]. Specifically, the
error sources in MEMS structured-light systems include unstable motion of the scanning
mirror, non-ideal line width of the laser stripe [124], noise from the laser source, initial
phase shift errors in the mechanical rotation of the scanning mirror, and misalignment
between the laser optical axis and the scanning mirror’s rotational axis [116].

4.3.1. Random Errors

In the process of structured-light 3D reconstruction, fringe pattern projection and
image acquisition are two core components. Random noise, as an inevitable source of
disturbance, can significantly impact the accuracy of phase extraction and 3D reconstruction.
In MEMS-based structured-light systems, the primary sources of random errors include
intensity fluctuations of the laser (source noise), imaging noise during camera acquisition
(such as readout noise and dark current noise), and temporal or spatial jitter induced by
instability during the resonant scanning of the MEMS micromirror. These noise sources
manifest in the captured images as localized or global grayscale disturbances, leading
to random deviations in the computed phase. In phase calculation, when using the N-
step phase-shifting method to extract wrapped phase, random noise directly affects the
brightness distribution of each captured frame, as illustrated in Figure 13a.

The corresponding modulation model can be described as follows [125]:

I, = A+ Bcos(¢ —,) = Ag+ Al + Bcos(¢ — 6p) (32)

where A( denotes the background intensity, B represents the modulation depth, ¢ is the
ideal phase, J, is the phase shift, and Al refers to additive Gaussian white noise with zero
mean and standard deviation ;. Based on least-squares derivation, it can be shown that the
noise introduces phase errors, with a standard deviation given by the following [125,126]:

2 o
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If the fringe frequency is f, then after phase unwrapping, the phase range expands
from 27t to 271f. When the absolute phase is compressed back to the range of [— 7, 77), the
standard deviation of the phase error becomes the following:

Tp =1\ =s (34)
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Figure 13. Illustration of two factors affecting phase accuracy in structured-light systems. (a) Random
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intensity noise. (b) Non-ideal line width smoothing effect [108].

To effectively mitigate the impact of random noise on the 3D reconstruction accuracy
of MEMS-based structured-light systems, three optimization strategies can be considered.
First, increasing the number of phase shifts can significantly enhance the robustness of
phase computation and reduce noise-induced fluctuations; however, this also leads to
longer acquisition times, which may compromise system efficiency. Second, improving the
modulation depth of the fringe pattern is another effective means of reducing phase errors.
It is important to note that the line laser used in MEMS systems is not an ideal infinitesimal
beam but possesses a finite width—referred to as the “non-ideal line width”—which differs
from the fringe period. This non-ideal width causes a “window smoothing effect” on the
fringe pattern, thereby reducing the modulation depth. As illustrated in Figure 13b, this
effect significantly degrades fringe contrast and phase quality. To address this issue, Han
et al. proposed a window smoothing model and developed an optimal fringe number
recommendation algorithm that can automatically determine the most suitable fringe
frequency combination based on system parameters to achieve optimal reconstruction
performance [124]. Finally, reducing image-level random noise is also crucial for improving
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phase stability. In recent years, with advances in deep learning, convolutional neural
network (CNN)-based image denoising techniques [127] have been widely applied in
structured-light systems. These methods can effectively suppress random noise while
preserving image details, thereby further enhancing the accuracy and robustness of 3D
reconstruction.

4.3.2. Impact of Line Laser Intensity Fluctuations

The standard phase-shifting method typically assumes that the background intensity
and modulation amplitude remain constant across different phase-shifted fringe patterns
at the same pixel location. However, in practical measurement environments, this as-
sumption often does not hold due to fluctuations in the intensity of the line laser source.
Such intensity fluctuations cause variations in both the background illumination and the
modulation amplitude across phase-shifted images, which in turn lead to phase errors. The
influence of light intensity fluctuations on phase-shifted fringes can be modeled using the
following equation:

Iy = pn|A+ Bcos(¢ — 6n)] + qn (35)

where p;, denotes the proportional coefficient of the line laser intensity fluctuation, and g,
represents the additive component of the fluctuation. These two factors cause variations in
the background intensity or modulation amplitude across different phase-shifted fringe
images, thereby introducing phase errors. By substituting the phase-shifted images—with
both background intensity offsets and modulation amplitude deviations—into the N-step
phase-shifting expression, the resulting phase error can be derived [128]:

2 N p,—1A+4q, .
Aqb%NBrg(pp)nqsm(dn—q‘)) (36)

To mitigate the impact of line laser intensity fluctuations on 3D reconstruction ac-
curacy, the most direct hardware-level solution is to employ a laser source with stable
output. A stable laser can fundamentally reduce intensity variations at the source, thereby
avoiding phase extraction errors caused by light source instability. On the software level,
post-processing techniques can effectively compensate for errors induced by intensity
fluctuations. For instance, Liu et al. proposed an iterative self-calibration algorithm that
rapidly extracts the phase components from fringe images and accurately compensates for
deviations in background intensity and modulation amplitude [129]. This method enhances
phase extraction accuracy through iterative optimization and maintains robust reconstruc-
tion performance even under unstable illumination. In addition, Lu et al. developed a
histogram-based segmentation approach, in which each phase-shifted image is segmented
and corrected via a linear gray-level transformation to compensate for background intensity
and modulation amplitude shifts [130]. By adjusting the gray levels, this method effectively
eliminates deviations caused by intensity fluctuations, thereby improving phase accuracy.
Chen et al. proposed two real-time correction methods specifically designed to address
source instability [131]. These techniques utilize dynamic mapping functions to correct
phase errors in real time as they evolve over time. Such correction strategies not only
counteract the influence of an unstable light source but also enable adaptive adjustment in
dynamic environments, ultimately enhancing the precision of 3D reconstruction.

4.3.3. High-Order Harmonics

In traditional structured-light systems, the Gamma effect or system nonlinearities
typically introduce higher-order harmonic errors [132,133]. This issue becomes even more
pronounced in emerging structured-light systems based on MEMS micromirror scanners,
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where mechanical rotational errors of the mirror lead to the coupling of higher-order
harmonics into the projected fringe patterns. Furthermore, when the input-output char-
acteristics of the laser source are not accurately calibrated, similar harmonic distortions
may arise. The presence of higher-order harmonics contaminates the captured images,
distorting the fringe patterns and thus compromising the accuracy of phase extraction.
These distortions can be mathematically described using a Fourier series expansion [118].
Let a; denote the amplitude of the i-th harmonic component; then, the distorted fringe
image containing higher-order harmonics can be expressed as follows:

L(xy) = a0+ ) aicos(i(p(x,y)) + @n) (37)
m=1
When using the N-step phase-shifting method for phase extraction, the phase er-
ror introduced by higher-order harmonics can be derived using the following expres-
sion [119-121]:

Y (amni1 — amn 1) sin(mN¢(x, y))
Ap = tan~! | =L (38)
a1+ Y (auN+1 — amn—1) cos(mN¢(x,y))
m=1

To mitigate the impact of higher-order harmonics on phase accuracy, one commonly
adopted strategy is to increase the number of phase-shifting steps, which can effectively
suppress harmonic interference. However, this inevitably leads to an increased number of
required images, thereby reducing the overall reconstruction speed [122]. Therefore, the
most meaningful approach is to suppress higher-order harmonic effects without signifi-
cantly compromising the reconstruction efficiency.

Harmonic suppression strategies can generally be categorized into two types: active
methods and passive methods. Active methods involve pre-calibration before pattern pro-
jection, whereas passive methods are implemented after the projection has occurred [123].
Specifically, Huang et al. proposed a dual three-step phase-shifting technique that enhances
phase measurement accuracy by optimizing the conventional three-step phase-shifting
method [134]. Cai et al. derived phase error models in both the spatial domain and the
Hough Transform (HT) domain, which are used to analyze and compensate for the effects
of higher-order harmonics on phase extraction [118]. Zhang et al. employed a lookup-table-
based approach to correct the nonlinear errors in projectors [135]. Furthermore, Pan et
al. conducted theoretical analysis on phase errors caused by non-sinusoidal waveforms
and developed an iterative phase compensation algorithm to effectively reduce the impact
of higher-order harmonics [136]. Song et al. proposed a system nonlinearity correction
method based on mask information, where harmonic coefficients are determined using a
mask image and the true phase is recovered through Gauss—Newton iteration [137].

While these methods have been extensively applied in conventional DLP-based
structured-light systems, harmonic suppression techniques specifically designed for MEMS-
based systems remain relatively scarce. To address this, Han et al. proposed a layered
phase-shifting method based on a phase-shifting superposition framework, leveraging the
fact that MEMS scanning speed is typically higher than that of the camera [138]. While
these methods have been extensively applied in conventional DLP-based structured-light
systems, harmonic suppression techniques specifically designed for MEMS-based systems
remain relatively scarce. To address this, Han et al. proposed a layered phase-shifting
method based on a phase-shifting superposition framework, leveraging the fact that MEMS
scanning speed is typically higher than that of the camera.
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As illustrated in Figure 14a, the internal phase-shifting method projects 12 phase-
shifted patterns within a single camera exposure period. These patterns are temporally
superimposed into a single image using the camera’s exposure integration, effectively
suppressing harmonic distortions. The external phase-shifting method then extracts the
wrapped phase from these harmonic-free composite images. Experimental results demon-
strate that this approach achieves the same accuracy as a conventional 12-step phase-shifting
method, while requiring only three captured images. Figure 14b illustrates the sensitivity
of various harmonic orders to different internal phase-shifting step counts. Figure 14c
compares the 3D reconstruction results obtained by the traditional three-step phase-shifting
method and the proposed layered phase-shifting method with 3 external and 12 internal
steps.
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Figure 14. Layered phase-shifting method proposed by Han et al. (a) Principle of the layered
phase-shifting method. (b) Sensitivity of the internal phase-shifting method to harmonic distortions.
(c) Experimental results of the nested (internal-external) phase-shifting method [108].

Despite the continuous progress of traditional FPP methodologies—including in-
novations in phase extraction, unwrapping, and calibration—these approaches remain
constrained by hardware limitations, sensitivity to ambient noise, and reduced robustness
in low-contrast or large-depth-of-field scenarios. At present, deep learning techniques
have already been validated and applied in many domains [139-141]. They are capable of
complementing or even surpassing traditional models by automatically learning robust
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representations from large-scale datasets. In this context, deep learning has emerged not
only as a tool for improving accuracy and efficiency [142-145], but also as a transformative
paradigm for addressing longstanding issues in fringe-structured-light reconstruction. The
following section provides a systematic overview of how deep learning frameworks have
been designed and adapted to meet these challenges.

5. Application of Deep Learning in Fringe-Structured Light

In traditional fringe-structured-light systems, measurement accuracy often faces sig-
nificant challenges when dealing with objects that exhibit non-uniform surface reflectiv-
ity [146], complex geometries, or severe occlusions [147]. In recent years, deep learn-
ing techniques have been extensively validated and successfully applied across various
fields, demonstrating powerful capabilities in feature extraction and nonlinear model-
ing [44,140,148-150]. Specifically, for fringe-based structured-light systems, deep learning
offers novel solutions to improve measurement accuracy, accelerate reconstruction speed,
and enhance system robustness. This chapter provides a detailed overview of the appli-
cations of deep learning in fringe projection-based structured-light systems. However,
since PMD primarily targets specular objects and is constrained by its specific application
scenarios, the use of deep learning in PMD remains limited. Existing studies are usually
centered on single-shot approaches [151-158]. Therefore, this chapter mainly focuses on
deep learning-driven FPP methods.

5.1. Learning Paradigm for Deep Learning-Driven FPP

Deep learning-based approaches can be categorized into two types—single-frame
methods and multi-frame methods—following the classification of traditional phase-
shifting [45,46] and Fourier-based algorithms [49,159]. In traditional multi-frame phase-
shifting techniques, multiple fringe images are acquired to enhance the accuracy and ro-
bustness of phase recovery by leveraging temporal redundancy, As illustrated in Figure 15.
Here, Iy denotes the original scanned object, [;.; denotes the first step of the first frequency,
and I4.1» denotes the 12th step of the fourth frequency. These methods have been thoroughly
discussed in Section 2.1.
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Figure 15. Schematic diagram of the traditional phase-shifting measurement process.
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In the context of multi-frame fringe projection 3D reconstruction, deep learning models
aim to learn the mapping between multi-frequency fringe patterns and depth information.
Unlike conventional methods that explicitly extract phase information from the fringe
images [45,46], deep learning approaches use neural networks to automatically establish
this mapping, thus reducing the need for handcrafted feature design and enabling more
efficient and accurate phase recovery. Such models are particularly beneficial in handling
complex measurement scenarios, as they reduce acquisition redundancy while improving
reconstruction speed and precision.

In contrast, single-frame approaches are inherently more challenging, as the deep
learning model must infer phase information from only one fringe image. Traditional single-
frame phase retrieval techniques rely on frequency domain analysis to extract phase [49,159].
However, deep learning-based single-frame models do not depend on explicit geometric
constraints or analytical markers; instead, they utilize implicit features learned from large-
scale datasets to recover phase information. By capturing local phase distributions and
the inherent structure of the fringe image, these models can robustly estimate phase even
under challenging lighting conditions, such as shadows and occlusions.

In summary, the integration of deep learning into fringe projection-based 3D recon-
struction has led to significant performance improvements for both single-frame and
multi-frame scenarios. Whether enhancing traditional multi-frame phase-shifting methods
or addressing the complexities of single-frame phase recovery, deep learning models enable
more efficient, robust, and accurate solutions for phase retrieval and depth estimation.

5.2. Deep Learning Framework Design and Advancements

Current fringe-to-phase/depth methods are primarily distinguished by three technical
dimensions: network architecture, supervision strategy, and input paradigm.

5.2.1. Network Architecture Innovations

In deep learning-driven fringe-structured-light 3D reconstruction, designing an effec-
tive framework to map fringe images into phase information is of paramount importance.
Current research has primarily focused on innovations in neural network architectures,
particularly models tailored for fringe-to-phase regression tasks. Since this mapping
is essentially a regression problem, U-Net and its variants have become the dominant
approaches. By leveraging skip connections for hierarchical feature integration, U-Net
effectively captures both local and global context. Comparative studies [160,161] have
demonstrated that U-Net achieves higher prediction accuracy and stability than traditional
CNNs and GANs. However, these benefits often come at the cost of increased compu-
tational complexity and limited cross-domain adaptability, which has motivated further
architectural refinements.

Recent advances have extended the U-Net backbone with new design concepts, hybrid
strategies, and pretrained modules to improve accuracy, reduce training time, and enhance
generalization. For example, Wang et al. [162] proposed MSUNet++, which incorporates
additional nested pathways to fuse features across multiple levels, thereby enhancing repre-
sentational power for complex mappings. This improvement, however, comes with longer
training and inference times. Zhu et al. [163] developed PCTNet, a CNN-Transformer
hybrid network that combines local texture extraction with global context modeling. Rec-
ognized as a state-of-the-art (SOTA) method in 2023, PCTNet achieved a 43.62% reduction
in RMSE compared with U-Net, highlighting the advantages of hybrid architectures and
further advancing research in the field.

Another promising direction is the integration of pretrained models. Li et al. [164] and
Cai [165] introduced pretrained ResNet and Vision Transformer initializations into U-Net
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variants, both of which outperformed the conventional U-Net. Notably, Cai et al. employed
pretrained Vision Transformers to extract semantically rich contour features and coarse
depth cues, reducing MAE by 65%. These results indicate that pretrained models not only
accelerate convergence but also substantially improve data efficiency, which is especially
valuable in FPP systems where dataset sizes are typically limited.

Overall, existing evidence suggests that hybrid architectures combining the local
feature extraction capabilities of CNNs with the global context modeling strength of Trans-
formers deliver the most balanced performance. Although such models generally incur
higher computational costs, they are particularly effective in handling complex scenarios
where robustness and data efficiency are crucial. Consequently, pretrained visual models
have emerged as an important tool for improving the performance of fringe-structured-light
3D reconstruction under data-constrained conditions.

Architectural innovations have thus laid a solid foundation for FPP and delivered
significant improvements in accuracy and robustness. Nevertheless, relying solely on archi-
tectural advances remains insufficient to fully overcome the bottlenecks caused by limited
samples and restricted input information. In recent years, researchers have begun to explore
more sophisticated supervision strategies, introducing multi-level supervisory signals or
incorporating physical priors during training to further enhance generalization and stability.
The next section will focus on the latest developments in these supervision mechanisms.

5.2.2. Supervision Strategies

Although architectural innovations have improved baseline performance, conven-
tional end-to-end learning still faces difficulties when addressing the inherent challenges of
FPP, such as limited input information and small-scale datasets. As shown in Figure 16b,c,
recent studies have increasingly incorporated physical priors in combination with tailored
supervision strategies, which have proven to be effective in overcoming these bottlenecks
and enhancing model performance.
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Figure 16. Different network supervision mechanisms. (a) End-to-End supervision. (b) Deep
supervision. (c) Branch-wise design.

Representative of these efforts is deep supervision, which introduces supervisory
signals at multiple levels. This approach not only alleviates shortcut learning but also
regularizes hierarchical feature representations, thereby significantly improving model
generalization and enabling more robust reconstruction in complex scenarios [166-168]. For
instance, Nguyen et al. [169] implemented multi-level supervision in the hNet architecture
by injecting supervisory signals at each decoding stage, which markedly improved feature
learning and consistently outperformed the conventional U-Net across most applications.
Inspired by MFTPU, Li et al. [164] proposed the DSAS architecture, which applies joint
supervision between sub-high-frequency absolute phase and high-frequency wrapped
phase. Compared with standard end-to-end methods, DSAS reduced mean absolute error
(MAE) in absolute phase reconstruction by 34%. Extending this idea, Zhu et al. [170]
proposed a triple-supervision mechanism, which added an additional supervisory branch
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beyond the dual-branch design. This method lowered mean squared error (MSE) by 52%
relative to end-to-end learning, further pushing the performance boundary.

Another line of research is branch-wise supervision, which combines network pre-
dictions with physical equations. Unlike deep supervision, branch-wise methods usually
require post-processing with traditional physical models at the final stage. A typical ap-
proach is to predict both the wrapped phase (or its equivalent representation) and a coarse
absolute phase, which is then refined using physical equations and rounding operations
to compensate for small errors and improve point cloud quality [171-173]. Recently, such
methods have increasingly emphasized explicit integration of FPP physical principles. For
example, Jiang et al. [174] proposed a “1-to-6” architecture capable of predicting three pairs
of numerators and denominators. It is important to note, however, that although output
designs vary, directly predicting fringe order should be avoided, as fringe order is a discrete
variable and thus not well suited for regression-based deep learning models.

Overall, supervision strategies play a crucial role in enhancing the robustness and
accuracy of fringe-structured-light 3D reconstruction. Deep supervision improves general-
ization through multi-level regularization, while branch-wise supervision tightly integrates
physical priors with network predictions, further improving point cloud quality. Although
these approaches differ in mechanisms and computational costs, both demonstrate strong
potential to overcome the limitations of conventional end-to-end learning. It is also worth
noting that the effectiveness of supervision strategies largely depends on the design of
input features. Therefore, the next section will focus on the evolution of input paradigms
and their impact on network performance.

5.2.3. Input Design

In FPP systems, the design of input features is of critical importance, as certain
features cannot be efficiently learned by neural networks in an automatic manner. In
recent years, researchers have sought to overcome this limitation through innovations
in input engineering. Nguyen et al. [160] compared various fringe patterns, including
speckle patterns, high-frequency fringes, low-frequency fringes, and natural images, and
found that high-frequency fringes delivered the best reconstruction performance. However,
in traditional Fourier transform-based methods, key parameters that strongly influence
accuracy—such as fringe patterns and projection angles—have not yet been fully optimized.

Among different input designs, composite approaches such as color-composite fringes
and frequency-composite fringes have demonstrated promising performance. For example,
Wang et al. [162] incorporated discrete wavelet transform (DWT) components into the
input features and showed that this improved RMSE accuracy by 4% across the entire
test dataset. Li et al. [173] employed composite three-frequency fringes as input and
simultaneously predicted three intermediate components: unwrapped phase, numerator,
and denominator. Their proposed CDLP method outperformed traditional FT approaches,
although comparisons with other benchmarks such as sinusoidal fringes remain insufficient.
Zhu et al. [175] introduced the SCFPP method, which surpassed CDLP and DCFPP on
their self-collected dataset, improving MAE by 20.4%. It is worth noting that while color-
composite fringes show potential, their application in measuring colored objects still suffers
from limitations and has therefore not been widely adopted.

In summary, further optimization of input feature design remains a key factor for
improving both the accuracy and robustness of FPP. The performance variations observed
across different fringe patterns and composite approaches not only highlight the impor-
tance of input engineering but also point to future research directions. In particular,
greater emphasis should be placed on fully exploiting multi-frequency fringe information
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and integrating multimodal fringe features to further enhance reconstruction accuracy
and adaptability.

5.3. Evaluation Metrics

In deep learning-driven FPP, designing appropriate evaluation metrics is crucial to
ensure the effectiveness and robustness of models in real-world applications. To com-
prehensively assess model performance, a multi-dimensional evaluation framework that
integrates both visualization and quantitative metrics is needed to systematically analyze
network behavior across diverse scenarios.

Visual analysis plays a key role in identifying systematic errors and failure modes. In
FPP tasks, effective visualization not only intuitively reflects the network’s performance
under varying conditions but also reveals limitations in handling specific challenges. How-
ever, most existing studies only present phase or point cloud errors in limited scenarios,
which cannot fully reflect global performance. Therefore, scene-specific fine-grained testing
is recommended to highlight artifacts more clearly and reduce dataset bias.

Figure 17 comprehensively illustrates the evaluation framework of our method, which
is organized into four complementary perspectives: quantitative scene evaluation, standard
object validation, generalization testing on industrial materials, and unified metric report-
ing. Per-pixel error heatmaps, as shown in Figure 17a, are a commonly used visualization
method. We present quantitative results across diverse test scenes, including multi-object
scenarios, isolated targets, low-light conditions, complex textures, and single objects. The
left column shows representative fringe or intensity images, while the right column dis-
plays average phase error maps (in radians). These heatmaps can clearly present the local
error distribution in phase or depth reconstruction, helping to uncover systematic biases.
For instance, a model trained on specific objects may generalize poorly to new objects
with different textures or reflectance. Taking the FP672 dataset [160], as an example, its
data mainly originate from a single statue under uniform lighting conditions. As such, it
is insufficient to evaluate the network’s robustness under complex objects and varying
illumination. Therefore, it is recommended to include industrially common materials such
as metals during the testing phase to more effectively challenge and assess the model’s
generalization capabilities.

In addition, non-uniform surface reflectance remains a major challenge, often leading
to errors in fringe order prediction. Complex reflective surfaces may hinder the network’s
ability to accurately infer fringe orders. To address this issue, it is suggested to augment
testing with surfaces that exhibit strong reflectivity, enabling a more realistic assessment
of model robustness. In Figure 17c, we validate the model’s generalization capabilities
on industrially relevant materials, especially metallic and highly reflective objects. The
absolute depth-error maps (unit: mm) highlight the reconstruction challenges posed by
strong reflections, while the reported RMSE values under each case quantitatively measure
the model’s accuracy in such non-ideal scenarios.

Beyond static scene evaluations, dynamic scene evaluation has gained increasing
attention. Temporal consistency visualization offers a valuable extension to traditional
static metrics, especially in revealing motion artifacts and the impact of temporal varia-
tions [176,177]. Dynamic evaluation is critical for validating model stability and consistency
under continuously changing environments, making it particularly applicable to long-term
industrial deployments.

To establish a robustness benchmark that more closely reflects real-world scenarios,
it is recommended to introduce variable conditions such as background light intensity
and changes in ambient illumination. These variations simulate common real-world
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disturbances (e.g., lighting fluctuations, object occlusion) and enable systematic assessment
of the model’s adaptability under non-ideal conditions.

Quantitative metrics provide an objective basis for standardized model performance
comparison. However, existing studies lack consensus on metric selection, making direct
comparisons across methods difficult. Currently, mean absolute error (MAE) and root mean
square error (RMSE) are the most widely adopted basic metrics. In recent years, Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and 3¢ deviation have
also been introduced to characterize prediction errors from different dimensions. These
metrics reflect mean error, variance, structural fidelity, and signal-to-noise characteristics,
respectively, as shown in Figure 17d. Meanwhile, standard geometric objects, such as
spheres and planes, are particularly effective for evaluating the accuracy of the predicted
results, as illustrated in Figure 17b. Also, to address the lack of standardization, we
propose a unified set of integrated metrics, encompassing phase- and depth-level accuracy
(MAE, RMSE, PSNR, SSIM), point-cloud-level fidelity (e.g., Hausdorff distance), and
network efficiency (e.g., parameter count, FLOPs, inference time). Therefore, reporting
such a comprehensive set of metrics is recommended to ensure more robust and holistic
performance evaluation across different approaches.
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Figure 17. Evaluation metrics for deep learning-enabled FPP. (a) Quantitative results over test
scenes under different conditions such as isolated object, dark lighting, and textured background.
(b) Standard object test including 3D reconstruction and error histogram analysis. (c) Generalization
validation on challenging objects like metallic surfaces. (d) Unified quantitative metrics involving
phase/depth accuracy, point cloud accuracy, and network complexity.

In FPP systems, quantitative evaluation of point clouds has long been relatively weak.
As prediction accuracy improves, relying solely on visual artifacts is no longer sufficient
to comprehensively reflect model performance. Thus, it is suggested to incorporate point
cloud-specific evaluation metrics such as the Hausdorff distance [178] and Iterative Clos-
est Point (ICP) registration error [179], which accurately measure geometric deviations
between predicted and ground-truth point clouds. Moreover, as shown in Figure 17b,
standard objects (e.g., spheres and planes) are widely used for systematic comparison
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across methods due to their geometric simplicity and clearly quantifiable errors, making
them valuable benchmarks.

Finally, when reporting overall performance, in addition to traditional accuracy met-
rics, efficiency-related metrics such as the number of network parameters (Parameters),
floating-point operations per second (FLOPs), training time, and inference time should also
be included. It is worth noting that parameter count and FLOPs do not always directly
correlate with inference speed. Therefore, it is recommended to comprehensively report all
relevant metrics to provide a more complete basis for evaluating the trade-offs between
accuracy and efficiency.

6. Challenges and Perspectives

In the development of fringe-structured-light systems, addressing the challenges
of reconstruction under complex environments and dynamic scenes has always been
a central research focus. In recent years, as application demands continue to expand,
fringe-structured-light systems are required not only to maintain measurement accuracy
in high dynamic range (HDR) scenarios but also to achieve stable reconstruction under
conditions such as limited depth of field and rapid target motion [179-182]. Meanwhile,
real-time monitoring capabilities have become increasingly essential in fields like intelligent
manufacturing and industrial inspection. As deep learning emerges as a key tool for
enhancing system performance, issues related to its interpretability and transferability have
also attracted growing attention.

6.1. HDR Issues

In complex surface 3D measurement tasks, high dynamic range (HDR) imaging poses
a significant challenge. Highly reflective regions are prone to image saturation, while
low-reflectivity areas may suffer from low signal-to-noise ratios (SNR), leading to unstable
phase estimation and, consequently, degraded 3D reconstruction accuracy. Traditional
FPP systems often struggle to achieve ideal imaging quality across all regions under such
conditions using a single fixed exposure setting [183].

In recent years, deep learning has offered new solutions for 3D measurement under
HDR conditions. Zhang et al. were the first to introduce deep neural networks into HDR
3D reconstruction, using the results of a 12-step phase-shifting method as supervision to
train a 3-step model, thereby increasing the dynamic range by 4.8 times [184]. However,
the 12-step images still suffer from saturation in highly reflective regions, limiting their
validity as ground truth. Subsequent studies have shown that deep models can learn the
mapping between fringe patterns and phase, significantly reducing the number of required
projections and enabling fast reconstruction under HDR conditions [184-187].

Nevertheless, deep learning models are highly sensitive to the distribution of training
data, and publicly available HDR 3D reconstruction datasets remain extremely scarce. For
example, Y-FFCNet, trained on simulated data, achieved separation of specular and diffuse
reflections in highly reflective regions, significantly improving reconstruction performance
for metallic objects [188]. However, accurate decoupling of reflection components remains
challenging, and the generalization gap caused by synthetic data has yet to be resolved.
Liu et al. proposed the SP-CAN method, which simulates a multi-exposure process using
a neural network to enhance feature reconstruction in HDR regions [189]. However, its
reliance on low-exposure fringe images may lead to insufficient feature representation, and
the optimal exposure time still requires manual tuning.

In summary, future research should focus on building HDR 3D measurement datasets
that better reflect real-world scenarios to improve model robustness to illumination and
reflectivity variations. Moreover, the development of self-supervised or weakly supervised
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learning strategies can help reduce reliance on high-quality ground truth data. Lastly,
designing network architectures with improved interpretability and generalizability will
be essential to promote the practical deployment of HDR 3D reconstruction technologies.

6.2. Extended Depth of Field

In structured-light 3D measurement systems, extending the depth of field (DOF)
is a key research direction for enhancing system adaptability and reconstruction accu-
racy. In practical scenarios, variations in object height often exceed the system'’s focal
range, leading to severely blurred regions that cause phase errors and reconstruction
deviations—commonly referred to as the “local blur problem” [190].

To tackle the challenges posed by limited DOF, traditional approaches have proposed
a variety of strategies to improve robustness. For instance, Drouin et al. [191] introduced
an iterative deconvolution-based pattern segmentation method that enhances image sharp-
ness to detect blurred edges. In their subsequent work [192], they estimated spatially
varying point spread functions (PSFs) by projecting dot patterns within a calibrated mea-
surement volume, enabling more accurate modeling and compensation of blur effects.
Chen et al. [193] proposed a technique that combines polarization with high-frequency
fringe patterns to reduce errors caused by subsurface scattering, and further developed
the Modulated PS method [194], which enables 3D reconstruction without explicitly sepa-
rating direct and indirect light components. Additional strategies, such as MicroP$S [195],
unstructured-light techniques [196], and embedded phase-shifting methods [197], aim to
suppress the influence of indirect light through high-frequency encoding, thereby enhanc-
ing the system’s ability to manage blurred regions.

While these methods have mitigated defocus-related issues to some extent, they
largely remain within the realm of traditional image processing paradigms, relying heavily
on pattern design and physical modeling. They have yet to fully exploit the powerful
feature extraction and nonlinear modeling capabilities offered by deep learning. Future
research should explore the integration of deep neural networks to build end-to-end
frameworks for blur region detection and error correction. In particular, a jointly optimized
approach that combines high-frequency pattern design, PSF estimation in blurred areas,
and end-to-end phase error correction could substantially improve the robustness and
accuracy of structured-light systems under conditions of large depth-of-field and complex
surface geometries.

6.3. High-Speed Deployment and Real-Time Reconstruction

In high-speed dynamic or transient measurement scenarios, the performance of FPP
is constrained by the refresh rates of projection and acquisition hardware, as well as the
computational efficiency of reconstruction algorithms [198]. These limitations significantly
hinder its ability to meet the demands of real-time 3D reconstruction tasks that require high
speed, high accuracy, and low latency. Traditional FPP methods typically rely on capturing
multiple 8-bit sinusoidal fringe patterns to extract absolute phase information. However, the
system’s frame rate is often limited by the flipping speed of digital micromirror devices and
the camera’s exposure time, making high-frame-rate operation difficult to achieve [199,200].

To overcome these constraints, researchers have proposed the binary defocusing tech-
nique, which generates quasi-sinusoidal fringe patterns by projecting slightly defocused
1-bit binary images [201-203]. This approach fully leverages the high-speed switching
capability of DMDs, enabling fringe projection rates in the kilohertz range. Moreover, by
reducing the imaging window, high-speed cameras can achieve acquisition rates of up to
100,000 frames per second. When combined with deep learning methods—such as image
super-resolution and single-frame phase decoding—this enables ultra-fast single-frame 3D



Sensors 2025, 25, 6296

38 of 48

imaging, as demonstrated in the SSSR-FPP method [204]. This line of research indicates
that deep learning has great potential to significantly accelerate imaging speed without
compromising measurement accuracy.

Despite these promising advances, deep learning-integrated FPP systems still face
several challenges in practical deployment. Future research should focus on lightweight
network architecture design, platform-aware optimization strategies, and multi-task end-
to-end integration. Additionally, system-level co-design of hardware and software will be
essential for developing real-time 3D reconstruction systems that are high in accuracy, low
in latency, and energy-efficient for real-world applications.

6.4. Transferability, Generalization, and Interpretability of Deep Learning Methods

Although traditional structured-light systems offer strong customization and high
measurement accuracy, they often rely on fixed configuration parameters, limiting their
adaptability across different devices and environments [205,206]. This limitation has driven
researchers to explore transfer learning strategies [207] to bridge the gap between simulation
and reality and to achieve cross-configuration generalization. Currently, such methods
are primarily applied in speckle-based structured-light systems or downstream tasks
like eye tracking [208], while their application in line-structured-light 3D measurement
remains underexplored.

In recent years, the emergence of large-scale models has significantly improved gener-
alization and transfer capabilities across various fields, providing new opportunities for
the intelligent development of FPP systems. By introducing foundation models or develop-
ing domain-adaptive fine-tuning mechanisms tailored to FPP data characteristics, future
systems are expected to exhibit enhanced robustness and accuracy in unseen scenarios
while reducing the need for repeated task-specific training, thereby enabling more efficient
cross-task adaptation.

At the same time, deep learning has reshaped the development landscape of single-
frame FPP systems, often surpassing traditional methods in terms of speed, accuracy, and
robustness—particularly in dynamic scenes and complex surfaces. However, the physical
mechanisms underlying these advantages remain poorly understood, and deep networks
are still largely treated as “black boxes.” As a result, improving the interpretability of
deep models has become a research priority. Some studies have explored methods such as
feature map visualization [209] to reveal how networks extract and process complex fringe
patterns, aiming to shift from “black box” to “gray box” modeling and improve trans-
parency. Nevertheless, systematic investigations into interpretability methods within FPP
systems remain limited, and their impact on model reliability, tunability, and generalization
performance still demands further exploration.

Future research should focus on building diverse, high-quality cross-domain FPP
datasets and introducing few-shot learning and domain adaptation strategies to improve
transferability and generalization. In parallel, efforts to enhance model interpretabil-
ity—such as visualizing internal features—are essential for uncovering model mechanisms
and improving system transparency, reliability, and controllability.

7. Conclusions

As application demands continue to grow, structured-light 3D reconstruction sys-
tems are evolving toward higher precision, greater portability, enhanced intelligence, and
stronger robustness. This paper provides a systematic comparison between the two main-
stream methods, namely FPP and PMD, from the perspective of system architecture and
fundamental principles. It highlights their differences and complementary advantages in
terms of measurement mechanisms, applicable surface types, modeling strategies, and error
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control approaches. At the same time, MEMS-based micromirror scanning technology is
becoming a promising direction for next-generation structured-light systems because of its
lens-free configuration, large depth of field, compact structure, and high-speed operation.
For system calibration, unified models, isophase surface models, and phase-angle models
specifically developed for MEMS systems provide effective tools for modeling nonlinear
optical paths. To mitigate issues such as projection errors, light source fluctuations, and
high-order harmonic distortions, researchers have introduced various compensation strate-
gies at both the hardware and algorithmic levels, significantly improving the robustness of
the overall system.

The integration of deep learning has introduced a paradigm shift in structured-light
measurement. Whether for single-frame reconstruction or multi-frame nonlinear mapping,
deep neural networks consistently outperform traditional algorithms. Advances in network
architecture, incorporation of physical priors, input feature engineering, and evaluation
metric design have opened new paths for accurate reconstruction under complex scenes.

Looking ahead, structured-light 3D reconstruction still faces several challenges and
opportunities. At the hardware level, improvements are required in the precision, power
stability, and cost efficiency of MEMS projectors. At the modeling level, it is important
to integrate geometric priors, optical imperfections, and learning-based approaches to
enhance system adaptability across different platforms and complex environments. At the
intelligence level, further exploration of deep learning techniques is needed in areas such
as few-shot learning, weak supervision, and multimodal fusion, with a particular focus on
developing end-to-end models that incorporate physical constraints.

Moreover, to facilitate the practical deployment of structured-light systems in in-
dustrial and service settings, building generalized and portable evaluation datasets and
performance metrics will be a crucial step. In summary, structured-light 3D reconstruction
is undergoing a pivotal transformation through the deep integration of traditional methods
and intelligent technologies, and is expected to play an increasingly important role in
fields such as precision manufacturing, soft robotics, cultural preservation, and intelligent
interaction. We believe this review can serve as a valuable reference for researchers and
engineers, providing both a clear understanding of current advances and a forward-looking
perspective on future development in the field.
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FrpP Fringe Projection Profilometry
PMD Phase Measuring Deflectometry
DLP Digital Light Processing

TPU Temporal-Phase Unwrapping
SPU Spatial-Phase Unwrapping

LCD Liquid-Crystal Display

DMD  Digital Micromirror Device
MEMS  Micro-Electro-Mechanical Systems
CMM  Coordinate Measuring Machines
SOTA  State-of-the-Art

CNNs  Convolutional Neural Networks
MAE Mean Absolute Error

MSE Mean Squared Error

RMSE  Root Mean Square Error

PSNR  Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index Measure
HDR High Dynamic Range

SNR Signal-to-Noise Ratios

DOF Depth of Field

PSF Point Spread Function

References

1.  Salvi, J.; Fernandez, S.; Pribanic, T.; Llado, X. A state of the art in structured light patterns for surface profilometry. Pattern
Recognit. 2010, 43, 2666—-2680. https://doi.org/10.1016/j.patcog.2010.03.004.

2. Van der Jeught, S.; Dirckx, J.J. Real-time structured light profilometry: A review. Opt. Lasers Eng. 2016, 87, 18-31. https:
//doi.org/10.1016/j.optlaseng.2016.01.011.

3. Lv, S.; Kemao, Q. Modeling the measurement precision of fringe projection profilometry. Light. Sci. Appl. 2023, 12, 257.
https://doi.org/10.1038 /s41377-023-01294-0.

4. Zhou, Q.; Qiao, X,; Ni, K,; Li, X.; Wang, X. Depth detection in interactive projection system based on one-shot black-and-white
stripe pattern. Opt. Express 2017, 25, 5341-5351. https://doi.org/10.1364/0e.25.005341.

5. Han, M,; Xing, Y.; Wang, X.; Li, X. Projection superimposition for the generation of high-resolution digital grating. Opt. Lett. 2024,
49, 4473-4476. https://doi.org/10.1364/0OL.531846.

6. Juarez-Salazar, R.; Esquivel-Hernandez, S.; Diaz-Ramirez, V.H. Optical Fringe Projection: A Straightforward Approach to 3D
Metrology. Metrology 2025, 5,47. https://doi.org/10.3390/ metrology5030047.

7. Gao, W,; Kim, S.W,; Bosse, H.; Haitjema, H.; Chen, Y.; Lu, X.; Knapp, W.; Weckenmann, A ; Estler, W.; Kunzmann, H. Measurement
technologies for precision positioning. CIRP Ann. 2015, 64, 773-796. https://doi.org/10.1016/j.cirp.2015.05.009.

8.  Li, X;; Shimizu, Y; Ito, T.; Cai, Y.; Ito, S.; Gao, W. Measurement of six-degree-of-freedom planar motions by using a multiprobe
surface encoder. Opt. Eng. 2014, 53, 122405. http://dx.doi.org/10.1117/1.0E.53.12.122405.

9.  Wu,J;Hong, Y,; Shin, D.W,; Sato, R.; Quan, L.; Matsukuma, H.; Gao, W. On-machine calibration of pitch deviations of a linear
scale grating by using a differential angle sensor. Int. . Autom. Technol. 2024, 18, 4-10. https://doi.org/10.20965/ijat.2024.p0004.

10. Gao, W,; Kim, S.; Bosse, H.; Minoshima, K. Dimensional metrology based on ultrashort pulse laser and optical frequency comb.
CIRP Ann. 2025, 74, 993-1018. https:/ /doi.org/10.1016/j.cirp.2025.04.094.

11. Ding, D.; Ding, W.; Huang, R.; Fu, Y;; Xu, E. Research progress of laser triangulation on-machine measurement technology for
complex surface: A review. Measurement 2023, 216, 113001. https://doi.org/10.1016/j.measurement.2023.113001.

12.  Chen, R;; Li, Y;; Xue, G.; Tao, Y,; Li, X. Laser triangulation measurement system with Scheimpflug calibration based on the Monte
Carlo optimization strategy. Opt. Express 2022, 30, 25290-25307. https://doi.org/10.1364/OE.457894.

13.  Boesl, U. Time-of-flight mass spectrometry: Introduction to the basics. Mass Spectrom. Rev. 2017, 36, 86-109. https://doi.org/10.1
002/mas.21520.

14. Hansard, M,; Lee, S.; Choi, O.; Horaud, R.P. Time-of-Flight Cameras: Principles, Methods and Applications; Springer Science &
Business Media: New York, NY, USA, 2012.

15. Ma, R; Li, C.; Xing, Y.; Wang, S.; Ma, R.; Feng, F; Qian, X.; Wang, X.; Li, X. Defect focused Harris3D & boundary fine-

tuning optimized region growing: Lithium battery pole piece defect segmentation. Measurement 2025, 242, 116147. https:
//doi.org/10.1016/j.measurement.2024.116147.


https://doi.org/10.1016/j.patcog.2010.03.004
https://doi.org/10.1016/j.optlaseng.2016.01.011
https://doi.org/10.1016/j.optlaseng.2016.01.011
https://doi.org/10.1038/s41377-023-01294-0
https://doi.org/10.1364/oe.25.005341
https://doi.org/10.1364/OL.531846
https://doi.org/10.3390/metrology5030047
https://doi.org/10.1016/j.cirp.2015.05.009
http://dx.doi.org/10.1117/1.OE.53.12.122405
https://doi.org/10.20965/ijat.2024.p0004
https://doi.org/10.1016/j.cirp.2025.04.094
https://doi.org/10.1016/j.measurement.2023.113001
https://doi.org/10.1364/OE.457894
https://doi.org/10.1002/mas.21520
https://doi.org/10.1002/mas.21520
https://doi.org/10.1016/j.measurement.2024.116147
https://doi.org/10.1016/j.measurement.2024.116147

Sensors 2025, 25, 6296 41 of 48

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Li, J.; Zhou, Q.; Li, X.; Chen, R;; Ni, K. An improved low-noise processing methodology combined with PCL for industry
inspection based on laser line scanner. Sensors 2019, 19, 3398. https:/ /doi.org/10.3390/519153398.

Chen, R.; Li, X.; Wang, X.; Li, J.; Xue, G.; Zhou, Q.; Ni, K. A planar pattern based calibration method for high precision structured
laser triangulation measurement. In Proceedings of the Optical Metrology and Inspection for Industrial Applications VI. SPIE,
Hangzhou, China, 20-23 October 2019; Volume 11189, pp. 212-218. https://doi.org/10.1117/12.2537757.

Han, M.; Wang, X.; Li, X. Fast and accurate fringe projection based on a MEMS micro-vibration mirror. In Proceedings of the
Optical Metrology and Inspection for Industrial Applications XI. SPIE, Nantong, China, 12-14 October 2024; Volume 13241,
pp. 12-19. https://doi.org/10.1117/12.3036360.

Almaraz-Cabral, C.C.; Gonzalez-Barbosa, ].J.; Villa, J.; Hurtado-Ramos, ].B.; Ornelas-Rodriguez, FJ.; Cordova-Esparza, D.M.
Fringe projection profilometry for panoramic 3D reconstruction. Opt. Lasers Eng. 2016, 78, 106-112. https://doi.org/10.1016/j.
optlaseng.2015.10.004.

Nguyen, H.; Liang, J.; Wang, Y.; Wang, Z. Accuracy assessment of fringe projection profilometry and digital image correlation
techniques for three-dimensional shape measurements. |. Phys. Photonics 2021, 3, 014004. https://doi.org/10.1088/2515-7647/
abcbe4.

Muyshondt, P.G.; Van der Jeught, S.; Dirckx, J.J. A calibrated 3D dual-barrel otoendoscope based on fringe-projection profilometry.
Opt. Lasers Eng. 2022, 149, 106795. https://doi.org/10.1016/j.optlaseng.2021.106795.

Stavroulakis, P.; Leach, R.K. Invited review article: Review of post-process optical form metrology for industrial-grade metal
additive manufactured parts. Rev. Sci. Instrum. 2016, 87, 041101. https://doi.org/10.1063/1.4944983.

Forbes, A.; De Oliveira, M.; Dennis, M.R. Structured light. Nat. Photonics 2021, 15, 253-262. https://doi.org/10.1038/s41566-021
-00780-4.

Gibelli, D.; Dolci, C.; Cappella, A.; Sforza, C. Reliability of optical devices for three-dimensional facial anatomy description: A
systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 2020, 49, 1092-1106. https://doi.org/10.1016/j.ijom.2019.10.019.
Antonacci, D.; Caponio, V.C.A.; Troiano, G.; Pompeo, M.G.; Gianfreda, F.; Canullo, L. Facial scanning technologies in the
era of digital workflow: A systematic review and network meta-analysis. ]. Prosthodont. Res. 2022, 67, 321-336. https:
//doi.org/10.2186/jpr.jpr_d_22_00107.

Zong, Y.; Duan, M.; Yu, C; Li, ]. Robust phase unwrapping algorithm for noisy and segmented phase measurements. Opt. Express
2021, 29, 24466-24485. https://doi.org/10.1364/OE.432671.

Rosell-Polo, J.R.; Cheein, F.A.; Gregorio, E.; Anddgjar, D.; Puigdomeénech, L.; Masip, J.; Escola, A. Advances in structured light
sensors applications in precision agriculture and livestock farming. Adv. Agron. 2015, 133, 71-112. https://doi.org/10.1016/bs.
agron.2015.05.002.

Burke, J.; Pak, A.; Hofer, S.; Ziebarth, M.; Roschani, M.; Beyerer, J. Deflectometry for specular surfaces: An overview. Adv. Opt.
Technol. 2023, 12, 1237687. https:/ /doi.org/10.3389/A0OT.2023.1237687.

Rolland, ].P; Davies, M.A.; Suleski, T.].; Evans, C.; Bauer, A.; Lambropoulos, ].C.; Falaggis, K. Freeform optics for imaging. Optica
2021, 8, 161-176. https:/ /doi.org/10.1364/OPTICA.413762.

Wang, Y.; Liu, L.; Wy, J.; Chen, X.; Wang, Y. Spatial binary coding method for stripe-wise phase unwrapping. Appl. Opt. 2020,
59, 4279-4285. https://doi.org/10.1364/A0.391387.

Yang, S.P,; Seo, Y.H.; Kim, ].B.; Kim, H.; Jeong, K.H. Optical MEMS devices for compact 3D surface imaging cameras. Micro Nano
Syst. Lett. 2019, 7, 8. https://doi.org/10.1186/s40486-019-0087-4.

Han, M,; Lei, F; Shi, W.; Lu, S.; Li, X. Uniaxial MEMS-based 3D reconstruction using pixel refinement. Opt. Express 2022,
31,536-554. https://doi.org/10.1364/0e.479545.

Moller, T.; Kraft, H.; Frey, J.; Albrecht, M.; Lange, R. Robust 3D Measurement with PMD Sensors; Range Imaging Day, Ziirich,
Switzerland; Springer Business Media: New York, NY, USA, 2005; Volume 7, p. 8.

Xu, Y,; Gao, F; Jiang, X. A brief review of the technological advancements of phase measuring deflectometry. PhotoniX 2020, 1, 14.
https://doi.org/10.1186 /s43074-020-00015-9.

He, X.; Kemao, Q. A comparative study on temporal phase unwrapping methods in high-speed fringe projection profilometry.
Opt. Lasers Eng. 2021, 142, 106613. https://doi.org/10.1016/j.optlaseng.2021.106613.

Ly, S,; Tang, D.; Zhang, X.; Yang, D.; Deng, W.; Kemao, Q. Fringe projection profilometry method with high efficiency, precision,
and convenience: Theoretical analysis and development. Opt. Express 2022, 30, 33515-33537. https://doi.org/10.1364/0e.467502.
Bai, Y.; Zhang, Z.; Fu, S.; Zhao, H.; Ni, Y;; Gao, N.; Meng, Z.; Yang, Z.; Zhang, G.; Yin, W. Recent progress of full-field three-
dimensional shape measurement based on phase information. Nanomanuf. Metrol. 2024, 7, 9. https:/ /doi.org/10.1007 /s41871-0
24-00227-8.

Kulkarni, R.; Rastogi, P. Fringe denoising algorithms: A review. Opt. Lasers Eng. 2020, 135, 106190. https://doi.org/10.1016/.
optlaseng.2020.106190.

Liu, H,; Yan, N.; Shao, B.; Yuan, S.; Zhang, X. Deep learning in fringe projection: A review. Neurocomputing 2024, 581, 127493.
https://doi.org/10.1016/j.neucom.2024.127493.


https://doi.org/10.3390/s19153398
https://doi.org/10.1117/12.2537757
https://doi.org/10.1117/12.3036360
https://doi.org/10.1016/j.optlaseng.2015.10.004
https://doi.org/10.1016/j.optlaseng.2015.10.004
https://doi.org/10.1088/2515-7647/abcbe4
https://doi.org/10.1088/2515-7647/abcbe4
https://doi.org/10.1016/j.optlaseng.2021.106795
https://doi.org/10.1063/1.4944983
https://doi.org/10.1038/s41566-021-00780-4
https://doi.org/10.1038/s41566-021-00780-4
https://doi.org/10.1016/j.ijom.2019.10.019
https://doi.org/10.2186/jpr.jpr_d_22_00107
https://doi.org/10.2186/jpr.jpr_d_22_00107
https://doi.org/10.1364/OE.432671
https://doi.org/10.1016/bs.agron.2015.05.002
https://doi.org/10.1016/bs.agron.2015.05.002
https://doi.org/10.3389/AOT.2023.1237687
https://doi.org/10.1364/OPTICA.413762
https://doi.org/10.1364/AO.391387
https://doi.org/10.1186/s40486-019-0087-4
https://doi.org/10.1364/oe.479545
https://doi.org/10.1186/s43074-020-00015-9
https://doi.org/10.1016/j.optlaseng.2021.106613
https://doi.org/10.1364/oe.467502
https://doi.org/10.1007/s41871-024-00227-8
https://doi.org/10.1007/s41871-024-00227-8
https://doi.org/10.1016/j.optlaseng.2020.106190
https://doi.org/10.1016/j.optlaseng.2020.106190
https://doi.org/10.1016/j.neucom.2024.127493

Sensors 2025, 25, 6296 42 of 48

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.
64.

Burnes, S.; Villa, J.; Moreno, G.; de la Rosa, 1.; Alaniz, D.; Gonzélez, E. Temporal fringe projection profilometry: Modified
fringe-frequency range for error reduction. Opt. Lasers Eng. 2022, 149, 106788. https://doi.org/10.1016/j.optlaseng.2021.106788.
Lei, F.; Ma, R.; Li, X. Use of phase-angle model for full-field 3d reconstruction under efficient local calibration. Sensors 2024,
24,2581. https:/ /doi.org/10.3390/s24082581.

Kim, J.; Lee, J.; Park, Y.H. Highly accurate three-dimensional measurement of large structures using multiple stereo vision with
improved two-step calibration algorithm. Measurement 2024, 234, 114886. https://doi.org/10.1016/j.measurement.2024.114886.
Zhou, W,; Jia, Y.; Fan, L.; Fan, G.; Lu, F. A MEMS-based real-time structured light 3-D measuring architecture on FPGA. |. Real-Time
Image Process. 2024, 21, 98. https://doi.org/10.1007 /s11554-024-01477-x.

Wang, H.; Zhang, C.; Qian, X.; Wang, X.; Gui, W.; Gao, W.; Liang, X.; Li, X. HDRSL Net for Accurate High Dynamic Range
Imaging-based Structured Light 3D Reconstruction. IEEE Trans. Image Process. 2025, 34, 5486-5499. https://doi.org/10.1109/TIP.
2025.3599934.

Srinivasan, V.; Liu, H.C.; Halioua, M. Automated phase-measuring profilometry of 3-D diffuse objects. Appl. Opt. 1984,
23,3105-3108. https://doi.org/10.1364/A0.23.003105.

Su, X.Y.; Von Bally, G.; Vukicevic, D. Phase-stepping grating profilometry: Utilization of intensity modulation analysis in complex
objects evaluation. Opt. Commun. 1993, 98, 141-150. https://doi.org/10.1016/0030-4018(93)90773-X.

Ishikawa, K.; Yatabe, K.; Ikeda, Y.; Oikawa, Y.; Onuma, T.; Niwa, H.; Yoshii, M. Interferometric imaging of acoustical phenomena
using high-speed polarization camera and 4-step parallel phase-shifting technique. In Proceedings of the Selected Papers from
the 31st International Congress on High-Speed Imaging and Photonics, SPIE, Osaka, Japan, 7-10 November 2017; Volume 10328,
pp- 93-99. https:/ /doi.org/10.1117/12.2269940.

Jaganathan, K.; Eldar, Y.C.; Hassibi, B. Phase retrieval: An overview of recent developments. In Optical Compressive Imaging; CRC
Press: Boca Raton, FL, USA, 2016; pp. 279-312. https:/ /doi.org/10.1201/9781315371474.

Su, X.; Chen, W. Fourier transform profilometry: A review. Opt. Lasers Eng. 2001, 35, 263-284. https://doi.org/10.1016/50143-81
66(01)00023-9.

Zhang, Z.; Jing, Z.; Wang, Z.; Kuang, D. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform
methods for phase calculation at discontinuities in fringe projection profilometry. Opt. Lasers Eng. 2012, 50, 1152-1160.
https://doi.org/10.1016/j.optlaseng.2012.03.004.

Balasubramaniam, B.; Li, J.; Liu, L.; Li, B. 3d imaging with fringe projection for food and agricultural applications—A tutorial.
Electronics 2023, 12, 859. https:/ /doi.org/10.3390/ electronics12040859.

Saldner, H.O.; Huntley, ]. M. Temporal phase unwrapping: Application to surface profiling of discontinuous objects. Appl. Opt.
1997, 36, 2770-2775. https://doi.org/10.1364/A0.36.002770.

Sansoni, G.; Carocci, M.; Rodella, R. Three-dimensional vision based on a combination of gray-code and phase-shift light
projection: Analysis and compensation of the systematic errors. Appl. Opt. 1999, 38, 6565-6573. https://doi.org/10.1364/A0.38
.006565.

Zhong, J.; Zhang, Y. Absolute phase-measurement technique based on number theory in multifrequency grating projection
profilometry. Appl. Opt. 2001, 40, 492-500. https://doi.org/10.1364/A0.40.000492.

Hung, K.M.; Yamada, T. Phase unwrapping by regions using least-squares approach. Opt. Eng. 1998, 37, 2965-2970. https:
//doi.org/10.1117/1.601884.

Zebker, H.A.; Lu, Y. Phase unwrapping algorithms for radar interferometry: Residue-cut, least-squares, and synthesis algorithms.
J. Opt. Soc. Am. A 1998, 15, 586-598. https://doi.org/10.1364/JOSAA.15.000586.

McKilliam, R.G.; Quinn, B.G.; Clarkson, I.V.L.; Moran, B.; Vellambi, B.N. Polynomial phase estimation by least squares phase
unwrapping. IEEE Trans. Signal Process. 2014, 62, 1962-1975. https:/ /doi.org/10.1109/TSP.2014.2306178.

Juarez-Salazar, R.; Robledo-Sanchez, C.; Guerrero-Sanchez, F. Phase-unwrapping algorithm by a rounding-least-squares approach.
Opt. Eng. 2014, 53, 024102. https://doi.org/10.1117/1.0E.53.2.024102.

Li, Y,; Zhang, Y.; Jia, D.; Zhang, M.; Ji, X.; Li, Y.; Wu, Y. Experimental Study on the Reconstruction of a Light Field through
a Four-Step Phase-Shift Method and Multiple Improvement Iterations of the Least Squares Method for Phase Unwrapping.
Photonics 2024, 11, 716. https://doi.org/10.3390/photonics11080716.

Asundi, A.; Wensen, Z. Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill. Appl. Opt. 1998, 37, 5416-5420.
https://doi.org/10.1364/ A0.37.005416.

Su, X.; Chen, W. Reliability-guided phase unwrapping algorithm: A review. Opt. Lasers Eng. 2004, 42, 245-261. https:
//doi.org/10.1016/j.optlaseng.2003.11.002.

Goldstein, RM.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1988,
23,713-720. https://doi.org/10.1029 /RS023i004p00713.

Huntley, ]. Noise-immune phase unwrapping algorithm. Appl. Opt. 1989, 28, 3268-3270. https://doi.org/10.1364/A0.28.003268.
Zheng, D.; Da, F. A novel algorithm for branch cut phase unwrapping. Opt. Lasers Eng. 2011, 49, 609-617. https://doi.org/10.101
6/j.optlaseng.2011.01.017.


https://doi.org/10.1016/j.optlaseng.2021.106788
https://doi.org/10.3390/s24082581
https://doi.org/10.1016/j.measurement.2024.114886
https://doi.org/10.1007/s11554-024-01477-x
https://doi.org/10.1109/TIP.2025.3599934
https://doi.org/10.1109/TIP.2025.3599934
https://doi.org/10.1364/AO.23.003105
https://doi.org/10.1016/0030-4018(93)90773-X
https://doi.org/10.1117/12.2269940
https://doi.org/10.1201/9781315371474
https://doi.org/10.1016/S0143-8166(01)00023-9
https://doi.org/10.1016/S0143-8166(01)00023-9
https://doi.org/10.1016/j.optlaseng.2012.03.004
https://doi.org/10.3390/electronics12040859
https://doi.org/10.1364/AO.36.002770
https://doi.org/10.1364/AO.38.006565
https://doi.org/10.1364/AO.38.006565
https://doi.org/10.1364/AO.40.000492
https://doi.org/10.1117/1.601884
https://doi.org/10.1117/1.601884
https://doi.org/10.1364/JOSAA.15.000586
https://doi.org/10.1109/TSP.2014.2306178
https://doi.org/10.1117/1.OE.53.2.024102
https://doi.org/10.3390/photonics11080716
https://doi.org/10.1364/AO.37.005416
https://doi.org/10.1016/j.optlaseng.2003.11.002
https://doi.org/10.1016/j.optlaseng.2003.11.002
https://doi.org/10.1029/RS023i004p00713
https://doi.org/10.1364/AO.28.003268
https://doi.org/10.1016/j.optlaseng.2011.01.017
https://doi.org/10.1016/j.optlaseng.2011.01.017

Sensors 2025, 25, 6296 43 of 48

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Gdeisat, M.A.; Burton, D.R.; Lilley, F.; Arevalillo-Herrdez, M.; Ammous, M.M. Aiding phase unwrapping by increasing the
number of residues in two-dimensional wrapped-phase distributions. Appl. Opt. 2015, 54, 10073-10078. https://doi.org/10.136
4/A0.54.010073.

Du, G.; Wang, M.; Zhou, C.; Si, S.; Li, H.; Lei, Z; Li, Y. A simple spatial domain algorithm to increase the residues of wrapped
phase maps. J. Mod. Opt. 2017, 64, 231-237. https:/ /doi.org/10.1080/09500340.2016.1229502.

Cheng, N.J.; Su, WH. Phase-shifting projected fringe profilometry using binary-encoded patterns. Photonics 2021, 8, 362.
https:/ /doi.org/10.3390/ photonics8090362.

Xie, X.; Tian, X.; Shou, Z.; Zeng, Q.; Wang, G.; Huang, Q.; Qin, M.; Gao, X. Deep learning phase-unwrapping method based on
adaptive noise evaluation. Appl. Opt. 2022, 61, 6861-6870. https://doi.org/10.1364/A0.464585.

Yu, J.; Da, . Absolute phase unwrapping for objects with large depth range. IEEE Trans. Instrum. Meas. 2023, 72, 1-10.
https://doi.org/10.1109/TIM.2023.3271764.

Yue, M.; Wang, ].; Zhang, J.; Zhang, Y.; Tang, Y.; Feng, X. Color crosstalk correction for synchronous measurement of full-field
temperature and deformation. Opt. Lasers Eng. 2022, 150, 106878. https://doi.org/10.1016/j.optlaseng.2021.106878.

Li, Z.; Gao, N.; Meng, Z.; Zhang, Z.; Gao, F.; Jiang, X. Aided imaging phase measuring deflectometry based on concave focusing
mirror. Photonics 2023, 10, 519. https://doi.org/10.3390/photonics10050519.

Wang, Y.; Xu, Y.,; Zhang, Z.; Gao, F; Jiang, X. 3D measurement of structured specular surfaces using stereo direct phase
measurement deflectometry. Machines 2021, 9, 170. https://doi.org/10.3390/machines9080170.

Ri, S.; Takimoto, T.; Xia, P; Wang, Q.; Tsuda, H.; Ogihara, S. Accurate phase analysis of interferometric fringes by the
spatiotemporal phase-shifting method. J. Opt. 2020, 22, 105703. https://doi.org/10.1088/2040-8986/abb1d1.

Feng, S.; Zuo, C.; Zhang, L.; Tao, T.; Hu, Y,; Yin, W.; Qian, J.; Chen, Q. Calibration of fringe projection profilometry: A comparative
review. Opt. Lasers Eng. 2021, 143, 106622. https://doi.org/10.1016/j.optlaseng.2021.106622.

Zhang, S.; Yau, S.T. High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method. Opt.
Express 2006, 14, 2644-2649. https://doi.org/10.1364/0e.14.002644.

Zhou, W.S.; Su, X.Y. A direct mapping algorithm for phase-measuring profilometry. J. Mod. Opt. 1994, 41, 89-94. https:
//doi.org/10.1080/09500349414550101.

Huang, L.; Chua, PS.; Asundi, A. Least-squares calibration method for fringe projection profilometry considering camera lens
distortion. Appl. Opt. 2010, 49, 1539-1548. https://doi.org/10.1364/A0.49.001539.

Zhang, Z.; Ma, H.; Zhang, S.; Guo, T.; Towers, C.E.; Towers, D.P. Simple calibration of a phase-based 3D imaging system based on
uneven fringe projection. Opt. Lett. 2011, 36, 627-629. https://doi.org/10.1364/OL.36.000627.

Takeda, M.; Mutoh, K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 1983,
22,3977-3982. https:/ /doi.org/10.1364/A0.22.003977.

Jia, P,; Kofman, J.; English, C. Comparison of linear and nonlinear calibration methods for phase-measuring profilometry. Opt.
Eng. 2007, 46, 043601. https://doi.org/10.1117/1.2721025.

Guo, H.; He, H;; Yu, Y,; Chen, M. Least-squares calibration method for fringe projection profilometry. Opt. Eng. 2005, 44, 033603.
https://doi.org/10.1117/1.1871832.

Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330-1334. Available
online: https:/ /api.semanticscholar.org/CorpusID:1150626 (accessed on 3 October 2025.).

Kafri, O.; Glatt, I. Moiré deflectometry: A ray deflection approach to optical testing. Opt. Eng. 1985, 24, 944-960. https:
//doi.org/10.1117/12.7973607.

Servin, M.; Rodriguez-Vera, R.; Carpio, M.; Morales, A. Automatic fringe detection algorithm used for moiré deflectometry. Appl.
Opt. 1990, 29, 3266-3270. https://doi.org/10.1364/A0.29.003266.

Wang, B.; Luo, X,; Pfeifer, T.; Mischo, H. Moire deflectometry based on Fourier-transform analysis. Measurement 1999, 25, 249-253.
https://doi.org/10.1016/50263-2241(99)00009-3.

Legarda-Saenz, R. Robust wavefront estimation using multiple directional derivatives in moiré deflectometry. Opt. Lasers Eng.
2007, 45, 915-921. https://doi.org/10.1016/j.optlaseng.2007.04.004.

Lee, H.]J.; Kim, S.W. Precision profile measurement of aspheric surfaces by improved Ronchi test. Opt. Eng. 1999, 38, 1041-1047.
https://doi.org/10.1117/1.602147.

Butel, G.P; Smith, G.A.; Burge, ].H. Binary pattern deflectometry. Appl. Opt. 2014, 53, 923-930. https://doi.org/10.1364/A0.53.0
00923.

Schulz, M.; Ehret, G,; Fitzenreiter, A. Scanning deflectometric form measurement avoiding path-dependent angle measurement
errors. J. Eur. Opt. Soc. Rapid Publ. 2010, 5, 10026. Available online: https://api.semanticscholar.org/CorpusID:54037587
(accessed on 1 October 2025).

Hao, Q.; Zhu, Q.; Wang, Y. Deflectometer with synthetically generated reference circle for aspheric surface testing. Opt. Laser
Technol. 2005, 37, 375-380. https:/ /doi.org/10.1016/j.optlastec.2004.05.004.


https://doi.org/10.1364/AO.54.010073
https://doi.org/10.1364/AO.54.010073
https://doi.org/10.1080/09500340.2016.1229502
https://doi.org/10.3390/photonics8090362
https://doi.org/10.1364/AO.464585
https://doi.org/10.1109/TIM.2023.3271764
https://doi.org/10.1016/j.optlaseng.2021.106878
https://doi.org/10.3390/photonics10050519
https://doi.org/10.3390/machines9080170
https://doi.org/10.1088/2040-8986/abb1d1
https://doi.org/10.1016/j.optlaseng.2021.106622
https://doi.org/10.1364/oe.14.002644
https://doi.org/10.1080/09500349414550101
https://doi.org/10.1080/09500349414550101
https://doi.org/10.1364/AO.49.001539
https://doi.org/10.1364/OL.36.000627
https://doi.org/10.1364/AO.22.003977
https://doi.org/10.1117/1.2721025
https://doi.org/10.1117/1.1871832
https://api.semanticscholar.org/CorpusID:1150626
https://doi.org/10.1117/12.7973607
https://doi.org/10.1117/12.7973607
https://doi.org/10.1364/AO.29.003266
https://doi.org/10.1016/S0263-2241(99)00009-3
https://doi.org/10.1016/j.optlaseng.2007.04.004
https://doi.org/10.1117/1.602147
https://doi.org/10.1364/AO.53.000923
https://doi.org/10.1364/AO.53.000923
https://api.semanticscholar.org/CorpusID:54037587
https://doi.org/10.1016/j.optlastec.2004.05.004

Sensors 2025, 25, 6296 44 of 48

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.
107.

108.

109.

110.

111.

112.

113.

114.

115.

van Amstel, W.D.; Baumer, S.M.; Horijon, ].L. Optical figure testing by scanning deflectometry. In Proceedings of the Optical
Manufacturing and Testing III. SPIE, Berlin, Germany, 26-28 May 1999; Volume 3782, pp. 320-327. https://doi.org/10.1117/12.3
60155.

Miks, A.; Novak, J.; Novak, P. Method for reconstruction of shape of specular surfaces using scanning beam deflectometry. Opt.
Lasers Eng. 2013, 51, 867-872. https://doi.org/10.1016/j.optlaseng.2013.02.002.

Huang, L.; Idir, M.; Zuo, C.; Asundi, A. Review of phase measuring deflectometry. Opt. Lasers Eng. 2018, 107, 247-257.
https://doi.org/10.1016/j.optlaseng.2018.03.026.

Haéusler, G.; Richter, C.; Leitz, K.H.; Knauer, M.C. Microdeflectometry—A novel tool to acquire three-dimensional microtopogra-
phy with nanometer height resolution. Opt. Lett. 2008, 33, 396-398. https://doi.org/10.1364/0OL.33.000396.

Liu, Y,; Lehtonen, P,; Su, X. High-accuracy measurement for small scale specular objects based on PMD with illuminated film.
Opt. Laser Technol. 2012, 44, 459-462. https://doi.org/10.1016/j.optlastec.2011.08.012.

Huang, L.; Ng, C.S.; Asundi, A.K. Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry.
Opt. Express 2011, 19, 12809-12814. https://doi.org/10.1364/0e.19.012809.

Li, W,; Sandner, M.; Gesierich, A.; Burke, J. Absolute optical surface measurement with deflectometry. In Proceedings of
the Interferometry XVI: Applications. SPIE, San Diego, CA, USA, 13-15 August 2012; Volume 8494, pp. 129-135. https:
//doi.org/10.1117/12.928690.

Bothe, T.; Li, W.; von Kopylow, C.; Juptner, W.P. High-resolution 3D shape measurement on specular surfaces by fringe reflection.
In Proceedings of the Optical Metrology in Production Engineering. SPIE, Strasbourg, France, 2004; Volume 5457, pp. 411-422.
Available online: https://ui.adsabs.harvard.edu/link_gateway/2004SPIE.5457..411B/do0i:10.1117/12.545987 (accessed on 1
October 2025).

Su, P; Parks, R.; Angel, R.; Wang, L.; Burge, ]. A new test for optical surfaces. Spie Newsroom 2011, 20. https://doi.org/10.1117/2.
1201101.003360.

Xu, X.; Zhang, X.; Niu, Z.; Wang, W.; Zhu, Y.; Xu, M. Self-calibration of in situ monoscopic deflectometric measurement in
precision optical manufacturing. Opt. Express 2019, 27, 7523-7536. https://doi.org/10.1364/0e.27.007523.

Xu, X.; Zhang, X.; Niu, Z.; Wang, W.; Xu, M. Extra-detection-free monoscopic deflectometry for the in situ measurement of
freeform specular surfaces. Opt. Lett. 2019, 44, 4271-4274. https://doi.org/10.1364/OL.44.004271.

Tang, Y,; Su, X; Liu, Y.; Jing, H. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry. Opt.
Express 2008, 16, 15090-15096. https://doi.org/10.1364/OE.16.015090.

Petz, M.; Tutsch, R. Measurement of optically effective surfaces by imaging of gratings. In Proceedings of the Optical
Measurement Systems for Industrial Inspection III. SPIE, Munich, Germany, 23-26 June 2003; Volume 5144, pp. 288-294.
https://doi.org/10.1117/12.500601.

Guo, H.; Feng, P.; Tao, T. Specular surface measurement by using least squares light tracking technique. Opt. Lasers Eng. 2010,
48,166-171. https://doi.org/10.1016/j.optlaseng.2009.04.005.

Li, C,; Li, Y;; Xiao, Y.; Zhang, X.; Tu, D. Phase measurement deflectometry with refraction model and its calibration. Opt. Express
2018, 26, 33510-33522. https://doi.org/10.1364/0e.26.033510.

Ren, H.; Gao, F,; Jiang, X. Iterative optimization calibration method for stereo deflectometry. Opt. Express 2015, 23, 22060-22068.
Xu, Y.;; Gao, F; Zhang, Z.; Jiang, X. A holistic calibration method with iterative distortion compensation for stereo deflectometry.
Opt. Lasers Eng. 2018, 106, 111-118. https://doi.org/10.1016/j.optlaseng.2018.02.018.

Han, M.; Zhang, C.; Zhang, Z.; Li, X. Review of MEMS vibration-mirror-based 3D reconstruction of structured light. Opt. Precis.
Eng. 2025, 33, 1065-1090. https:/ /doi.org/10.37188/OPE.20253307.1065.

Yang, T.; Gu, F. Overview of modulation techniques for spatially structured-light 3D imaging. Opt. Laser Technol. 2024, 169, 110037.
https://doi.org/10.1016/j.optlastec.2023.110037.

Zhang, Q.; Su, X. Research progress of dynamic three-dimensional shape measurement. Laser Optoelectron. Prog. 2013, 50, 4-17.
https://doi.org/10.3788 /LOP50.010001.

Zhang, Z. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques. Opt. Lasers Eng.
2012, 50, 1097-1106. https://doi.org/10.1016/j.optlaseng.2012.01.007.

Yang, D.; Qiao, D.; Xia, C. Curved light surface model for calibration of a structured light 3D modeling system based on striped
patterns. Opt. Express 2020, 28, 33240-33253. https://doi.org/10.1364/OFE.408444.

Yang, S.; Yang, T.; Wu, G.; Wu, Y.; Liu, F. Flexible and fast calibration method for uni-directional multi-line structured light system.
Opt. Lasers Eng. 2023, 164, 107525. https://doi.org/10.1016/j.optlaseng.2023.107525.

Zhang, S. Flexible and high-accuracy method for uni-directional structured light system calibration. Opt. Lasers Eng. 2021,
143,106637. https:/ /doi.org/10.1016/j.optlaseng.2021.106637.

Yang, Y.; Miao, Y.; Liu, X.; Pedrini, G.; Tang, Q.; Osten, W.; Peng, X. Intrinsic parameter-free calibration of FPP using a ray phase
mapping model. Opt. Lett. 2022, 47, 3564-3567. https://doi.org/10.1364/01.462504.


https://doi.org/10.1117/12.360155
https://doi.org/10.1117/12.360155
https://doi.org/10.1016/j.optlaseng.2013.02.002
https://doi.org/10.1016/j.optlaseng.2018.03.026
https://doi.org/10.1364/OL.33.000396
https://doi.org/10.1016/j.optlastec.2011.08.012
https://doi.org/10.1364/oe.19.012809
https://doi.org/10.1117/12.928690
https://doi.org/10.1117/12.928690
https://ui.adsabs.harvard.edu/link_gateway/2004SPIE.5457..411B/doi:10.1117/12.545987
https://doi.org/10.1117/2.1201101.003360
https://doi.org/10.1117/2.1201101.003360
https://doi.org/10.1364/oe.27.007523
https://doi.org/10.1364/OL.44.004271
https://doi.org/10.1364/OE.16.015090
https://doi.org/10.1117/12.500601
https://doi.org/10.1016/j.optlaseng.2009.04.005
https://doi.org/10.1364/oe.26.033510
https://doi.org/10.1016/j.optlaseng.2018.02.018
https://doi.org/10.37188/OPE.20253307.1065 
https://doi.org/10.1016/j.optlastec.2023.110037
https://doi.org/10.3788/LOP50.010001
https://doi.org/10.1016/j.optlaseng.2012.01.007
https://doi.org/10.1364/OE.408444
https://doi.org/10.1016/j.optlaseng.2023.107525
https://doi.org/10.1016/j.optlaseng.2021.106637
https://doi.org/10.1364/ol.462504

Sensors 2025, 25, 6296 45 of 48

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

Lei, F; Han, M,; Jiang, H.; Wang, X.; Li, X. A phase-angle inspired calibration strategy based on MEMS projector for 3D
reconstruction with markedly reduced calibration images and parameters. Opt. Lasers Eng. 2024, 176, 108078. https://doi.org/10
.1016/j.optlaseng.2024.108078.

Li, Y.; Wu, Z.; Zhang, Q. Phase Error Compensation Technique Based on Phase-Shifting Fringe Analysis: A Review. Laser
Optoelectron. Prog. 2024, 61, 0211008. http://dx.doi.org/10.3788 /LOP232339.

Cai, Z.; Liu, X;; Jiang, H.; He, D.; Peng, X.; Huang, S.; Zhang, Z. Flexible phase error compensation based on Hilbert transform in
phase shifting profilometry. Opt. Express 2015, 23, 25171-25181. https://doi.org/10.1364/OE.23.025171.

Wang, Y.; Cai, J.; Zhang, D.; Chen, X.; Wang, Y. Nonlinear correction for fringe projection profilometry with shifted-phase
histogram equalization. IEEE Trans. Instrum. Meas. 2022, 71, 1-9. https://doi.org/10.1109/TIM.2022.3145361.

Zhang, W.; Yu, L.; Li, W,; Xia, H.; Deng, H.; Zhang, J. Black-box phase error compensation for digital phase-shifting profilometry.
IEEE Trans. Instrum. Meas. 2017, 66, 2755-2761. https://doi.org/10.1109/TIM.2017.2712862.

Wang, Y.; Xu, H.; Zhu, H.; Rao, Y.; Wang, Y. Nonlinear high-order harmonics correction for phase measuring profilometry. Opt.
Laser Technol. 2024, 170, 110248. https://doi.org/10.1016/j.optlastec.2023.110248.

Wang, J.; Yang, Y. Triple N-step phase shift algorithm for phase error compensation in fringe projection profilometry. IEEE Trans.
Instrum. Meas. 2021, 70, 1-9. https://doi.org/10.1109/TIM.2021.3116306.

Zhang, S. Comparative study on passive and active projector nonlinear gamma calibration. Appl. Opt. 2015, 54, 3834-3841.
https://doi.org/10.1364/ A0.54.003834.

Han, M.; Jiang, H.; Lei, F,; Xing, Y.; Wang, X.; Li, X. Modeling window smoothing effect hidden in fringe projection profilometry.
Measurement 2025, 242, 115852. https://doi.org/10.1016/j.measurement.2024.115852.

Li, J.; Hassebrook, L.G.; Guan, C. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity.
J. Opt. Soc. Am. A 2003, 20, 106-115. https://doi.org/10.1364/JOSAA.20.000106.

Zuo, C.; Huang, L.; Zhang, M.; Chen, Q.; Asundi, A. Temporal phase unwrapping algorithms for fringe projection profilometry:
A comparative review. Opt. Lasers Eng. 2016, 85, 84-103. https://doi.org/10.1016/j.optlaseng.2016.04.022.

Yan, K.; Yu, Y.; Huang, C.; Sui, L.; Qian, K.; Asundi, A. Fringe pattern denoising based on deep learning. Opt. Commun. 2019,
437,148-152. https://doi.org/10.1016/j.o0ptcom.2018.12.058.

Zhao, Y.; Yu, H.; Bai, L.; Zheng, D.; Han, J. Accurate fringe projection profilometry using instable projection light source. Opt.
Commun. 2022, 507, 127643. https://doi.org/10.1016/j.optcom.2021.127643.

Liu, Q.; Wang, Y.; He, J.; Ji, F. Phase shift extraction and wavefront retrieval from interferograms with background and contrast
fluctuations. . Opt. 2015, 17, 025704. https:/ /doi.org/10.1088/2040-8978/17/2/025704.

Lu, Y,; Zhang, R.; Guo, H. Correction of illumination fluctuations in phase-shifting technique by use of fringe histograms. Appl.
Opt. 2015, 55, 184-197. https://doi.org/10.1364/A0.55.000184.

Chen, C.; Wan, Y.; Cao, Y. Instability of projection light source and real-time phase error correction method for phase-shifting
profilometry. Opt. Express 2018, 26, 4258-4270. https:/ /doi.org/10.1364/0e.26.004258.

Zheng, Z.; Gao, J.; Mo, J.; Zhang, L.; Zhang, Q. A fast self-correction method for nonlinear sinusoidal fringe images in 3-D
measurement. IEEE Trans. Instrum. Meas. 2021, 70, 1-9. https://doi.org/10.1109/TIM.2021.3066535.

Wu, Z.; Guo, W,; Lu, L.; Zhang, Q. Generalized phase unwrapping method that avoids jump errors for fringe projection
profilometry. Opt. Express 2021, 29, 27181-27192. https://doi.org/10.1364/0e.436116.

Huang, PS.; Hu, Q.J.; Chiang, EP. Double three-step phase-shifting algorithm. Appl. Opt. 2002, 41, 4503-4509. https:
//doi.org/10.1364/A0.41.004503.

Zhang, S.; Yau, S.T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video
projector. Appl. Opt. 2006, 46, 36—43. https://doi.org/10.1364/A0.46.000036.

Pan, B.; Kemao, Q.; Huang, L.; Asundi, A. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting
digital fringe projection profilometry. Opt. Lett. 2009, 34, 416—418. https://doi.org/10.1364/0L.34.000416.

Song, H.; Kong, L. Mask information-based gamma correction in fringe projection profilometry. Opt. Express 2023, 31, 19478-19490.
https://doi.org/10.1364/ 0e.492176.

Han, M.; Shi, W,; Lu, S,; Lei, F; Li, Y.; Wang, X.; Li, X. Internal-External Layered Phase Shifting for Phase Retrieval. IEEE Trans.
Instrum. Meas. 2023, 73, 1-13. https:/ /doi.org/10.1109/TIM.2023.3338721.

Li, K.; Zhang, Z.; Lin, J.; Sato, R.; Matsukuma, H.; Gao, W. Angle measurement based on second harmonic generation using
artificial neural network. Nanomanuf. Metrol. 2023, 6, 28. https://doi.org/10.1007 /s41871-023-00206-5.

Sato, R.; Li, X.; Fischer, A.; Chen, L.C.; Chen, C.; Shimomura, R.; Gao, W. Signal processing and artificial intelligence for
dual-detection confocal probes. Int. |. Precis. Eng. Manuf. 2024, 25, 199-223. https://doi.org/10.1007 /s12541-023-00842-3.
Gao, W,; Haitjema, H.; Fang, F,; Leach, R.; Cheung, C.; Savio, E.; Linares, ].M. On-machine and in-process surface metrology for
precision manufacturing. CIRP Ann. 2019, 68, 843-866. https://doi.org/10.1016/j.cirp.2019.05.005.

Wang, S.; Luo, L.; Li, X. Design and parameter optimization of zero position code considering diffraction based on deep learning
generative adversarial networks. Nanomanuf. Metrol. 2024, 7, 2. https://doi.org/10.1007 /s41871-023-00221-6.


https://doi.org/10.1016/j.optlaseng.2024.108078
https://doi.org/10.1016/j.optlaseng.2024.108078
http://dx.doi.org/10.3788/LOP232339
https://doi.org/10.1364/OE.23.025171
https://doi.org/10.1109/TIM.2022.3145361
https://doi.org/10.1109/TIM.2017.2712862
https://doi.org/10.1016/j.optlastec.2023.110248
https://doi.org/10.1109/TIM.2021.3116306
https://doi.org/10.1364/AO.54.003834
https://doi.org/10.1016/j.measurement.2024.115852
https://doi.org/10.1364/JOSAA.20.000106
https://doi.org/10.1016/j.optlaseng.2016.04.022
https://doi.org/10.1016/j.optcom.2018.12.058
https://doi.org/10.1016/j.optcom.2021.127643
https://doi.org/10.1088/2040-8978/17/2/025704
https://doi.org/10.1364/AO.55.000184
https://doi.org/10.1364/oe.26.004258
https://doi.org/10.1109/TIM.2021.3066535
https://doi.org/10.1364/oe.436116
https://doi.org/10.1364/AO.41.004503
https://doi.org/10.1364/AO.41.004503
https://doi.org/10.1364/AO.46.000036
https://doi.org/10.1364/OL.34.000416
https://doi.org/10.1364/oe.492176
https://doi.org/10.1109/TIM.2023.3338721
https://doi.org/10.1007/s41871-023-00206-5
https://doi.org/10.1007/s12541-023-00842-3
https://doi.org/10.1016/j.cirp.2019.05.005
https://doi.org/10.1007/s41871-023-00221-6

Sensors 2025, 25, 6296 46 of 48

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

Li, C; Pan, X,; Zhu, P; Zhu, S.; Liao, C.; Tian, H.; Qian, X,; Li, X.; Wang, X,; Li, X. Style Adaptation module: Enhancing
detector robustness to inter-manufacturer variability in surface defect detection. Comput. Ind. 2024, 157, 104084. https:
//doi.org/10.1016/j.compind.2024.104084.

Li, C; Yan, H,; Qian, X.; Zhu, S.; Zhu, P; Liao, C; Tian, H.; Li, X.; Wang, X.; Li, X. A domain adaptation YOLOv5 model for
industrial defect inspection. Measurement 2023, 213, 112725. https://doi.org/10.1016/j.measurement.2023.112725.

Liu, C.; Zhang, C.; Liang, X.; Han, Z.; Li, Y,; Yang, C.; Gui, W.; Gao, W.; Wang, X; Li, X. Attention Mono-depth: Attention-
enhanced transformer for monocular depth estimation of volatile kiln burden surface. IEEE Trans. Circuits Syst. Video Technol.
2024, 35, 1686-1699. https://doi.org/10.1109/TCSVT.2024.3479412.

Li, Y; Li, Z,; Liang, X.; Huang, H.; Qian, X; Feng, F.; Zhang, C.; Wang, X.; Gui, W,; Li, X. Global phase accuracy enhancement
of structured light system calibration and 3D reconstruction by overcoming inevitable unsatisfactory intensity modulation.
Measurement 2024, 236, 114952. https://doi.org/10.1016/j.measurement.2024.114952.

Li, Y,; Li, Z,; Zhang, C.; Han, M.; Lei, E; Liang, X.; Wang, X.; Gui, W.; Li, X. Deep learning-driven one-shot dual-view 3-D
reconstruction for dual-projector system. IEEE Trans. Instrum. Meas. 2023, 73, 1-14. https://doi.org/10.1109/TIM.2023.3343782.
Caggiano, A.; Zhang, J.; Alfieri, V.; Caiazzo, F.; Gao, R.; Teti, R. Machine learning-based image processing for on-line defect
recognition in additive manufacturing. CIRP Ann. 2019, 68, 451-454. https://doi.org/10.1016/j.cirp.2019.03.021.

Wang, H.; He, X.; Zhang, C.; Liang, X.; Zhu, P.; Wang, X.; Gui, W.; Li, X,; Qian, X. Accelerating surface defect detection
using normal data with an attention-guided feature distillation reconstruction network. Measurement 2025, 246, 116702. https:
//doi.org/10.1016/j.measurement.2025.116702.

Nguyen, H.; Novak, E.; Wang, Z. Accurate 3D reconstruction via fringe-to-phase network. Measurement 2022, 190, 110663.
https://doi.org/10.1016/j.measurement.2021.110663.

Qiao, G.; Huang, Y,; Song, Y.; Yue, H,; Liu, Y. A single-shot phase retrieval method for phase measuring deflectometry based on
deep learning. Opt. Commun. 2020, 476, 126303. https://doi.org/10.1016/j.optcom.2020.126303.

Fan, L.; Wu, Z.; Wang, J.; Wei, C.; Yue, H,; Liu, Y. Deep learning-based Phase Measuring Deflectometry for single-shot 3D shape
measurement and defect detection of specular objects. Opt. Express 2022, 30, 26504-26518. https:/ /doi.org/10.1364/0e.464452.
Fan, X;; Ma, T.; Li, C; Li, Y.; Liu, S.; Chen, H. A deep learning-based approach to solve the height-slope ambiguity in phase
measuring deflectometry. Meas. Sci. Technol. 2023, 34, 095007. https://doi.org/10.1088/1361-6501/acd712.

Nguyen, M.T,; Ghim, Y.S.; Rhee, H.G. DYnet++: A deep learning based single-shot phase-measuring deflectometry for the 3-D
measurement of complex free-form surfaces. IEEE Trans. Ind. Electron. 2023, 71, 2112-2121. https://doi.org/10.1109/TIE.2023.3
253940.

Ghim, Y.S.; Rhee, H.G. Deep learning-based phase measuring deflectometry for one-shot measurement and inspection of specular
free-form surfaces. In Proceedings of the Interferometry and Structured Light 2024. SPIE, San Diego, CA, USA, 21-22 August
2024; Volume 13135, pp. 4-7. https://doi.org/10.1117/12.3025140.

Chen, M,; Li, Y; Li, X,; Liang, X; Li, Z.; Chen, W.; Wang, H.; Zhang, C.; Wang, X.; Gui, W. Single-frame structured light depth map
reconstruction with absolute phase-aided supervision. In Proceedings of the Optoelectronic Imaging and Multimedia Technology
XI. SPIE, Nantong, China, 13-15 October 2024; Volume 13239, pp. 172-177. https://doi.org/10.1117/12.3035560.

Chen, M; Li, Y,; Li, X;; Li, Z.; Chen, W.; Zhang, C.; Liang, X. An end-to-end structured light depth prediction approach using
Mamba networks. In Proceedings of the Optoelectronic Imaging and Multimedia Technology XI. SPIE, Nantong, China, 13-15
October 2024; Volume 13239, pp. 178-183. https://doi.org/10.1117/12.3035635.

Chen, W.; Li, Y;; Ma, R.; Wang, S.; Li, Z.; Zhang, C.; Chen, M.; Wang, X.; Gui, W.; Liang, X. X+ 1+ 1: A fast three-frequency
heterodyne absolute phase measurement method integrating modified Fourier transform. In Proceedings of the Optical
Metrology and Inspection for Industrial Applications XI. SPIE, Nantong, China, 12-14 October 2024; Volume 13241, pp. 27-34.
https://doi.org/10.1117 /12.3036428.

Su, X.; Zhang, Q. Dynamic 3-D shape measurement method: A review. Opt. Lasers Eng. 2010, 48, 191-204. https://doi.org/10.1
016/j.optlaseng.2009.03.012.

Nguyen, H.; Wang, Y.; Wang, Z. Single-shot 3D shape reconstruction using structured light and deep convolutional neural
networks. Sensors 2020, 20, 3718. https://doi.org/10.3390/520133718.

Wang, F.; Wang, C.; Guan, Q. Single-shot fringe projection profilometry based on deep learning and computer graphics. Opt.
Express 2021, 29, 8024-8040. https:/ /doi.org/10.1364/OF.418430.

Wang, C.; Zhou, P; Zhu, ]J. Deep learning-based end-to-end 3D depth recovery from a single-frame fringe pattern with the
MSUNet++ network. Opt. Express 2023, 31, 33287-33298. https://doi.org/10.1364/0e.501067.

Zhu, X.; Han, Z.; Zhang, Z.; Song, L.; Wang, H.; Guo, Q. PCTNet: Depth estimation from single structured light image with a
parallel CNN-transformer network. Meas. Sci. Technol. 2023, 34, 085402. https://doi.org/10.1088/1361-6501/acd136.

Li, Z.; Li, Y.; Chen, W.; Zhang, C.; Chen, M.; Wang, X.; Gui, W.; Liang, X. DSAS-S2APNet: A dual-stage auxiliary supervision
network for single-frame to absolute phase prediction. In Proceedings of the Optical Metrology and Inspection for Industrial
Applications XI. SPIE, Nantong, China, 12-14 October 2024; Volume 13241, pp. 255-260. https://doi.org/10.1117/12.3036424.


https://doi.org/10.1016/j.compind.2024.104084
https://doi.org/10.1016/j.compind.2024.104084
https://doi.org/10.1016/j.measurement.2023.112725
https://doi.org/10.1109/TCSVT.2024.3479412
https://doi.org/10.1016/j.measurement.2024.114952
https://doi.org/10.1109/TIM.2023.3343782
https://doi.org/10.1016/j.cirp.2019.03.021
https://doi.org/10.1016/j.measurement.2025.116702
https://doi.org/10.1016/j.measurement.2025.116702
https://doi.org/10.1016/j.measurement.2021.110663
https://doi.org/10.1016/j.optcom.2020.126303
https://doi.org/10.1364/oe.464452
https://doi.org/10.1088/1361-6501/acd712
https://doi.org/10.1109/TIE.2023.3253940
https://doi.org/10.1109/TIE.2023.3253940
https://doi.org/10.1117/12.3025140
https://doi.org/10.1117/12.3035560
https://doi.org/10.1117/12.3035635
https://doi.org/10.1117/12.3036428
https://doi.org/10.1016/j.optlaseng.2009.03.012
https://doi.org/10.1016/j.optlaseng.2009.03.012
https://doi.org/10.3390/s20133718
https://doi.org/10.1364/OE.418430
https://doi.org/10.1364/oe.501067
https://doi.org/10.1088/1361-6501/acd136
https://doi.org/10.1117/12.3036424

Sensors 2025, 25, 6296 47 of 48

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

Cai, Y.;; Guo, M.; Wang, C; Lu, X,; Zeng, X.; Sun, Y.; Ai, Y.; Xu, S.; Li, J. Ttfdnet: Precise depth estimation from single-frame fringe
patterns. Sensors 2024, 24, 4733. https://doi.org/10.3390/524144733.

Li, R.;; Wang, X.; Huang, G.; Yang, W.; Zhang, K.; Gu, X.; Tran, S.N.; Garg, S.; Alty, J.; Bai, Q. A comprehensive review on deep
supervision: Theories and applications. arXiv 2022, arXiv:2207.02376. https://doi.org/10.48550/arXiv.2207.02376.

Liu, X.; Xu, X;; Rao, A; Gan, C.; Yi, L. Autogpart: Intermediate supervision search for generalizable 3d part segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18-24 June 2022;
pp. 11624-11634. https://doi.org/10.48550/arXiv.2203.06558.

Li, C,; Zia, M.Z.; Tran, Q.H.; Yu, X.; Hager, G.D.; Chandraker, M. Deep supervision with intermediate concepts. IEEE Trans.
Pattern Anal. Mach. Intell. 2018, 41, 1828-1843. https://doi.org/10.1109/TPAMI.2018.2863285.

Nguyen, H.; Ly, K.L.; Tran, T.; Wang, Y.; Wang, Z. hNet: Single-shot 3D shape reconstruction using structured light and h-shaped
global guidance network. Results Opt. 2021, 4, 100104. https://doi.org/10.1016/j.rio.2021.100104.

Zhu, X.; Zhao, H.; Song, L.; Wang, H.; Guo, Q. Triple-output phase unwrapping network with a physical prior in fringe projection
profilometry. Appl. Opt. 2023, 62, 7910-7916. https:/ /doi.org/10.1364/a0.502253.

Nguyen, A.H.; Ly, K.L.; Lam, V.K.; Wang, Z. Generalized fringe-to-phase framework for single-shot 3D reconstruction integrating
structured light with deep learning. Sensors 2023, 23, 4209. https://doi.org/10.3390/523094209.

Qian, J; Feng, S.; Li, Y,; Tao, T.; Han, J.; Chen, Q.; Zuo, C. Single-shot absolute 3D shape measurement with deep-learning-based
color fringe projection profilometry. Opt. Lett. 2020, 45, 1842-1845. https:/ /doi.org/10.1364/0OL.388994.

Li, Y,; Qian, J.; Feng, S.; Chen, Q.; Zuo, C. Composite fringe projection deep learning profilometry for single-shot absolute 3D
shape measurement. Opt. Express 2022, 30, 3424-3442. https://doi.org/10.1364/0e.449468.

Jiang, Y,; Qin, J.; Liu, Y;; Yang, M.; Cao, Y. Deep-Learning-Based Single-Shot Fringe Projection Profilometry Using Spatial
Composite Pattern. IEEE Trans. Instrum. Meas. 2024, 73, 1-14. https:/ /doi.org/10.1109/TIM.2024.3420365.

Zhu, X.; Lan, T,; Zhao, Y.; Wang, H.; Song, L. End-to-end color fringe depth estimation based on a three-branch U-net network.
Appl. Opt. 2024, 63, 7465-7474. https://doi.org/10.1364/A0.537548.

Shen, S.; Lu, R.; Wan, D.; Yin, J.; He, P. Real-Time 3-D Measurement With Dual-Frequency Fringes by Deep Learning. IEEE Sens. ].
2024, 24, 16576-16586. https://doi.org/10.1109 /JSEN.2024.3385471.

Yin, W.; Che, Y,; Li, X;; Li, M,; Hu, Y.; Feng, S.; Lam, E.Y.; Chen, Q.; Zuo, C. Physics-informed deep learning for fringe pattern
analysis. Opto-Electron. Adv. 2024, 7,230034-1. https://doi.org/10.29026/0ea.2024.230034.

Nawaz, M.; Uvaliyev, A.; Bibi, K.; Wei, H.; Abaxi, S.M.D.; Masood, A.; Shi, P.; Ho, H.P,; Yuan, W. Unraveling the complexity
of Optical Coherence Tomography image segmentation using machine and deep learning techniques: A review. Comput. Med.
Imaging Graph. 2023, 108, 102269. https://doi.org/10.1016/j.compmedimag.2023.102269.

Li, Z.; Chen, W,; Liu, C.; Lu, S;; Qian, X.; Wang, X.; Zou, Y.; Li, X. An efficient exposure fusion method for 3D measurement with
high-reflective objects. In Proceedings of the Optoelectronic Imaging and Multimedia Technology XI. SPIE, Nantong, China,
13-15 October 2024; Volume 13239, pp. 348-356. http://dx.doi.org/10.1117/12.3036376.

Wang, H.; Zhang, Z.; Ma, R.; Zhang, C.; Liang, X.; Li, X. Correction of grating patterns for high dynamic range 3D measurement
based on deep learning. In Proceedings of the Optoelectronic Imaging and Multimedia Technology XI. SPIE, Nantong, China,
13-15 October 2024; Volume 13239, pp. 317-325. https://doi.org/10.1117/12.3036279.

Wang, H.; Lu, Z,; Huang, Z.; Li, Y,; Zhang, C.; Qian, X.; Wang, X.; Gui, W,; Liang, X.; Li, X. A High-Accuracy and Reliable
End-to-End Phase Calculation Network and Its Demonstration in High Dynamic Range 3D Reconstruction. Nanomanuf. Metrol.
2025, 8, 5. https:/ /doi.org/10.1007 /s41871-025-00248-x.

Li, Y,; Chen, W,; Li, Z.; Zhang, C.; Wang, X.; Gui, W.; Gao, W,; Liang, X.; Li, X. SL3D-BF: A Real-World Structured Light
3D Dataset with Background-to-Foreground Enhancement. IEEE Trans. Circuits Syst. Video Technol. 2025, 35, 9850-9864.
https:/ /doi.org/10.1109/TCSVT.2025.3571417.

Zhang, S.; Yau, S.T. High dynamic range scanning technique. Opt. Eng. 2009, 48,033604. https://doi.org/10.1117/1.3099720.
Zhang, L.; Chen, Q.; Zuo, C.; Feng, S. High-speed high dynamic range 3D shape measurement based on deep learning. Opt.
Lasers Eng. 2020, 134, 106245. https://doi.org/10.1016/j.optlaseng.2020.106245.

Yu, H.; Chen, X.; Zhang, Z.; Zuo, C.; Zhang, Y.; Zheng, D.; Han, J. Dynamic 3-D measurement based on fringe-to-fringe
transformation using deep learning. Opt. Express 2020, 28, 9405-9418. https://doi.org/10.1364/OE.387215.

Yao, P; Gai, S.; Chen, Y.; Chen, W.; Da, F. A multi-code 3D measurement technique based on deep learning. Opt. Lasers Eng. 2021,
143,106623. https:/ /doi.org/10.1016/j.optlaseng.2021.106623.

Yao, P; Gai, S.; Da, F. Coding-Net: A multi-purpose neural network for Fringe Projection Profilometry. Opt. Commun. 2021,
489,126887. https://doi.org/10.1016/j.optcom.2021.126887.

Song, X.; Wang, L. Y-ffc net for 3d reconstruction of highly reflective surfaces. IEEE Trans. Ind. Inform. 2024, 20, 13966-13974.
https://doi.org/10.1109/TI1.2024.3438258.

Liu, X.; Chen, W.; Madhusudanan, H.; Ge, J.; Ru, C.; Sun, Y. Optical measurement of highly reflective surfaces from a single
exposure. IEEE Trans. Ind. Inform. 2020, 17, 1882-1891. https://doi.org/10.1109/TIL.2020.2991458.


https://doi.org/10.3390/s24144733
https://doi.org/10.48550/arXiv.2207.02376
https://doi.org/10.48550/arXiv.2203.06558
https://doi.org/10.1109/TPAMI.2018.2863285
https://doi.org/10.1016/j.rio.2021.100104
https://doi.org/10.1364/ao.502253
https://doi.org/10.3390/s23094209
https://doi.org/10.1364/OL.388994
https://doi.org/10.1364/oe.449468
https://doi.org/10.1109/TIM.2024.3420365
https://doi.org/10.1364/AO.537548
https://doi.org/10.1109/JSEN.2024.3385471
https://doi.org/10.29026/oea.2024.230034
https://doi.org/10.1016/j.compmedimag.2023.102269
http://dx.doi.org/10.1117/12.3036376
https://doi.org/10.1117/12.3036279
https://doi.org/10.1007/s41871-025-00248-x
https://doi.org/10.1109/TCSVT.2025.3571417
https://doi.org/10.1117/1.3099720
https://doi.org/10.1016/j.optlaseng.2020.106245
https://doi.org/10.1364/OE.387215
https://doi.org/10.1016/j.optlaseng.2021.106623
https://doi.org/10.1016/j.optcom.2021.126887
https://doi.org/10.1109/TII.2024.3438258
https://doi.org/10.1109/TII.2020.2991458

Sensors 2025, 25, 6296 48 of 48

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

Nayar, S.K.; Krishnan, G.; Grossberg, M.D.; Raskar, R. Fast separation of direct and global components of a scene using high
frequency illumination. In ACM SIGGRAPH 2006 Papers; Association for Computing Machinery: New York, NY, USA, 2006;
pp. 935-944. https://doi.org/10.1145/3596711.3596765.

Drouin, M.A.; Godin, G. Deconvolution-based structured light system with geometrically plausible regularization. In Proceedings
of the 2008 Congress on Image and Signal Processing, Sanya, China, 27-30 May 2008; Volume 3, pp. 557-564. https://doi.org/10
.1109/CISP.2008.532.

Drouin, M.A.; Godin, G.; Blais, F. Efficient representation of the variant PSF of structured light system. In Proceedings
of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 2629 September 2010; pp. 1693-1696.
https://doi.org/10.1109/ICIP.2010.5649353.

Chen, T.; Lensch, H.P,; Fuchs, C.; Seidel, H.P. Polarization and phase-shifting for 3D scanning of translucent objects. In
Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17-22 June 2007;
pp. 1-8. https://doi.org/10.1109 /CVPR.2007.383209.

Chen, T.; Seidel, H.P.; Lensch, H.P. Modulated phase-shifting for 3D scanning. In Proceedings of the 2008 IEEE Conference on
Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23-28 June 2008; pp. 1-8. https://doi.org/10.1109/CVPR.2008
.4587836.

Gupta, M.; Nayar, S.K. Micro phase shifting. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition, Providence, RI, USA, 16-21 June 2012; pp. 813-820. Available online: https://api.semanticscholar.org/CorpuslD:
14927216 (accessed on 3 October 2025).

Couture, V.; Martin, N.; Roy, S. Unstructured light scanning to overcome interreflections. In Proceedings of the 2011 International
Conference on Computer Vision, Barcelona, Spain, 6-13 November 2011; pp. 1895-1902. https://doi.org/10.1109/ICCV.2011.612
6458.

Moreno, D.; Son, K.; Taubin, G. Embedded phase shifting: Robust phase shifting with embedded signals. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 2301-2309.
https://doi.org/10.1109/CVPR.2015.7298843.

Zuo, C,; Tao, T; Feng, S.; Huang, L.; Asundi, A.; Chen, Q. Micro Fourier transform profilometry (uFTP): 3D shape measurement
at 10,000 frames per second. Opt. Lasers Eng. 2018, 102, 70-91. https://doi.org/10.1016/j.optlaseng.2017.10.013.

Zhang, S.; Van Der Weide, D.; Oliver, J. Superfast phase-shifting method for 3-D shape measurement. Opt. Express 2010,
18, 9684-9689. https://doi.org/10.1364/0e.18.009684.

Gong, Y.; Zhang, S. Ultrafast 3-D shape measurement with an off-the-shelf DLP projector. Opt. Express 2010, 18, 19743-19754.
https:/ /doi.org/10.1364/0e.18.019743.

Lei, S.; Zhang, S. Flexible 3-D shape measurement using projector defocusing. Opt. Lett. 2009, 34, 3080-3082. https:
//doi.org/10.1364/OL.34.003080.

Zuo, C.; Chen, Q.; Feng, S.; Feng, F; Gu, G.; Sui, X. Optimized pulse width modulation pattern strategy for three-dimensional
profilometry with projector defocusing. Appl. Opt. 2012, 51, 4477-4490. https://doi.org/10.1364/A0.51.004477.

Heist, S.; Lutzke, P.; Schmidst, I.; Dietrich, P.; Kithmstedt, P.; Tiinnermann, A.; Notni, G. High-speed three-dimensional shape
measurement using GOBO projection. Opt. Lasers Eng. 2016, 87, 90-96. https://doi.org/10.1016/j.optlaseng.2016.02.017.
Wang, B.; Chen, W.; Qian, J.; Feng, S.; Chen, Q.; Zuo, C. Single-shot super-resolved fringe projection profilometry (SSSR-FPP):
100,000 frames-per-second 3D imaging with deep learning. Light. Sci. Appl. 2025, 14, 70. https://doi.org/10.1038/s41377-024-0
1721-w.

Wang, Y.; Zhou, C.; Qi, X.; Li, H. UHRNet: A deep learning-based method for accurate 3D reconstruction from a single
fringe-pattern. J. Mod. Opt. 2023, 70,707-722. https://doi.org/10.1080/09500340.2024.2333249.

Li, Y.; Shen, J.; Wu, Z.; Wang, Y.; Zhang, Q. Real-time 3d imaging based on roi fringe projection and a lightweight phase-estimation
network. Adv. Imaging 2024, 1, 021004. https:/ /doi.org/10.3788/A1.2024.10008.

Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345-1359. https://doi.org/10.1109/
TKDE.2009.191.

Zheng, Y.; Chao, Q.; An, Y,; Hirsh, S.; Fix, A. Fringe projection-based single-shot 3d eye tracking using deep learning and computer
graphics. In Proceedings of the Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR,
VR, MR) IV. SPIE, San Diego, CA, USA, 20-24 August 2023; Volume 12449, pp. 265-275. https://doi.org/10.1117/12.2667763.
Xu, M.; Zhang, Y.; Wan, Y,; Luo, L.; Peng, J. Single-shot multi-frequency 3D shape measurement for discontinuous surface object
based on deep learning. Micromachines 2023, 14, 328. https://doi.org/10.3390/mi14020328.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1145/3596711.3596765
https://doi.org/10.1109/CISP.2008.532
https://doi.org/10.1109/CISP.2008.532
https://doi.org/10.1109/ICIP.2010.5649353
https://doi.org/10.1109/CVPR.2007.383209
https://doi.org/10.1109/CVPR.2008.4587836
https://doi.org/10.1109/CVPR.2008.4587836
https://api.semanticscholar.org/CorpusID:14927216
https://api.semanticscholar.org/CorpusID:14927216
https://doi.org/10.1109/ICCV.2011.6126458
https://doi.org/10.1109/ICCV.2011.6126458
https://doi.org/10.1109/CVPR.2015.7298843
https://doi.org/10.1016/j.optlaseng.2017.10.013
https://doi.org/10.1364/oe.18.009684
https://doi.org/10.1364/oe.18.019743
https://doi.org/10.1364/OL.34.003080
https://doi.org/10.1364/OL.34.003080
https://doi.org/10.1364/AO.51.004477
https://doi.org/10.1016/j.optlaseng.2016.02.017
https://doi.org/10.1038/s41377-024-01721-w
https://doi.org/10.1038/s41377-024-01721-w
https://doi.org/10.1080/09500340.2024.2333249
https://doi.org/10.3788/AI.2024.10008
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1117/12.2667763
https://doi.org/10.3390/mi14020328

	Introduction 
	Fringe-Structured-Light 3D Reconstruction Approach 
	Wrapped-Phase Extraction
	Phase Unwrapping Algorithms
	Temporal-Phase Unwrapping
	Spatial-Phase Unwrapping

	3D Shape Reconstruction from Phase
	3D Shape Recovery in PMD
	3D Shape Recovery in FPP


	Evolution and Advances of PMD Systems
	Single-Screen and Single-Camera Systems
	Multi-Screen Direct PMD
	Multi-Camera Stereo PMD

	Evolution and Advances of FPP Systems
	Comparison of Mainstream Fringe Projection Technologies
	System Calibration Strategies for MEMS-Based Structured-Light Systems
	Joint Calibration Model
	Equal-Phase Surface Model
	Phase-Angle Model

	Analysis of Systematic and Random Errors
	Random Errors
	Impact of Line Laser Intensity Fluctuations
	High-Order Harmonics


	Application of Deep Learning in Fringe-Structured Light
	Learning Paradigm for Deep Learning-Driven FPP
	Deep Learning Framework Design and Advancements
	Network Architecture Innovations
	Supervision Strategies
	Input Design

	Evaluation Metrics

	Challenges and Perspectives
	HDR Issues
	Extended Depth of Field
	High-Speed Deployment and Real-Time Reconstruction
	Transferability, Generalization, and Interpretability of Deep Learning Methods

	Conclusions
	References

